首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
From Trypanosoma cruzi, the causative agent of Chagas' disease, a lipoamide dehydrogenase was isolated. The enzyme, an FAD-cystine oxidoreductase, shares many physical and chemical properties with T. cruzi trypanothione reductase, the key enzyme of the parasite's thiol metabolism. 1. From 60 g epimastigotic T. cruzi cells, 2.7 mg lipoamide dehydrogenase was extracted. The flavoenzyme was purified 3000-fold to homogeneity with an overall yield of 26%. 2. The enzyme is a dimer with a subunit Mr of 55,000. With 1 mM lipoamide (Km approximately 5 mM) and 100 microM NADH (Km = 23 microM), the specific activity at pH 7.0 is 297 U/mg. 3. With excess NADH, the enzyme is reduced to the EH2.NADH complex and, by addition of lipoamide, it is reoxidized, indicating that it can cycle between the oxidized state E and the two-electron-reduced state, EH2. 4. As shown by N-terminal sequencing of the enzyme, 21 out of 30 positions are identical with those of pig heart and human liver lipoamide dehydrogenase. The sequenced section comprises the GGGPGG stretch, which represents the binding site for the pyrophosphate moiety of FAD. 5. After reduction of Eox to the two-electron-reduced state, the enzyme is specifically inhibited by the nitrosourea drug 1,3-bis(2-chloroethyl)-1-nitrosourea (Carmustine), presumably by carbamoylation at one of the nascent active-site thiols. 6. Polyclonal rabbit antibodies raised against T. cruzi lipoamide dehydrogenase and trypanothione reductase are specific for the respective enzyme, as shown by immunoblots of the pure proteins and of cell extracts.  相似文献   

2.
The relationship between the NADH:lipoamide reductase and NADH:quinone reductase reactions of pig heart lipoamide dehydrogenase (EC 1.6.4.3) was investigated. At pH 7.0 the catalytic constant of the quinone reductase reaction (kcat.) is 70 s-1 and the rate constant of the active-centre reduction by NADH (kcat./Km) is 9.2 x 10(5) M-1.s-1. These constants are almost an order lower than those for the lipoamide reductase reaction. The maximal quinone reductase activity is observed at pH 6.0-5.5. The use of [4(S)-2H]NADH as substrate decreases kcat./Km for the lipoamide reductase reaction and both kcat. and kcat./Km for the quinone reductase reaction. The kcat./Km values for quinones in this case are decreased 1.85-3.0-fold. NAD+ is a more effective inhibitor in the quinone reductase reaction than in the lipoamide reductase reaction. The pattern of inhibition reflects the shift of the reaction equilibrium. Various forms of the four-electron-reduced enzyme are believed to reduce quinones. Simple and 'hybrid ping-pong' mechanisms of this reaction are discussed. The logarithms of kcat./Km for quinones are hyperbolically dependent on their single-electron reduction potentials (E1(7]. A three-step mechanism for a mixed one-electron and two-electron reduction of quinones by lipoamide dehydrogenase is proposed.  相似文献   

3.
The lipoamide dehydrogenase of the glycine decarboxylase complex was purified to homogeneity (8 U/mg) from cells of the anaerobe Eubacterium acidaminophilum that were grown on glycine. In cell extracts four radioactive protein fractions labeled with D-[2-14C]riboflavin could be detected after gel filtration, one of which coeluted with lipoamide dehydrogenase activity. The molecular mass of the native enzyme could be determined by several methods to be 68 kilodaltons, and an enzyme with a molecular mass of 34.5 kilodaltons was obtained by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Immunoblot analysis of cell extracts separated by sodium dodecyl sulfate-polyacrylamide or linear polyacrylamide gel electrophoresis resulted in a single fluorescent band. NADPH instead of NADH was the preferred electron donor of this lipoamide dehydrogenase. This was also indicated by Michaelis constants of 0.085 mM for NADPH and 1.1 mM for NADH at constant lipoamide and enzyme concentrations. The enzyme exhibited no thioredoxin reductase, glutathione reductase, or mercuric reductase activity. Immunological cross-reactions were obtained with cell extracts of Clostridium cylindrosporum, Clostridium sporogenes, Clostridium sticklandii, and bacterium W6, but not with extracts of other glycine- or purine-utilizing anaerobic or aerobic bacteria, for which the lipoamide dehydrogenase has already been characterized.  相似文献   

4.
Mycobacterium sp. Pyr-1 produces an enzyme with nitroreductase activity that reduces 1-nitropyrene and 4-nitrobenzoic acid to the corresponding aromatic amines. This enzyme was constitutive and required NADH; and its activity was enhanced by FAD. It was inhibited by antimycin A, dicumarol, and o-iodosobenzoic acid; and it was inactivated by ammonium sulfate precipitation. After purification to homogeneity, the protein produced a single band on native and SDS-polyacrylamide gels and had a single amino-terminal sequence. The N-terminal amino acid sequence was identical to the corresponding sequences of the lipoamide dehydrogenases of M. leprae, M. tuberculosis and Corynebacterium glutamicum. The amino-terminal sequence was also similar to lipoamide dehydrogenases from M. smegmatis and several other bacteria. The amino acid sequence of an internal peptide (12 of 13 amino acids) was nearly identical to the corresponding sequences of lipoamide dehydrogenases from M. leprae and M. tuberculosis and was similar to those of C. glutamicum, Streptomyces coelicolor and S. seoulensis. The data show that a unique lipoamide dehydrogenase in Mycobacterium sp. Pyr-1, which differs from classic (Type I) bacterial nitroreductases, reduces aromatic nitro compounds to aromatic amines.  相似文献   

5.
Lipoamide dehydrogenase (EC 1.6.4.3) from the ketoglutarate dehydrogenase complex of adrenals catalyzes the oxidation of NADH by lipoamide and quinone compounds according to the "ping-pong" scheme. The catalytic constants of these reactions are equal to 220 and 24 s-1, respectively (pH 7.0). The maximal quinone reductase activity is observed at pH 5.6, whereas the lipoamide reductase activity changes insignificantly at pH 7.5-5.5. The maximal dihydrolipoamide-NAD+ reductase activity is observed at pH 7.8. The oxidative constants of quinone electron acceptors vary from 6 X 10(6) to 4 X 10(2) M-1 s-1 and increase with their redox potential. The patterns of NAD+ inhibition in the quinone reductase reaction differ from that of lipoamide reductase reaction. The quinones are reduced by lipoamide dehydrogenase in the one-electron mechanism.  相似文献   

6.
The pyruvate-dehydrogenase complex from Azotobacter vinelandii.   总被引:1,自引:0,他引:1  
The pyruvate dehydrogenase complex from Axotobacter vinelandii was isolated in a five-step procedure. The minimum molecular weight of the pure complex is 600,000, as based on an FAD content of 1.6 nmol-mg protein-1. The molecular weight is 1.0-1.2 X 10(6), indicating 1 mole of lipoamide dehydrogenase dimer per complex molecule. Sodium dodecylsulphate gel electrophoretical patterns show that apart from pyruvate dehydrogenase (Mr89,000) and lipoamide dehydrogenase (Mrmonomer 56,000) two active transacetylase isoenzymes are present with molecular weight on the gel 82,000 and 59,000 but probably actually lower. The pure complex has a specific activity of the pyruvate-NAD+ reductase (overall) reaction of 10 units-mg protein-1 at 25 degrees C. The partial reactions have the following specific activities in units-mg protein-1 at 25 degrees C under standard conditions: pyruvate-K3Fe(CN)6 reductase 0.14, transacetylase 3.6 and lipoamide dehydrogenase 2.9. The properties of this complex are compared with those from other sources. NADPH reduced the FAD of lipoamide dehydrogenase as well in the complex as in the free form. NADP+ cannot be used as electron acceptor. Under aerobic conditios pyruvate oxidase reaction, dependent on Mg2+ and thiamine pyrophosphate, converts pyruvate into CO2 and acetate; V is 0.2 mumol 02-min-1-mg-1, Km(pyruvate)0.3 mM. The kinetics of this reaction shows a linear 1/velocity-1/[pyruvate] plot. K3Fe(CN)6 competes with the oxidase reaction. The oxidase activity is stimulated by AMP and sulphate and is inhibited by acetyl-CoA. The partially purified enzyme contains considerable phosphotransacetylase activity. The pure complex does not contain this activity. The physiological significance of this activity is discussed.  相似文献   

7.
8.
An improved method was developed to sequentially fractionate succinate-cytochrome c reductase into three reconstitutive active enzyme systems with good yield: pure succinate dehydrogenase, ubiquinone-binding protein fraction and a highly purified ubiquinol-cytochrome c reductase (cytochrome b-c1 III complex). An extensively dialyzed succinate-cytochrome c reductase was first separated into a succinae dehydrogenase fraction and the cytochrome b-c1 complex by alkali treatment. The resulting succinate dehydrogenase fraction was further purified to homogeneity by the treatment of butanol, calcium phosphate gel adsorption and ammonium sulfate fractionation under anaerobic condition in the presence of succinate and dithiothreitol. The cytochrome b-c1 complex was separated into chtochrome b-c1 III complex and ubiquinone-binding protein fractions by careful ammonium acetate fractionation in the presence of deoxycholate. The purified succinate dehydrogenase contained only two polypeptides with molecular weights of 70 000 anbd 27 000 as revealed by the sodium dodecyl sulfate polyacrylamide gel electrophoretic pattern. The enzyme has the reconstitutive activity and a low Km ferricyanide reductase activity of 85 mumol succinate oxidized per min per mg protein at 38 degrees C. Chemical composition analysis of cytochrome b-c1 III complex showed that the preparation was completely free of contamination of succinate dehydrogenase and ubiquinone-binding protein and was 30% more pure than the available preparation. When these three components were mixed in a proper ratio, a thenoyltrifluoroacetone- and antimycin A-sensitive succinate-cytochrome c reductase was reconstituted.  相似文献   

9.
The binding of pyridine nucleotide to human erythrocyte glutathione reductase, an enzyme of known three-dimensional structure, requires some movement of the side chain of Tyr197. Moreover, this side chain lies very close to the isoalloxazine ring of the FAD cofactor. The analogous residue, Ile184, in the homologous enzyme Escherichia coli lipoamide dehydrogenase has been altered by site-directed mutagenesis to a tyrosine residue (I184Y) [Russell, G. C., Allison, N., Williams, C. H., Jr., & Guest, J.R. (1989) Ann. N.Y. Acad. Sci. 573, 429-431]. Characterization of the altered enzyme shows that the rate of the pyridine nucleotide half-reaction has been markedly reduced and that the spectral properties have been changed to mimic those of glutathione reductase. Therefore, Ile184 is shown to be an important residue in modulating the properties of the flavin in lipoamide dehydrogenase. Turnover in the dihydrolipoamide/NAD+ reaction is decreased by 10-fold and in the NADH/lipoamide reaction by 2-fold in I184Y lipoamide dehydrogenase. The oxidized form of I184Y shows remarkable changes in the fine structure of the visible absorption and circular dichroism spectra and also shows nearly complete quenching of FAD fluorescence. The spectral properties of the altered enzyme are thus similar to those of glutathione reductase and very different from those of wild-type lipoamide dehydrogenase. On the other hand, spectral evidence does not reveal any change in the amount of charge-transfer stabilization at the EH2 level. Stopped-flow data indicate that, in the reduction of I184Y by NADH, the first step, reduction of the flavin, is only slightly slowed but the subsequent two-electron transfer to the disulfide is markedly inhibited.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Pseudomonads are the only organisms so far known to produce two lipoamide dehydrogenases (LPDs), LPD-Val and LPD-Glc. LPD-Val is the specific E3 component of branched-chain oxoacid dehydrogenase, and LPD-Glc is the E3 component of 2-ketoglutarate and possibly pyruvate dehydrogenases and the L-factor of the glycine oxidation system. Three mutants of Pseudomonas putida, JS348, JS350, and JS351, affected in lpdG, the gene encoding LPD-Glc, have been isolated; all lacked 2-ketoglutarate dehydrogenase, but two, JS348 and JS351, had normal pyruvate dehydrogenase activity. The pyruvate and 2-ketoglutarate dehydrogenases of the wild-type strain of P. putida were both inhibited by anti-LPD-Glc, but the pyruvate dehydrogenase of the lpdG mutants was not inhibited, suggesting that the mutant pyruvate dehydrogenase E3 component was different from that of the wild type. The lipoamide dehydrogenase present in one of the lpdG mutants, JS348, was isolated and characterized. This lipoamide dehydrogenase, provisionally named LPD-3, differed in molecular weight, amino acid composition, and N-terminal amino acid sequence from LPD-Glc and LPD-Val. LPD-3 was clearly a lipoamide dehydrogenase as opposed to a mercuric reductase or glutathione reductase. LPD-3 was about 60% as effective as LPD-Glc in restoring 2-ketoglutarate dehydrogenase activity and completely restored pyruvate dehydrogenase activity in JS350. These results suggest that LPD-3 is a lipoamide dehydrogenase associated with an unknown multienzyme complex which can replace LPD-Glc as the E3 component of pyruvate and 2-ketoglutarate dehydrogenases in lpdG mutants.  相似文献   

11.
The rate of transport of L-amino acids by Saccharomyces cerevisiae epsilon 1278b increased with time in response to nitrogen starvation. This increase could be prevented by the addition of ammonium sulfate or cycloheximide. A slow time-dependent loss of transport activity was observed when ammonium sulfate (or ammonium sulfate plus cycloheximide) was added to cells after 3 h of nitrogen starvation. This loss of activity was not observed in the presence of cycloheximide alone. In a mutant yeast strain which lacks the nicotinamide adenine dinucleotide phosphate-dependent (anabolic) glutamate dehydrogenase, no significant decrease in amino acid transport was observed when ammonium sulfate was added to nitrogen-starved cells. A double mutant, which lacks the nicotinamide adenine dinucleotide phosphate-dependent enzyme and in addition has a depressed level of the nicotinamide adenine dinucleotide-dependent (catabolic) glutamate dehydrogenase, shows the same sensitivity to ammonium ion as the wild-type strain. These data suggest that the inhibition of amino acid transport by ammonium ion results from the uptake of this metabolite into the cell and its subsequent incorporation into the alpha-amino groups of glutamate and other amino acids.  相似文献   

12.
Trypanosoma brucei procyclic trypomastigotes and T. cruzi epimastigotes (both Tulahuen and Y strains) were permeabilized by incubation with increasing amounts of digitonin, causing enzymes to be released from different intracellular compartments. After 10 min incubation with digitonin, the cells were centrifuged and the activity of marker enzymes (aspartate-dependent malic enzyme for cytoplasm, hexokinase for glycosomes and either isocitrate dehydrogenase or citrate synthase for mitochondria) was analyzed in the supernatant. The results were compared with the release of NADH-fumarate reductase in order to determine if this enzyme was preferentially released with a specific intracellular marker. Fumarate reductase was released at lower digitonin concentration than those required to either release isocitrate dehydrogenase or citrate synthase. Similarly, Leishmania donovani promastigotes (S-2 strain) were exposed to a single concentration of digitonin (200 micro M) but in this case we monitored the release of fumarate reductase and hexokinase, while monitoring the mitochondrial membrane potential (using safranine O). Again, substantial fumarate reductase and hexokinase activities were released without loss of mitochondrial membrane potential indicating that part of the enzyme was released while the inner mitochondrial membrane remained intact. These results suggest that, in the three species of trypanosomatids the enzyme fumarate reductase is, at least in part, located outside the mitochondrial matrix.  相似文献   

13.
Dihydrolipoamide dehydrogenase (DHLDH) was isolated from the mitochondria of Helicoverpa armigera, a destructive pest which has developed resistance to commonly used insecticides. The flavoenzyme was purified 17.98‐fold to homogeneity with an overall yield of 10.53% by employing ammonium sulfate precipitation, hydroxylapatite chromatography and CM‐Sephadex chromatography. The purified enzyme exhibited the specific activity of 18.7 U/mg and was characterized as a dimer with a subunit mass of 66 kDa. The enzyme showed specificity for nicotinamide adenine dinucleotide – hydrogen (NADH) and lipoamide, as substrates, with Michaelis‐Menten constants (Km) of 0.083 mmol/L and 0.4 mmol/L, respectively. The reduction reaction of lipoamide by the enzyme could be explained by ping‐pong mechanism. The spectra of DHLDH showed the maximum absorbance at 420 nm, 455 nm and 475 nm. The enzyme activity was strongly inhibited by mercurial and arsenical compounds. The N‐terminal sequence of Ha‐DHLDH showed homology with those of mammalian and arthropod DHLDH. Since H. armigera has developed high levels of resistance to commonly used insecticides, biochemical properties of the metabolic enzymes such as DHLDH, could be helpful to develop insecticidal molecules for the control of H. armigera, with a different mode of action.  相似文献   

14.
NADH:nitrate reductase (EC 1.6.6.1) from Chlorella vulgaris has been purified 640-fold with an over-all yield of 26% by a combination of protamine sulfate fractionation, ammonium sulfate fractionation, gel chromatography, density gradient centrifugation, and DEAE-chromatography. The purified enzyme is stable for more than 2 months when stored at minus 20 degrees in phosphate buffer (pH 6.9) containing 40% (v/v) glycerol. After the initial steps of the purification, a constant ratio of NADH:nitrate reductase activity to NADH:cytochrome c reductase and reduced methyl viologen:nitrate reductase activities was observed. One band of protein was detected after polyacrylamide gel electrophoresis of the purified enzyme. This band also gave a positive stain for heme, NADH dehydrogenase, and reduced methyl viologen:nitrate reductase. One band, corresponding to a molecular weight of 100, 000, was detected after sodium dodecyl sulfate polyacrylamide gel electrophoresis. The enzyme contains FAD, heme, and molybdenum in a 1:1:0.8 ratio. One "cyanide binding site" per molybdenum was found. No non-heme-iron or labile sulfide was detected. From a dry weight determination of the purified enzyme, a minimal molecular weight of 152, 000 per molecule of heme or FAD was calculated. An s20, w of 9.7 S for nitrate reductase was found by the use of sucrose density gradient centrifugation and a Stokes radius of 89 A was estimated by gel filtration techniques. From these values, and the assumption that the partial specific volume is 0.725 cc/g, a molecular weight of 356, 000 was estimated for the native enzyme. These data suggest that the native enzyme contains a minimum of 2 molecules each of FAD, heme, and molybdenum and is composed of at least three subunits.  相似文献   

15.
Rose bengal sensitizes photoinactivation of lipoamide dehydrogenase from pig heart to a constant residual reductase activity resulting from specific destruction of histidine residues. The rate of sensitized photoinactivation is pH dependent and is associated with an ionizable group with pK 6.6 ± 0.2. All steady-state kinetic parameters are markedly reduced by photooxidation. Spectroscopic studies indicate the contribution of oxidized flavin/dithiol to the half-reduced form of the photooxidized enzyme. The proton magnetic resonance spectrum of lipoamide dehydrogenase shows resolved histidine C2 proton peak at δ9.18 ppm and a shoulder at δ9.23 ppm. The shoulder protons are eliminated by the sensitized photooxidation and shifted upfield on deprotonation. At high pH, the characteristic Faraday A term also disappears. These observations suggest that the essential histidine stabilizes the nascent thiolate via the ion pair formation to facilitate the reductase reaction catalyzed by lipoamide dehydrogenase.  相似文献   

16.
Redox-cycling of porcine heart lipoamide dehydrogenase in the presence of NADH and oxygen produced O2-. (NADH-oxidase activity) as demonstrated by (a) reduction of cytochrome c; (b) reduction of the Fe(III)-ADP complex; (c) lucigenin luminescence and (d) the inhibitory effect of superoxide dismutase. NAD+ and p-chloromercuribenzoate inhibited O2-. generation whereas arsenite enhanced it. Comparison of heart and yeast enzyme preparations revealed a close correlation between lipoamide reductase and NADH-oxidase activities. It is concluded that O2-. production is a molecular property of lipoamide dehydrogenase.  相似文献   

17.
The lpd-encoded lipoamide dehydrogenase, common to the pyruvate and 2-oxoglutarate dehydrogenase multienzyme complexes, also functions as the lipoamide dehydrogenase (L protein) in the Escherichia coli glycine cleavage (GCV) enzyme complex. Inducible GCV enzyme activity was not detected in an lpd deletion mutant; lpd+ transductants had normal levels of inducible GCV enzyme activity. A serA lpd double mutant was unable to utilize glycine as a serine source and lacked detectable GCV enzyme activity, the phenotype of a serA gcv mutant. Transformation of the double mutant with a plasmid encoding a functional lpd gene restored the ability of the mutant to use glycine as a serine source and restored inducible GCV enzyme activity to normal levels. The presence of acetate and succinate in the growth medium of a strain wild type for lpd and gcv resulted in a 50% reduction in inducible GCV enzyme activity. Enzyme levels were restored to normal under these growth conditions when the strain was transformed with a plasmid encoding a functional lpd gene.  相似文献   

18.
The effects of selenite and tellurite on the mammalian enzyme lipoamide dehydrogenase were compared. Selenite acts as a substrate of lipoamide dehydrogenase in a process requiring the presence of lipoamide. In contrast, tellurite is a potent inhibitor, effective in the low micromolar range. The inhibitory effect of tellurite on lipoamide dehydrogenase is partially reverted by dithiothreitol indicating the participation of the thiol groups of the enzyme. Tellurite, but not selenite, stimulates the diaphorase activity of lipoamide dehydrogenase. In a mitochondrial matrix protein preparation, which contains lipoamide dehydrogenase, an inhibitory action similar to that observed on the purified enzyme was also elicited by tellurite. Human embryonic kidney cells (HEK 293 T) treated with tellurite show a partial inhibition of lipoamide dehydrogenase. In addition to the toxicological implications of tellurium compounds, the reported results suggest that tellurite and its derivatives can be used as potential tools for studying biochemical reactions.  相似文献   

19.
Fe(II)-and Co(II)-Fenton systems (FS) inactivated the lipoamide reductase activity but not the diaphorase activity of pig-heart lipoamide dehydrogenase (LADH). The Co(II) system was the more effective as LADH inhibitor. Phosphate ions enhanced the Fe(II)-FS activity. EDTA, DETAPAC, DL-histidine, DL-cysteine, glutathione, DL-dithiothreitol, DL-lipoamide, DL-thioctic acid, bathophenthroline, trypanothione and ATP, but not ADP or AMP, prevented LADH inactivation. Reduced disulfide compounds were more effective protectors than the parent compounds. Mg ions counteracted ATP protective action. Glutathione and DL-dithiothreitol partially restored the lipoamide dehydrogenase activity of the Fe(II)-FS-inhibited LADH. DL-histidine exerted a similar action on the Co(II)-FS-inhibited enzyme. Ethanol, mannitol and benzoate did not prevent LADH inactivation by the assayed Fenton systems and, accordingly, it is postulated that site-specific generated HO'radicals were responsible for LADH inactivation. With the Co(II)-FS, oxygen reactive species other than HO, might contribute to LADH inactivation.  相似文献   

20.
The thioredoxin peptide Trp-Cys-Gly-Pro-Cys-Lys, which contains the redox active dithiol, was found to be reduced by lipoamide in a coupled reaction with lipoamide dehydrogenase and NADH. The reduced peptide in turn was shown to reduce insulin, oxidized lens protein and glyceraldehyde-3-phosphate dehydrogenase. While the peptide is not as effective a catalyst for utilizing pyridine nucleotides to reduce protein disulfides as thioredoxin, it offers a system which may be developed to provide more efficient disulfide reduction. This is particularly relevant since no thioredoxin peptides have been found to be active with thioredoxin reductase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号