首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
NADP-linked aldehyde reductase (AR; EC 1.1.1.2), partially purified from epimastigotes of Trypanosoma cruzi, was able to reduce a number of aldehydes and to oxidize several alcohols; propionaldehyde and n-propanol were the best substrates, at optimal pH values of 7 to 8, and 9 to 9.5, respectively. The AR was inhibited p-chloromercuribenzoate and iodoacetamide, but not by 1,10-phenanthroline or barbital. Digitonin treatment of whole epimastigotes, and distribution and latency in subcellular fractions, indicated that the AR is cytosolic. Like other ARs, the T. cruzi enzyme might be involved in detoxication processes, instead of coenzyme re-oxidation.  相似文献   

3.
Two monoclonal antibodies were used to biochemically characterize glycoprotein 72 (GP72) from Trypanosoma cruzi and to localize the protein in live and fixed parasites by indirect immunofluorescence and in thin section of parasites by immunogold electron microscopy. GP72 was shown in immunoblots to be specific for the epimastigote stage; the protein could not be detected in trypomastigotes. Each antibody reacted with a different epitope on the glycoprotein and deglycosylation of GP72 ablated reactivity with one of the antibodies. Indirect immunofluorescence and electron microscopic evaluation of parasite associated gold particles showed the presence of GP72 in the cell surface membrane including the flagellar pocket and the cytostome. In addition, cytoplasmic membrane vesicles of the endosomal-lysosomal system stained intensely.  相似文献   

4.
A single form of serine hydroxymethyltransferase (SHMT) was detected in epimastigotes of Trypanosoma cruzi, in contrast to the three isoforms of the enzyme characterized from another trypanosomatid, Crithidia fasciculata [Capelluto D.G.S., Hellman U., Cazzulo J.J. & Cannata J.J.B. (1999) Mol. Biochem. Parasitol. 98, 187-201]. The T. cruzi SHMT was found to be highly unstable in crude extracts. In the presence of the cysteine proteinase inhibitors N-alpha-p-tosyl-L-lysine chloromethyl ketone and Ltrans-3-carboxyoxiran-2-carbonyl-L-leucylagmatine, however, the enzyme could be purified to homogeneity. Digitonin treatment of intact cells suggested that the enzyme is cytosolic. T. cruzi SHMT presents a monomeric structure shown by the apparent molecular masses of 69 kDa (native) and 55 kDa (subunit) determined by Sephadex G-200 gel filtration and SDS/PAGE, respectively. This is in contrast to the tetrameric SHMTs described in C. fasciculata and other eukaryotes. The enzyme was pyridoxal phosphate-dependent after L-cysteine and hydroxylamine treatments and it was strongly inhibited by the substrate analog folate, which was competitive towards tetrahydrofolate and noncompetitive towards L-serine. Partial sequencing of tryptic internal peptides of the enzyme indicate considerable similarity with other SHMTs, particularly from those of plant origin.  相似文献   

5.
6.
Here we have investigated the function of TcRho1, a Rho family orthologue from the parasite Trypanosoma cruzi. We have selected parasites overexpressing wild-type TcRho1 and a truncated form of TcRho1 (TcRho1-DeltaCaaX) which is unable to undergo farnesylation and supposed to interfere with recruitment of Rho effectors to membranes. TcRho1 protein was localized at the anterior region of wild-type and TcRho1 overexpressing epimastigotes, suggesting association with the Golgi apparatus. Accordingly, parasites overexpressing TcRho1-DeltaCaaX presented cytoplasmic fluorescence. To address the function of TcRho1 during differentiation, from epimastigotes to trypomastigotes, we submitted parasites overexpressing the above-cited lineages to metacyclogenesis assays. Parasites overexpressing TcRho1-DeltaCaaX generated a discrete number of metacyclic trypomastigotes when compared with other lineages. Strikingly, TcRho1-DeltaCaaX cells died synchronously during the process of metacyclogenesis.  相似文献   

7.
The flavoprotein lipoamide dehydrogenase was purified, by an improved method, from commercial baker's yeast about 700-fold to apparent homogeneity with 50-80% yield. The enzyme had a specific activity of 730-900 U/mg (about twice the value of preparations described previously). The holoenzyme, but not the apoenzyme, possessed very high stability against proteolysis, heat, and urea treatment and could be reassociated, with fair yield, with the other components of yeast pyruvate dehydrogenase complex to give the active multienzyme complex. The apoenzyme was reactivated when incubated with FAD but not FMN. As other lipoamide dehydrogenases, the yeast enzyme was found to possess diaphorase activity catalysing the oxidation of NADH with various artificial electron acceptors. Km values were 0.48 mM for dihydrolipoamide and 0.15 mM for NAD. NADH was a competitive inhibitor with respect to NAD (Ki 31 microM). The native enzyme (Mr 117000) was composed of two apparently identical subunits (Mr 56000), each containing 0.96 FAD residues and one cystine bridge. The amino acid composition differed from bacterial and mammalian lipoamide dehydrogenases with respect to the content of Asx, Glx, Gly, Val, and Cys. The lipoamide dehydrogenases of baker's and brewer's yeast were immunologically identical but no cross-reaction with mammalian lipoamide dehydrogenases was found.  相似文献   

8.
1. Epimastigotes of Trypanosoma cruzi, Tulahuén strain, contained a NAD-linked glutamate dehydrogenase (EC 1.4.1.3), in addition to the already known NADP-linked enzyme enzyme (EC 1.4.1.4). 2. The partially purified NAD-linked enzyme had a higher molecular weight and was much more labile than the NADP-linked enzyme, and was inhibited by purine nucleotides. 3. These results further emphasize the difference in glutamate metabolism between the parasite and its mammalian host.  相似文献   

9.
From Trypanosoma cruzi, the causative agent of Chagas' disease, a lipoamide dehydrogenase was isolated. The enzyme, an FAD-cystine oxidoreductase, shares many physical and chemical properties with T. cruzi trypanothione reductase, the key enzyme of the parasite's thiol metabolism. 1. From 60 g epimastigotic T. cruzi cells, 2.7 mg lipoamide dehydrogenase was extracted. The flavoenzyme was purified 3000-fold to homogeneity with an overall yield of 26%. 2. The enzyme is a dimer with a subunit Mr of 55,000. With 1 mM lipoamide (Km approximately 5 mM) and 100 microM NADH (Km = 23 microM), the specific activity at pH 7.0 is 297 U/mg. 3. With excess NADH, the enzyme is reduced to the EH2.NADH complex and, by addition of lipoamide, it is reoxidized, indicating that it can cycle between the oxidized state E and the two-electron-reduced state, EH2. 4. As shown by N-terminal sequencing of the enzyme, 21 out of 30 positions are identical with those of pig heart and human liver lipoamide dehydrogenase. The sequenced section comprises the GGGPGG stretch, which represents the binding site for the pyrophosphate moiety of FAD. 5. After reduction of Eox to the two-electron-reduced state, the enzyme is specifically inhibited by the nitrosourea drug 1,3-bis(2-chloroethyl)-1-nitrosourea (Carmustine), presumably by carbamoylation at one of the nascent active-site thiols. 6. Polyclonal rabbit antibodies raised against T. cruzi lipoamide dehydrogenase and trypanothione reductase are specific for the respective enzyme, as shown by immunoblots of the pure proteins and of cell extracts.  相似文献   

10.
Lipoamide dehydrogenase from human liver   总被引:2,自引:0,他引:2  
  相似文献   

11.
D J McKay  K J Stevenson 《Biochemistry》1979,18(21):4702-4707
Lipoamide dehydrogenase (EC 1.6.4.3) has been isolated from a total homogenate of frozen mycelium of the thermophilic fungus Malbranchea pulchella var. sulfurea by a three-step procedure involving ammonium sulfate fractionation, Procion Brilliant Blue M-R--Sepharose 4B chromatography, and hydroxylapatite chromatography. The second step is the key purification step with the Procion Brilliant Blue M-R dye acting as an affinity ligand for the enzyme. The purified enzyme gave a single protein band on polyacrylamide gel electrophoresis in the presence and absence of sodium dodecyl sulfate. The enzyme is a dimer of molecular weight 102 000, and each monomer of 51 000 molecular weight binds one molecule of flavin adenine dinucleotide. Other properties determined include a pH optimum of 8.2, a strong specificity for the substrates dihydrolipoamide and nicotinamide adenine dinucleotide, the apparent lack of multiple enzymic forms, the presence of diaphorase activity, and resistance to temperature denaturation up to 60 degrees C. The amino acid composition and absorption spectrum of the enzyme were also determined. The properties of lipoamide dehydrogenase from this source are very similar to those reported for the enzyme from serveral other sources.  相似文献   

12.
Dihydroorotate dehydrogenase (DHOD) is the fourth enzyme in the de novo pyrimidine biosynthetic pathway and is essential in Trypanosoma cruzi, the parasitic protist causing Chagas' disease. T. cruzi and human DHOD have different biochemical properties, including the electron acceptor capacities and cellular localization, suggesting that T. cruzi DHOD may be a potential chemotherapeutic target against Chagas' disease. Here, we report nucleotide sequence polymorphisms of T. cruzi DHOD genes and the kinetic properties of the recombinant enzymes. T. cruzi Tulahuen strain possesses three DHODgenes: DHOD1 and DHOD2, involved in the pyrimidine biosynthetic (pyr) gene cluster on an 800 and a 1000 kb chromosomal DNA, respectively, and DHOD3, located on an 800 kb DNA. The open reading frames of all three DHOD genes are comprised of 942 bp, and encode proteins of 314 amino acids. The three DHOD genes differ by 26 nucleotides, resulting in replacement of 8 amino acid residues. In contrast, all residues critical for constituting the active site are conserved among the three proteins. Recombinant T. cruzi DHOD1 and DHOD2 expressed in E. coli possess similar enzymatic properties, including optimal pH, optimal temperature, Vmax, and Km for dihydroorotate and fumarate. In contrast, DHOD3 had a higher Vmax and Km for both substrates. Orotate competitively inhibited all three DHOD enzymes to a comparable level. These results suggest that, despite their genetic variations, kinetic properties of the three T. cruziDHODs are conserved. Our findings facilitate further exploitation of T. cruzi DHOD inhibitors, as chemotherapeutic agents against Chagas' disease.  相似文献   

13.
1. The cultured, epimastigote-form of Trypanosoma cruzi contains NADP-linked glutamate dehydrogenase (EC 1.4.1.4), with a molecular weight of about 280,000, similar to the enzyme from Plasmodium chabaudi and different from the enzymes from higher animal sources. 2. T. cruzi also contains aspartate aminotransferase (EC 2.6.1.1), with properties similar to those of the enzyme from mammals. 3. The concerted action of the transaminase and glutamate dehydrogenase might be responsible for the production of NH3 which characterizes the protein catabolism in T. cruzi.  相似文献   

14.
15.
Lipoamide dehydrogenase (LipDH) is a component of four mitochondrial multienzyme complexes. RNA interference or the deletion of both alleles in bloodstream Trypanosoma brucei resulted in an absolute requirement for exogenous thymidine. In the absence of thymidine, lipdh-/- parasites showed a severely altered morphology and cell cycle distribution. Most probably, in bloodstream cells with their only rudimentary mitochondrion, LipDH is required as component of the glycine cleavage complex which generates methylene-tetrahydrofolate for dTMP and thus DNA synthesis. The essential role of LipDH in bloodstream parasites was confirmed by an in vivo model. Lipdh-/- cells were unable to infect mice. Our data further revealed that degradation of branched-chain amino acids takes place but is dispensable. In cultured bloodstream--but not procyclic--African trypanosomes, the total cellular concentration of LipDH increases with increasing cell densities. In procyclic parasites, LipDH mRNA depletion caused an even stronger proliferation defect that was not reversed by thymidine suggesting that in the fully elaborated mitochondrion of these cells the primary effect is not on the glycine cleavage complex. Since the medium used for the cultivation of procyclic cells was not supplemented with glucose, impairment of the 2-ketoglutarate dehydrogenase complex is probably the main effect of LipDH depletion.  相似文献   

16.
Carboxylesterase activity corresponding to types A and B has been demonstrated in intact T. cruzi epimastigotes as shown by the hydrolysis of several esters of p-nitrophenol and the effect of suitable inhibitors. The in situ carboxylesterase activity was described by the Michaelis Menten kinetic approach. The apparent Vmax for the acetate and butyrate esters were 66.5 and 165.3 nmol hydrolysed per min and mg of protein respectively. An Arrhenius plot of the temperature dependent activity showed two sharp linear regions with a transition temperature of 31.6 degrees C. and energies of activation of 6.2 and 14.1 kcal/mol. The in situ carboxylesterase activity was inhibited 26% by paraoxon and 56% by N-ethylmaleimide, but not by p-chloromercuribenzoate.  相似文献   

17.
1. Grinding of epimastigotes of Trypanosoma cruzi with glass powder in a mortar yielded a Mg2+-activated adenosine triphosphatase (ATPase) preparation which was highly sensitive to oligomycin. 2. Chloroform treatment of the particles resulted in the solubilization of an ATPase which was (a) activated by MgCl2; (b) slightly inhibited by CaCl2; (c) activated by sulphite and bisulphite; (d) had an optimum pH of 7.6; and (e) had a Km for ATP of 2.1 mM (in the presence of 4 mM MgCl2). 3. The solubilized enzyme was insensitive to oligomycin and leucinostatin, which inhibited the membrane-bound ATPase, though inhibited by efrapeptin and quercetin. 4. The results indicate that the chloroform-extracted enzyme is a soluble F1-ATPase similar to those isolated from mammalian mitochondria.  相似文献   

18.
Ultrastructural localization of basic proteins in Trypanosoma cruzi.   总被引:2,自引:0,他引:2  
The postformalin ammoniacal silver (AS) and the ethanolic phosphotungstic acid (EPTA) techniques were applied in epimastigote and trypomastigote forms of the pathogenic protozoa Trypanosoma cruzi to detect basic proteins at the ultrastructural level. With both techniques, reaction was observed in the nucleus and in some cytoplasmic vacuoles. In the kinetoplast of epimastigotes, reaction was observed only at its periphery. In trypomastigotes, however, an intense reaction was observed in the spherical kinetoplast. With the ethanolic phosphotungstic acid technique, reaction was also observed in ribosomes and at the peripheral doublet microtubules of the flagellum. The filaments which form the paraflagellar structure did not react.  相似文献   

19.
Cell-free extracts of epimastigotes of Trypanosoma cruzi contain tyrosine aminotransferase (TAT) and p-hydroxyphenyllactate dehydrogenase (pHPLDH). The TAT activity could be separated from aspartate aminotransferase (ASAT) by polyacrylamide gel electrophoresis or DEAE-cellulose chromatography; the latter procedure also allowed complete separation of pHPLDH. The subcellular localization of both T. cruzi enzymes, as determined by digitonin extraction, subcellular fractionation by differential centrifugation, and isopycnic ultracentrifugation in sucrose gradients, was mainly cytosolic, with low mitochondrial activities.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号