首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
AIMS: The aims of this study were to identify analogues of L-proline which inhibit the growth of Escherichia coli in both laboratory culture media and normal human urine and to study their mechanisms of uptake. METHODS AND RESULTS: The susceptibility of E. coli to L-proline analogues was studied by radial streak assays on agar plates and by minimal inhibitory concentration determinations in liquid media. Only L-selenaproline (SCA) inhibited growth in Mueller-Hinton medium and human urine as well as in glucose minimal medium. L-Proline did not prevent the inhibition of growth by SCA and strains defective in L-proline transport were as susceptible to SCA as wild-type strains. However, E. coli was resistant to SCA in the presence of L-cysteine and L-cystine. Spontaneous mutants selected for resistance to SCA or L-selenocystine were resistant to the other compound and had reduced growth in minimal medium containing L-cysteine or L-cystine as the sole sulfur source. CONCLUSIONS: L-selenaproline inhibited the growth of E. coli under conditions that may occur in the urinary tract and appeared to be taken up by the L-cystine transport system. SIGNIFICANCE AND IMPACT OF THE STUDY: Although urinary tract infections caused by E. coli can be treated with sulfamethoxazole/trimethoprim and quinolones, resistance to these antibiotics has been increasing. These results suggest that L-selenaproline may represent a new class of compounds that could be used to treat these infections.  相似文献   

2.
PCR random mutagenesis in the cysE gene encoding Escherichia coli serine acetyltransferase was employed to isolate the mutant enzymes that, due to a much less feedback inhibition by L-cysteine, cause overproduction of L-cysteine and L-cystine in the recombinant strains. The L-cysteine auxotrophic and non-utilizing E. coli strain was transformed with plasmids having the altered cysE genes. Then, several transformants overproducing L-cysteine were selected by detecting the halo formation of the L-cysteine auxotroph. The production test of amino acids and analysis of the catalytic property on the mutant enzymes suggest that the carboxy-terminal region of serine acetyltransferase plays an important role in the desensitization to feedback inhibition and the high level production of L-cysteine and L-cystine.  相似文献   

3.
AIMS: To define the mechanism of carbonate killing in Escherichia coli. METHODS AND RESULTS: Sodium carbonate (150 mM) and ethylenediaminetetracetic acid (EDTA, 60 mM) both killed E. coli K-12 when the pH was 8.5, but ammonium chloride (150 mM) was ineffective. EDTA was a 5-fold more potent agent than carbonate, but some of this difference could be explained by ionization. At pH 8.5, only 1.6% of the carbonate is CO(-2), but nearly 100% of the EDTA is EDTA(-2). CONCLUSION: As carbonate and EDTA had similar effects on viability, cellular morphology, protein release and enzymatic activities, the antibacterial activity of carbonate seems to be mediated by divalent metal binding. SIGNIFICANCE AND IMPACT OF THE STUDY: Cattle manure is often used as a fertilizer, and E. coli from manure can migrate through the soil into water supplies. Previous methods of eradicating E. coli were either expensive or environmentally unsound. However, cattle manure can be treated with carbonate to eliminate E. coli, and the cost of this treatment is less than $0.03 per cow per day.  相似文献   

4.
Aerobic organisms possess a number of often overlapping and well-characterized defenses against common oxidants such as superoxide and hydrogen peroxide. However, much less is known of mechanisms of defense against halogens such as chlorine compounds. Although chlorine-based oxidants may oxidize a number of cellular components, sulfhydrl groups are particularly reactive. We have, therefore, assessed the importance of intracellular glutathione in protection of Escherichia coli cells against hydrogen peroxide, hypochlorous acid, and chloramines. Employing a glutathione-deficient E. coli strain (JTG10) and an otherwise isogenic glutathione-sufficient E. coli strain (AB1157), we find that glutathione-deficient organisms are approximately twice as sensitive to killing by both hydrogen peroxide and chlorine compounds. However, the mode of protection by glutathione in these two cases appears to differ: exogenous glutathione added to glutathione-deficient E. coli in amounts equal to those which would be present in a similar suspension of the wild-type bacteria fully restored resistance of glutathione-deficient bacteria to chlorine-based oxidants but did not change resistance to hydrogen peroxide. Furthermore, in protection against chlorine compounds, oxidized glutathione is almost as effective as reduced glutathione, implying that the tripeptide and/or oxidized thiol undergo further reactions with chlorine compounds. Indeed, in vitro, 1 mol of reduced glutathione will react with approximately 3.5 to 4.0 mol of hypochlorous acid. We conclude that glutathione defends E. coli cells against attack by chlorine compounds and hydrogen peroxide but, in the case of the halogen compounds, does so nonenzymatically and sacrificially.  相似文献   

5.
Two modes of killing of Escherichia coli K-12 by hydrogen peroxide can be distinguished. Mode-one killing was maximal with hydrogen peroxide at a concentration of 1 to 2 mM. At higher concentrations the killing rate was approximately half maximal and was independent of H2O2 concentration but first order with respect to exposure time. Mode-one killing required active metabolism during the H2O2 challenge, and it resulted in sfiA-independent filamentation of both cells which survived and those which were killed by the challenge. This mode of killing was enhanced in xth, polA, recA, and recB strains and was accelerated in all strains by an unidentified, anoxia-induced cell function. A strain carrying both xth and recA mutations appeared to undergo spontaneous mode-one killing only under aerobic conditions. Mode-one killing appeared to result from DNA damage which normally occurs at a low, nonlethal level during aerobic growth. Mode-two killing occurred at higher doses of H2O2 and exhibited a multihit dependence on both H2O2 concentration and exposure time. Mode-two killing did not require active metabolism, and killed cells did not filament, although survivors demonstrated a dose-dependent growth lag. Strains with DNA-repair defects were not especially susceptible to mode-two killing.  相似文献   

6.
Investigations concerned Escherichia coli nitroreductase in creation of mutagens from non-mutagenic pesticides-derivatives of urea. Three new compounds were studied: N-phenyl-N'-methylurea (IPO 4328), N-methyl,N-(2-hydroxyethyl)-N'phenylurea (IPO 2363), N-(2-hydroxyethyl), N-methyl-N'-(3,4 dichloroethyl) urea, and diurone-3-(3,4 dichlorophenyl)-1,1 dimethylurea. These compounds were incubated in anaerobic conditions with cells of E. coli K-12 (KF) strain and nitrate or nitrite. Using Ames test, mutagenicity of resulting metabolites was investigated. It was found that during incubation of herbicide IPO 4328 with cells of E. coli K-12 (KF) and nitrate, mutagenic product for strain of S. typhimurium TA 1537 is created. Very weak mutagenic metabolite for the same strain was appearing during incubation of herbicide IPO 2363 with cells of E. coli K-12 (KF) in presence of nitrite. Incubation of investigated compounds with E. coli K-12 (KF) cells alone did not result in appearance of mutagenic substances. Thus, role of Escherichia coli in creation of mutagenic compounds from non-mutagenic derivatives of urea consisted of nitrite from nitrate production with participation of nitroreductase, which afterwards in absence of bacteria or action of their enzymes reacted with investigated pesticides.  相似文献   

7.
Various deoxyribonucleic acid repair-deficient strains of Escherichia coli K-12 were exposed to hydrogen peroxide under anaerobic conling of the strains was determined. The level of catalase, peroxidase, and superoxide dismutase in cell-free extracts of the strains as well as the capacity of intact cells to decompose hydrogen peroxide were assayed, recA strains were more rapidly killed than other strains with deoxyribonucleic acid repair deficiencies. There was no correlation between the killing rate of the strains and the capacity of intact cells to decompose hydrogen peroxide or the level of catalase and superoxide dismutase in cell-free extracts. The level of peroxidase in cell-free extract was too low to be determined.  相似文献   

8.
We examined factors related to the potent antagonistic effect of Escherichia coli and Bacteroides ovatus on Staphylococcus aureus in anaerobic continuous flow cultures. In the presence of sugars fermentable by E. coli alone or both E. coli and S. aureus, motile E. coli strains exerted a potent antagonistic effect and S. aureus was expelled from the culture vessel within a few days. Conversely, in the presence of a sugar fermentable by S. aureus alone, the antagonistic effect of E. coli was diminished and S. aureus persisted at ca. 5 x 10(5) cfu/mL. B. ovatus alone exerted only a weak antagonistic effect on S. aureus in any culture conditions; however, when B. ovatus was cocultivated with E. coli and S. aureus, even in the presence of a sugar fermentable by S. aureus but not by E. coli, the potent antagonistic effect was restored. Escherichia coli showed the same level of antagonistic effect either in the presence of acetic acid (ca. 32 mM), propionic acid (4 mM), butyric acid (17 mM) and hydrogen sulfide (5 x 10(-1) mM) or when these metabolic products, except for a small amount of acetic acid (1.2 mM) were not present. In these culture conditions, S. aureus populations were lost at rates much higher than theoretical wash out rates of resting cells. These results indicate the presence of some bactericidal factors other than the volatile fatty acids and hydrogen sulfide. The bactericidal factors were not found in cultures of E. coli heated in boiling water for 10 min and in cell-free culture filtrates. Thus, the bactericidal factors seem to be associated with live E. coli cells. The nature of the bactericidal factors is not clear at present.  相似文献   

9.
Significant levels of extracellular glutathione (GSH) were detected in aerobically grown cultures of some strains of Salmonella typhimurium LT-2 and in Escherichia coli K-12, B, and B/r but not in cultures of nine freshly isolated clinical isolates of E. coli. Cultures of S. typhimurium generally contained less total GSH (intracellular plus external) than did E. coli cultures. S. typhimurium TA1534 contained about 2 mM intracellular GSH and exported about 30% of its total GSH. The external GSH concentration increased logarithmically during exponential growth and peaked at about 24 microM in early-stationary-phase cultures. External accumulation of GSH was inhibited by 30 mM NaN3. GSH was predominantly exported in the reduced form. Two-dimensional paper chromatography of supernatants from cultures labeled with Na2(35)SO4 confirmed the presence of GSH and revealed five other sulfur-containing compounds in the media of S. typhimurium and E. coli cultures. The five unidentified compounds were not derivatives of GSH.  相似文献   

10.
Effects of inhibitors of tyrosine kinases (K-252a, genistein) and of phospholipase A2 (bromophenacetyl bromide) on viability of PC12 cells are studied in the presence of hydrogen peroxide and ganglioside GM1. The degree of inhibition of hydrogen peroxide cytotoxic effect by ganglioside GM1 amounted to 52.8 +/- 4.3 %. However, in the presence in the medium of 0.1 and 1 microM inhibitors of tyrosine kinase of Trk-receptors (K-252a) it was as low as 32.7 +/- 6.5 % and 11.7 +/- 9.8 %, respectively. GM1 prevented Na+, K+-ATPase produced by H2O2, but in the presence of 1 microM K-252a this effect was practically not pronounced. In the presence of another inhibitor of tyrosine kinases--genistein, a tendency for a decrease of the GM1 protective effect was observed at its concentrations 0.1 and 1 microM, whereas at a higher concentration 10 microM genistein depressed the GM1 neuroprotective effect statistically significantly. It was found that inhibitor of phospholipase A2 bromophenacetyl bromide did not affect the action of GM1 aimed at increasing the viability of cells under action of hydrogen peroxide on them. It seems that this enzyme is not involved in the cascade of reactions participating in realization of the ganglioside protective effect. Thus, inhibitor of tyrosine kinase of Trk-receptors K-252 decreases or practically prevents the ganglioside GM1 neuroprotective effect of PC12 cells under stress conditions; the same ability is characteristic of genistein--an inhibitor of tyrosine kinases of the wider spectrum of action.  相似文献   

11.
Electron flow via thiols is a theme with many variations in all kingdoms of life. The favourable physichochemical properties of the redox active couple of two cysteines placed in the optimised environment of the thioredoxin fold allow for two electron transfers in between top biological reductants and ultimate oxidants. The reduction of ribonucleotide reductases by thioredoxin and thioredoxin reductase of Escherichia coli (E. coli) was one of the first pathways to be elucidated. Diverse functions such as protein folding in the periplasm, maturation of respiratory enzymes, detoxification of hydrogen peroxide and prevention of oxidative damage may be based on two electron transfers via thiols. A growing field is the relation of thiol reducing pathways and the interaction of E. coli with different organisms. This concept combined with the sequencing of the genomes of different bacteria may allow for the identification of fine differences in the systems employing thiols for electron flow between pathogens and their corresponding mammalian hosts. The emerging possibility is the development of novel antibiotics.  相似文献   

12.
Two cDNAs encoding feedback inhibition-insensitive serine acetyltransferases of Arabidopsis thaliana were expressed in the chromosomal serine acetyltransferase-deficient and L-cysteine non-utilizing Escherichia coli strain JM39-8. The transformants produced 1600 to 1700 mg l(-1) of L-cysteine and L-cystine from glucose. The amount of these amino acids produced per cell was 30 to 60% higher than that of an E. coli strain carrying mutant serine acetyltransferase less sensitive to feedback inhibition.  相似文献   

13.
Exposure of isolated rat hepatocytes to allyl alcohol (AA), diethyl maleate (DEM) and bromoisovalerylurea (BIU) induced lipid peroxidation, depletion of free protein thiols to about 50% of the control value and cell death. Vitamin E completely prevented lipid peroxidation, protein thiol depletion and cell death. A low concentration (0.1 mM) of the lipophylic disulfide, disulfiram (DSF), also prevented the induction of lipid peroxidation by the hepatotoxins; however, in the presence of DSF, protein thiol depletion and cell death occurred more rapidly. Incubation of cells with a high concentration (10 mM) of DSF alone led to 100% depletion of protein thiols and cell death, which could not be prevented by vitamin E. The level of free protein thiols in cells, decreased to 50% by exposure to AA, DEM and BIU, could be reversed to 75% of the initial level by dithiothreitol (DTT) treatment, indicating that the protein thiols were partially modified into disulfides and partially into other, stable thiol adducts. The 100% depletion of protein thiols by DSF was completely reversed by DTT treatment. The involvement of lipid peroxidation in protein thiol depletion was studied by measuring the effect of a lipid peroxidation product, 4-hydroxynonenal (4-HNE), on protein thiols in a cell free liver fraction. 4-HNE did not induce lipid peroxidation in this system, but protein thiols were depleted to 30% of the initial value, irrespective of the presence of vitamin E. DTT treatment could reverse this for only 25%. Similar, DSF-induced protein thiol depletion could be reversed completely by DTT. We conclude that (at least) two types of protein thiol modifications can occur after exposure of hepatocytes to toxic compounds: one due to interaction of endogeneously generated lipid peroxidation products with protein thiols, which is not reversible by the action of DTT, and one due to a disulfide interchange between disulfides like DSF and protein thiols, which can be reversed by the action of DTT.  相似文献   

14.
Inhibition of acetohydroxy acid synthase by leucine   总被引:5,自引:0,他引:5  
The enzymatic reaction of acetohydroxy acid synthase in crude extracts of Escherichia coli K-12 is inhibited by leucine. Inhibition is most pronounced at low pH values and is low at pH values higher than 8.0. Both isoenzymes of acetohydroxy acid synthase present in E. coli K-12 (isoenzyme I and isoenzyme III) are inhibited by leucine. Isoenzyme I, which is responsible for the majority of acetohydroxy acid synthase activity in E. coli K-12 at physiological pH, is inhibited almost completely by 30 mM leucine at pH 6.25-7.0 and is not affected at all at pH values higher than 8.4. Inhibition of isoenzyme I by leucine is a mixed noncompetitive process. Leucine inhibition of isoenzyme III is pH-independent and reaches only 40% at 30 mM leucine. The inhibition of acetohydroxy acid synthase by leucine at physiological pH, observed in vitro in this study, correlates with the idea that acetohydroxy acid synthase is a target for the toxicity of the abnormally high concentrations of leucine in E. coli K-12.  相似文献   

15.
Effects of inhibitors of tyrosine kinases (K-252a, genistein) and of phospholipase A2 (bromophenacyl bromide) on viability of PC12 cells are studied in the presence of hydrogen peroxide and ganglioside GM1. The degree of inhibition of hydrogen peroxide cytotoxic effects by ganglioside GM1 amounted to 52.8 ± 4.2%. However, in the presence in the medium of 0.1 and 1 μM inhibitors of tyrosine kinase of Trk-receptors (K-252a) it was as low as 32.7 ± 6.5% and 11.7 ± 9.8%, respectively. GM1 prevented Na+,K+-ATPase oxidative inactivation produced by H2O2, but in the presence of 1 μM K-252a this effect was practically not pronounced. In the presence of another inhibitor of tyrosine kinases-genistein, a tendency for a decrease of the GM1 protective effect was observed at its concentrations 0.1 and 1 μM, whereas at a higher concentration 10 μM, genistein depressed statistically significantly the GM1 neuroprotective effect. It was found that inhibitor of phospholipase A2 bromophenacyl bromide did not affect the action of GM1 aimed at increasing the viability of cells under action of hydrogen peroxide on them. It seems that this enzyme is not involved in the cascade of reactions participating in realization of the ganglioside protective effect. Thus, inhibitor of tyrosine kinase of Trk-receptors K-252a decreases or practically prevents the ganglioside GM1 neuroprotective effect on PC12 cells under stress conditions; the same ability is characteristic of genistein—an inhibitor of tyrosine kinases of the wider spectrum of action.  相似文献   

16.
The discovery of superoxide dismutase (CuZnSOD) within the periplasms of several Gram-negative pathogens suggested that this enzyme evolved to protect cells from exogenous sources of superoxide, such as the oxidative burst of phagocytes. However, its presence in some non-pathogenic bacteria implies that there may be a role for this SOD during normal growth conditions. We found that sodC, the gene that encodes the periplasmic SOD of Escherichia coli, is repressed anaerobically by Fnr and is among the many antioxidant genes that are induced in stationary phase by RpoS. Surprisingly, the entry of wild-type E. coli into stationary phase is accompanied by a several-hour-long period of acute sensitivity to hydrogen peroxide. Induction of the RpoS regulon helps to diminish that sensitivity. While mutants of E. coli and Salmonella typhimurium that lacked CuZnSOD were not detectably sensitive to exogenous superoxide, both were killed more rapidly than their parent strains by exogenous hydrogen peroxide in early stationary phase. This sensitivity required prior growth in air. Evidently, periplasmic superoxide is generated during stationary phase by endogenous metabolism and, if it is not scavenged by CuZnSOD, it causes an unknown lesion that augments or accelerates the damage done by peroxide. The molecular details await elucidation.  相似文献   

17.
Escherichia coli B and K-12 are equally susceptible to the bacteriostatic effects of aerobic paraquat, but they differed strikingly when the lethality of paraquat was evaluated. E. coli B suffered an apparent loss of viability when briefly exposed to paraquat, whereas E. coli K-12 did not. This difference depended on the ability of the B strain, but not the K-12 strain, to retain internalized paraquat; the B strain was killed on aerobic tryptic soy-yeast extract plates during the incubation which preceded the counting of colonies. This difference in retention of paraquat between strains was demonstrated by delayed loss of viability, by growth inhibition, and by cyanide-resistant respiration after brief exposure to paraquat, washing, and testing in fresh medium. This difference was also shown by using [14C]paraquat. This previously unrecognized difference between E. coli B and K-12 has been the cause of apparently contradictory reports and should lead to some reevaluation of the pertinent literature.  相似文献   

18.
The effect of hydrogen peroxide on Treponema pallidum was investigated. The in vitro loss of virulence (as measured by rabbit inoculation) of T. pallidum was accelerated by as low as 100 microM hydrogen peroxide in the complex maintenance medium used. Higher doses led to rapidly accelerated death with 500 microM hydrogen peroxide causing sterilization of the medium within 3 to 4 h. Since hydrogen peroxide is known to cause single-stranded breaks in DNA, the effect of hydrogen peroxide on the treponemal genome was examined. Extensive breakage was caused by 100 microM hydrogen peroxide as determined on alkaline sucrose gradients. A limit was reached at 250 microM and above. Single-stranded breaks could be demonstrated as early as 5-10 min after exposure to hydrogen peroxide when the treponemes were exposed to 250 microM hydrogen peroxide; accelerated death was evident by 2 h past exposure demonstrating that DNA breakage was preceding death. Treponemal death caused by penicillin did not result in DNA breakage. The repair-proficient bacterium Escherichia coli K-12 was compared with T. pallidum. It required 10-100 times more hydrogen peroxide to cause various levels of breakage. Escherichia coli K-12 rapidly repaired DNA breakage once hydrogen peroxide was removed by addition of catalase. Treponema pallidum, in comparison, showed little or no repair in vitro. Addition of catalase or dithiothreitol to the medium protected against all but a low level of breakage; this may reflect on the ability of catalase and reducing agents to protect T. pallidum against oxygen toxicity in vitro.  相似文献   

19.
Thirty-three enteric isolates from Australian (Escherichia coli only) and United Kingdom (U.K.) (Salmonella sp., Citrobacter spp., and E. coli) piggeries were characterized with respect to their copper resistance. The copper resistance phenotypes of four new Australian E. coli isolates were comparable with that of the previously studied E. coli K-12 strain ED8739(pRJ1004), in that the resistance level in rich media was high (up to 18 mM CuSO4) and resistance was inducible. Copper resistance was transferable by conjugation from the new Australian isolates to E. coli K-12 recipients. DNA similarity between the new Australian isolates and the pco copper resistance determinant located on plasmid pRJ1004 was strong as measured by DNA-DNA hybridization; however, the copper resistance plasmids were nonidentical as indicated by the presence of restriction fragment length polymorphisms between the plasmids. DNA-DNA hybridization and polymerase chain reaction analysis demonstrated DNA homology between the pco determinant and DNA from the U.K.E. coli, Salmonella sp., and Citrobacter freundii isolates. However, the copper resistance level and inducibility were variable among the U.K. strains. Of the U.K. E. coli isolates, 1 demonstrated a high level of copper resistance, 4 exhibited intermediate resistance, and 16 showed a low level of copper resistance; all of these resistances were expressed constitutively. A single U.K. C. freundii isolate, had a high level of copper resistance, inducible by subtoxic levels of copper. Transconjugants from one E. coli and one C. freundii donor, with E. coli K-12 strain UB1637 as a recipient, showed copper resistance levels and inducibility of resistance which differed from that expressed from plasmid pRJ1004.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号