首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The metabolism of docosahexaenoic acid (22:6(n-3)) and adrenic acid (22:4(n-6)) was studied in cultured fibroblasts from patients with the Zellweger syndrome, X-linked adrenoleukodystrophy (X-ALD) and normal controls. It was shown that [4,5- 3H]22:6(n-3) is retroconverted to labelled eicosapentaenoic acid (20:5(n-3)) in normal and X-ALD fibroblasts, while this conversion is deficient in Zellweger fibroblasts. [U- 14C]Eicosapentaenoic acid (20:5(n-3)) is elongated to docosapentaenoic acid (22:5(n-3)) in all three cell lines. With [U- 14C]20:5(n-3) as the substrate, shorter fatty acids were not detected. With [4,5- 3H]22:6(n-3) as the substrate, labelled fatty acids were esterified in the phospholipid- and triacylglycerol-fraction to approximately the same extent in all three cell lines. [2- 14C]Adrenic acid (22:4(n-6)) was desaturated to 22:5(n-6) and elongated to 24:4(n-6) in all three cell lines and to the largest extent in the Zellweger fibroblasts. This agrees with the view that the delta 4-desaturase is not a peroxisomal enzyme. The observation that the retroconversion of 22:6(n-3) to 20:5(n-3) is deficient in Zellweger fibroblasts strongly suggest that the beta-oxidation step in the retroconversion is a peroxisomal function. Peroxisomal very-long-chain (lignoceroyl) CoA ligase is probably not required for the activation of 22:6(n-3), since the retroconversion to 20:5(n-3) is normal in X-ALD fibroblasts.  相似文献   

2.
Astrocytes convert n-6 fatty acids primarily to arachidonic acid (20:4n-6), whereas n-3 fatty acids are converted to docosapentaenoic (22:5n-3) and docosahexaenoic (22:6n-3) acids. The utilization of 20-, 22- and 24-carbon n-3 and n-6 fatty acids was compared in differentiated rat astrocytes to determine the metabolic basis for this difference. The astrocytes retained 81% of the arachidonic acid ([(3)H]20:4n-6) uptake and retroconverted 57% of the docosatetraenoic acid ([3-(14)C]22:4n-6) uptake to 20:4n-6. By contrast, 68% of the eicosapentaenoic acid ([(3)H]20:5n-3) uptake was elongated, and only 9% of the [3-(14)C]22:5n-3 uptake was retroconverted to 20:5n-3. Both tetracosapentaenoic acid ([3-(14)C]24:5n-3) and tetracosatetraenoic acid ([3-(14)C]24:4n-6) were converted to docosahexaenoic acid (22:6n-3) and 22:5n-6, respectively. Therefore, the difference in the n-3 and n-6 fatty acid products formed is due primarily to differences in the utilization of their 20- and 22-carbon intermediates. This metabolic difference probably contributes to the preferential accumulation of docosahexaenoic acid in the brain.  相似文献   

3.
The concentration-dependent metabolism of 1-(14)C-labelled precursors of 22:5n-6 and 22:6n-3 was compared in rat testis cells. The amounts of [(14)C]22- and 24-carbon metabolites were measured by HPLC. The conversion of [1-(14)C]20:5n-3 to [3-(14)C]22:6n-3 was more efficient than that of [1-(14)C]20:4n-6 to [3-(14)C]22:5n-6. At low substrate concentration (4 microM) it was 3.4 times more efficient, reduced to 2.3 times at high substrate concentration (40 microM). The conversion of [1-(14)C]22:5n-3 to [1-(14)C]22:6n-3 was 1.7 times more efficient than that of [1-(14)C]22:4n-6 to [1-(14)C]22:5n-6 using a low, but almost equally efficient using a high substrate concentration. When unlabelled 20:5n-3 was added to a cell suspension incubated with [1-(14)C]20:4n-6 or unlabelled 22:5n-3 to a cell suspension incubated with [1-(14)C]22:4n-6, the unlabelled n-3 fatty acids strongly inhibited the conversion of [1-(14)C]20:4n-6 or [1-(14)C]22:4n-6 to [(14)C]22:5n-6. In the reciprocal experiment, unlabelled 20:4n-6 and 22:4n-6 only weakly inhibited the conversion of [1-(14)C]20:5n-3 and [1-(14)C]22:5n-3 to [(14)C]22:6n-3. The results indicate that if both n-6 and n-3 fatty acids are present, the n-3 fatty acids are preferred over the n-6 fatty acids in the elongation from 20- to 22- and from 22- to 24-carbon atom fatty acids. In vivo the demand for 22-carbon fatty acids for spermatogenesis in the rat may exceed the supply of n-3 precursors and thus facilitate the formation of 22:5n-6 from the more abundant n-6 precursors.  相似文献   

4.
To delineate the metabolism of gammalinolenic acid (18:3(n-6] by macrophages, primary cultures of resident mouse peritoneal macrophages were incubated with [14C]18:3(n-6). At 3, 6 or 20 h, the majority (greater than 85%) of the radiolabel was recovered in cell phospholipids. With increasing time of incubation, a relative reduction of 14C in glycerophosphocholine (ChoGpl, 58.1% to 46.2%) was noted. This was offset by a corresponding increase in glycerophosphoethanolamine (EtnGpl) labeling (from 8.8% to 18.9%). There was also a time-dependent redistribution of 14C from diacyl to ether-containing phospholipid subclasses in ChoGpl and EtnGpl. Analysis of cell extracts by reverse-phae HPLC following transmethylation demonstrated that 18:3(n-6) was extensively elongated (greater than 80%) to dihomogammalinolenic acid (20:3(n-6] by 3 h. The major radiolabeled phospholipid molecular species in the diacyl (PtdCho) and alkylacylglycerophosphocholine (PakCho) subclasses was 16:0-20:3(n-6). In contrast, diacyl (PtdEtn) and alkenylacylglycerophosphoethanolamine (PlsEtn) subclasses contained primarily [14C]18:0-20:3(n-6) and 16:0-20:3(n-6), respectively. Macrophages prelabeled with [14C]18:3(n-6) for 20 h and stimulated with calcium ionophore A23187 or zymosan synthesized [14C]prostaglandin E1 (PGE1). These data demonstrate that macrophages possess an active long chain polyunsaturated fatty acid elongase capable of converting 18:3(n-6) to 20:3(n-6) which can, upon stimulation, be converted to PGE1.  相似文献   

5.
Sex differences in n-3 and n-6 fatty acid metabolism in EFA-depleted rats   总被引:1,自引:0,他引:1  
We studied the effect of sex on the distribution of long-chain n-3 and n-6 fatty acids in essential fatty acid-deficient rats fed gamma-linolenate (GLA) concentrate and/or eicosapentaenoate and docosahexaenoate-rich fish oil (FO). Male and female weanling rats were rendered essential fatty acid deficient by maintaining them on a fat-free semisynthetic diet for 8 weeks. Thereafter, animals of each sex were separated into three groups (n = 6) and given, for 2 consecutive days by gastric intubation, 4 g/kg body wt per day of GLA concentrate (containing 84% 18:2n-6), n-3 fatty acid-rich FO (containing 18% 20:5n-3 and 52% 22:6n-3), or an equal mixture of the two oil preparations (GLA + FO). The fatty acid distributions in plasma and liver lipids were then examined. GLA treatment increased the levels of C-20 and C-22 n-6 fatty acids in all lipid fractions indicating that GLA was rapidly metabolized. However, the increases in 20:3n-6 were less in females than those in males, while those in 20:4n-6 were greater, suggesting that the conversion of 20:3n-6 to 20:4n-6 was more active in female than in male rats. FO treatment increased the levels of 20:5n-3 and 22:6n-3 and reduced those of 20:4n-6. The increase in n-3 fatty acids was greater in females than that in males and the reduction in 20:4n-6 was smaller. Consequently, the sum of total long-chain EFAs incorporated was greater in females than that in males. The administration of n-3 fatty acids also reduced the ratio of 20:4n-6 to 20:3n-6 in GLA + FO-treated rats indicating that n-3 fatty acids inhibited the activity of delta-5-desaturase. However, this effect was not affected by the sex difference.  相似文献   

6.
The effects of dietary supplementation of either alpha-linolenic acid (18:3(n-3)) or stearidonic acid (18:4(n-3)) in combination with either linoleic acid (18:2(n-6)) or gamma-linolenic acid (18:3(n-6)) on liver fatty acid composition in mice were examined. Essential fatty acid deficient male C57BL/6 mice were separated into four groups of seven each and were fed a fat-free semi-purified diet supplemented with 1% (w/w) fatty acid methyl ester mixture (1:1), 18:2(n-6)/18:3(n-3), 18:2(n-6)/18:4(n-3), 18:3(n-6)/18:3(n-3), or 18:3(n-6)/18:4(n-3). After 7 days on the diets, fatty acid compositions in liver phosphatidylcholine and phosphatidylethanolamine fractions were analyzed. In groups fed 18:4(n-3) (18:2(n-6)/18:4(n-3) or 18:3(n-6)/18:4(n-3)) as compared to those fed 18:3(n-3) (18:2(n-6)/18:3(n-3) or 18:3(n-6)/18:3(n-3)), the levels of 20:4(n-3), 20:5(n-3) and 22:5(n-3) were increased, whereas those of 20:3(n-6) and 20:4(n-6) were decreased. When 18:3(n-6) replaced 18:2(n-6) as the source of n-6 acids, the levels of 18:3(n-6), 20:3(n-6), 20:4(n-6) and 22:5(n-6) were increased, whereas those of 20:4(n-3) and 20:5(n-3) were reduced. Replacing 18:3(n-3) by 18:4(n-3) reduced the (n-6)/(n-3) ratio by approx. 30%, whereas replacing 18:2(n-6) by 18:3(n-6) increased the (n-6)/(n-3) ratio by approx. 2-fold. These findings indicated that delta 6-desaturase products were metabolized more readily than their precursors. Both products also competed for the subsequent metabolic enzymes. However, the n-6 fatty acids derived from 18:3(n-6) were incorporated more favourably into liver phospholipids than n-3 fatty acids derived from 18:4(n-3).  相似文献   

7.
The objective of these studies with rat hepatocytes in primary culture was to establish that: (a) membrane phospholipids would become enriched with the specific fatty acid supplemented to the media and (b) hepatocyte monolayer triacylglycerol synthetic rates were dependent on the type of fatty acid enrichment of the membrane phospholipids. Hepatocytes cultured in the absence of media lipid developed a phospholipid fatty acid composition which is indicative of an essential fatty acid deficiency. The extensive rise in 18:1(n - 9) content indicated that delta 9-desaturase was active. The fatty acid composition of phosphatidylcholine, phosphatidylethanolamine and phosphatidylinositol in the microsomal- and mitochondrial-enriched fractions was highly dependent upon the type of fatty acid supplemented to the medium. Incorporation of fatty acids into phospholipids was rapid, and a new steady-state in fatty acid composition was achieved within approx. 36 h. Changes in the fatty acid composition of these hepatocyte phospholipid subclasses resulting from media supplementation with 18:2/20:4(n-6) or 20:5(n-3) were similar, but not identical, to changes which occurred in vivo as a result of consuming diets rich in 18:2(n-6) or 20:5(n-3). Hepatocyte lipogenesis was highly dependent upon the type of fatty acid supplemented to the medium. Prior conditioning with 16:0 increased triacylglycerol synthesis and secretion. Secretion of triacylglycerol was reduced by polyenoic fatty acid enrichment with 20:5(n-3) greater than 20:4/18:2(n-6). The suppression of triacylglycerol synthesis by 20:5(n-3) was due to an increased (P less than 0.05) diacylglycerol specific activity, which indicates that 20:5(n-3) suppression of hepatic triacylglycerol production may be caused in part by the inhibition of diacylglycerol acyltransferase.  相似文献   

8.
Attempts at a better understanding of the cell membrane organization and functioning need to assess the physical properties which partly depend (i) on the positional distribution of the fatty acids in the membrane phospholipids (PLs) and (ii) on the way by which the PL molecular species are affected by exogenous fatty acids. To do that, the effects of essential (polyunsaturated) fatty acid (EFA) deficiency and enrichment were studied in the liver microsomes of piglets feeding on either an EFA-deficient diet or an EFA-enriched diet containing hydrogenated coconut oil or a mixture of soya + corn oils, respectively. After derivatization, the diacylated forms of choline and ethanolamine PLs were analyzed using a combination of chromatographic techniques and fast-atom bombardment-mass spectrometry. The dinitrobenzoyl-diacylglycerol derivatives corresponding to the molecular species of phosphatidylcholine (PC) and phosphatidylethanolamine (PE) were identified. It appears that three factors brought about a marked apparent relative retention: the nature of (i) the base of the polar head, (ii) fatty acids at the sn-1 position and (iii) fatty acids at the sn-2 position. The highest apparent relative retentions were displayed by the 18:0-20:5(n-3)-PE and 16:0-22:6(n-3)-PE. It is noteworthy that the behavior of 20:3 n-9--which is synthesized during the EFA-deficient diet by the same bioconversion system as 20:4 n-6--was very similar to that of 20:4 n-6 during the formation of PC and PE molecular species and that the molecular species of PE containing 20:4(n-6) and 20:3(n-9), gathered together as metabolical homologues, were also apparently retained, particularly in association with 16:0. Present observations are consistent with some others showing retention or preferential distribution of EFA in PE and suggest that specific acyltransferase(s), ethanolamine phosphotransferase and methyltransferase would be mainly involved for PE and PC formation in liver endoplasmic reticulum. Fast-atom bombardment-mass spectrometry of intact phospholipids enables us to show that there is no very long chain dipolyunsaturated phospholipid in liver endoplasmic reticulum.  相似文献   

9.
Alterations in the metabolism of arachidonic (20:4n-6), docosapentaenoic (22:5n-6), and docosahexaenoic (22:6n-3) acids and other polyunsaturated fatty acids in Zellweger syndrome and other peroxisomal disorders are reviewed. Previous proposals that peroxisomes are necessary for the synthesis of 22:6n-3 and 22:5n-6 are critically examined. The data suggest that 22:6n-3 is biosynthesized in mitochondria via a channelled carnitine-dependent pathway involving an n-3-specific D-4 desaturase, while 20:4n-6, 20:5n-3 and 22:5n-6 are synthesized by both mitochondrial and microsomal systems; these pathways are postulated to be interregulated as compensatory-redundant systems. Present evidence suggests that 22:6n-3-containing phospholipids may be required for the biochemical events involved in successful neuronal migration and developmental morphogenesis, and as structural cofactors for the functional assembly and integration of a variety of membrane enzymes, receptors, and other proteins in peroxisomes and other subcellular organelles. A defect in the mitochondrial desaturation pathway is proposed to be a primary etiologic factor in the clinicopathology of Zellweger syndrome and other related disorders. Several implications of this proposal are examined relating to effects of pharmacological agents which appear to inhibit steps in this pathway, such as some hypolipidemics (fibrates), neuroleptics (phenothiazines and phenytoin) and prenatal alcohol exposure.  相似文献   

10.
The influences of diets having different fatty acid compositions on the fatty-acid content, desaturase activities, and membrane fluidity of rat liver microsomes have been analyzed. Weanling male rats (35–45 g) were fed a fat-free semisynthetic diet supplemented with 10% (by weight) marine fish oil (FO, 12.7% docosahexaenoic acid and 13.8% eicosapentaenoic acid), evening primrose oil (EPO, 7.8% γ-linolenic acid and 70.8% linoleic acid) or a mixture of 5% FO-5% EPO. After 12 weeks on the respective diets, animals fed higher proportions of (n-3) polyunsaturated fatty acids (FO group) consistently contained higher levels of 20:3(n-6), 20:5(n-3), 22:5(n-3), and 22:6(n-3), and lower levels of 18:2(n-6) and 20:4(n-6), than those of the EPO (a rich source of (n-6) polyunsaturated fatty acids) or the FO + EPO groups. Membrane fluidity, as estimated by the reciprocal of the order parameter SDPH, was higher in the FO than in the EPO or the FO + EPO groups, and the n-6 fatty-acid desaturation system was markedly affected.  相似文献   

11.
Mouse peritoneal macrophages metabolize dihomogammalinolenic acid (20:3n-6) primarily to 15-hydroxy-8,11,13-eicosatrienoic acid (15-OH-20:3). Since the biological properties of this novel trienoic eicosanoid remain poorly defined, the effects of increasing concentrations of 15-OH-20:3 and its arachidonic acid (20:4n-6) derived analogue. 15-hydroxy-5,8,11,13-eicosatetraenoic acid (15-HETE), on mouse macrophage 20:4n-6 metabolism were investigated. Resident peritoneal macrophages were prelabeled with [3H]-20:4n-6 and subsequently stimulated with zymosan in the presence of either 15-OH-20:3 or 15-HETE (1-30 microM). After 1 hr, the radiolabeled soluble metabolites were analyzed by reverse phase high performance liquid chromatography. 15-OH-20:3 inhibited zymosan-induced leukotriene C4 (IC50 = 2.4 microM) and 5-HETE (IC50 = 3.1 microM) synthesis. In contrast to the inhibition of macrophage 5-lipoxygenase, 15-OH-20:3 enhanced 12-HETE synthesis (5-30 microM) and had no measurable effect on cyclooxygenase metabolism (1-10 microM) i.e., 6-keto-prostaglandin F1 alpha and prostaglandin E2 synthesis. Addition of exogenous 15-HETE produced similar effects. These results suggest that the manipulation of macrophage 15-OH-20:3n-6 levels may provide a measure of cellular control over 20:4n-6 metabolism, specifically, leukotriene production.  相似文献   

12.
In the Zellweger syndrome where peroxisomes are absent, extremely long fatty acids (24:0 and 26:0) accumulate in tissues suggesting that these fatty acids are normally beta-oxidized in the peroxisomes. Previous studies with rat hepatocytes suggest that peroxisomes are also important in oxidation of C22 unsaturated fatty acids. This study shows that cultured fibroblasts from normal human controls shorten [14-14C]erucic acid (22:1(n-9)) to oleic acid (18:1(n-9)) efficiently while Zellweger fibroblasts are deficient in chain-shortening. [2-14C]Adrenic acid (22:4(n-6)) is oxidized in control fibroblasts probably by chain-shortening to arachidonic acid (20:4(n-6)). Only a little adrenic acid is oxidized in Zellweger fibroblasts. Linolenic acid (18:3(n-3)) is desaturated and chain-elongated in both control and Zellweger fibroblasts. The results support the view that peroxisomes play a normal physiological role in the shortening of C22 unsaturated fatty acids and that this function is deficient in Zellweger fibroblasts.  相似文献   

13.
The reasons why most cellular lipids preferentially accumulate 22:6(n-3) rather than 22:5(n-6) are poorly understood. In the present work the metabolisms of the precursor fatty acids, [1-(14)C]20:4(n-6), [1-(14)C]22:4(n-6) versus [1-(14)C]20:5(n-3), [1-(14)C]22:5(n-3) in isolated rat hepatocytes were compared. The addition of lactate and L-decanoylcarnitine increased the formation of [(14)C]24 fatty acid intermediates and the final products, [(14)C]22:5(n-6) and [(14)C]22:6(n-3). In the absence of lactate and L-decanoylcarnitine, no [(14)C]24 fatty acids and [(14)C]22:5(n-6) were detected when [1-(14)C]22:4(n-6) was the substrate, whereas small amounts of the added [1-(14)C]22:5(n-3) was converted to [(14)C]22:6(n-3). Lactate reduced the oxidation of [1-(14)C]22:4(n-6) and [1-(14)C]22:5(n-3) while L-decanoylcarnitine did not. No significant differences between the total oxidation or esterification of the two substrates were observed. By fasting and fructose refeeding the amounts of [(14)C]24:4(n-6) and [(14)C]24:5(n-3) were increased by 2.5- and 4-fold, respectively. However, the levels of [(14)C]22:5(n-6) and [(14)C]22:6(n-3) were similar in hepatocytes from fasted and refed versus fed rats. With hepatocytes from rats fed a fat free diet the levels of [(14)C]24 fatty acid intermediates were low while the further conversion of the n-6 and n-3 substrates was high and more equal, approx. 33% of [1-(14)C]22:4(n-6) was converted to [(14)C]22:5(n-6) and 43% of [1-(14)C]22:5(n-3) was converted to [(14)C]22:6(n-3). The moderate differences found in the conversion of [1-(14)C]22:4(n-6) versus [1-(14)C]22:5(n-3) to [(14)C]22:5(n-6) and [(14)C]22:6(n-3), respectively, and the equal rates of oxidation of the two substrates could thus not explain the abundance of 22:6(n-3) versus the near absence of 22:5(n-6) in cellular membranes.  相似文献   

14.
Cultured C6 glioma cells rapidly incorporate and metabolize the essential fatty acids, 18:2(n-6) and 18:3(n-3), to 20- and 22-carbon polyunsaturated fatty acids. Using several deuterated fatty acid substrates we have obtained data that suggest alternate pathways, one possibly involving delta 8-desaturation, may exist in glioma cells for formation of 20:5(n-3) and 22:6(n-3) from 18:3(n-3). With 18:3(n-3)-6,6,7,7-d4 practically no 18:4(n-3)-6,7-d2 or 20:4(n-3)-8,9-d2 was detected whereas 20:3(n-3)-8,8,9,9-d4 accounted for 3.4% and delta 5,11,14,17-20:4-8,8,9,9-d4 for 21.1% of the total deuterated fatty acids recovered in phospholipids after a 16 h incubation; 20:5(n-3)-8,9-d2, 22:5(n-3)-10,11-d2, and 22:6(n-3)-10,11-d2 accounted for 42.4%, 13.2%, and 2.8% of deuterated acyl chains, respectively. When added exogneously, 20:3-8,8,9,9,-d4 was extensively converted to delta 5,11,14,17-20:4(n-3)-8,8,9,9-d4 (45%) and 20:5(n-3)-8,9-d2 (24%); a small amount (4%) of 18:3(n-3)-d4 also was detected. Both 20:4(n-3)-8,9-d2 and 18:4(n-3)-12,13,15,16-d4 were also converted to 20:5(n-3) and 22:6(n-3) with 8 and 0% of the respective original deuterated substrate remaining after 16 h. A possible pathway for 18:3(n-3) metabolism in glioma cells is described whereby an initial chain elongation step is followed by successive delta 5 and delta 8 desaturation reactions resulting in 20:5(n-3) formation and accounting for the ordered removal of deuterium atoms. Alternatively, extremely effective retroconversion may occur to chain shorten 20:3(n-3)-d4 to 18:3(n-3)-d4 followed by rapid conversion through the classical desaturation and chain elongation sequence.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
1. The incorporation and metabolism of (n-3) and (n-6) polyunsaturated fatty acids (PUFA) supplemented to growing cultures were studied in rainbow trout (RTG-2) and turbot (TF) cell lines. 2. A fatty acid concentration of 20 microM considerably altered the fatty acid composition of the cells without affecting lipid class composition or the appearance of cytoplasmic lipid droplets. 3. Both cell lines exhibited considerable delta 6 desaturase activities. 4. Whereas delta 5 desaturase activity was expressed in RTG-2 cells, delta 4 desaturase activity was absent and, conversely, delta 4 desaturase activity was expressed in TF cells, but there was an apparent deficiency in the C18 to C20 elongase multi-enzyme complex. 5. The delta 6 desaturase activity in both cell lines showed little preference between 18:2(n-6) and 18:3(n-3) but the delta 5 desaturase activity of RTG-2 cells and the delta 4 desaturase activity of TF cells showed a preference for (n-3)PUFA. 6. Two fish oil concentrates were assessed for their ability to generate fatty acid compositions in the cell lines more closely resembling those of intact fish tissues.  相似文献   

16.
Primary culture is a suitable system to study lipid metabolism and polyunsaturated fatty acid biosynthesis. Sertoli cell-enriched preparations were used to determine the fatty acid composition after 5 and 7 days in culture (serum free) as well as the uptake and metabolism of [1-14C]eicosa-8,11,14-trienoic acid. The addition of unlabeled linoleic acid (0.2 and 2.0 microg/ml) was also evaluated. Fatty acid methyl esters derived from cellular lipids were analyzed by gas liquid chromatography and radiochromatography. After 5 days in culture, cells had significantly less 18:2, 20:4, 22:5 and 24:5 and more 18:3, 20:3, 22:4 and 24:4 n-6 fatty acids than non-cultured cells. On day 7, an additional increment in 22:4 n-6 and a decrease in linoleic, gamma-linoleic and 24:4 n-6 fatty acids were observed. The presence of linoleic acid (low dose) produced a significant decrease in saturated and monounsaturated acids and an increase in 18:2, 20:4 and 22:5 n-6 fatty acids. At a high concentration almost all fatty acids belonging to 18:2 n-6 increased significantly. The drop in 20:4 n-6/20:3 n-6 ratio was considered as an indirect evidence of a Delta 5 desaturase activity depression. This assumption was corroborated by studying the transformation of [1-14C]eicosa-8,11,14-trienoic acid into 20:4, 22:4, 22:5, 24:4 and 24:5 n-6 fatty acids. We conclude that Sertoli cells after 7 days in culture evidenced changes in the fatty acid profile similar to those described under fat deprivation. The addition of linoleic acid reverted this pattern and indicated that the Delta 5 desaturase activity is a limiting step in the polyunsaturated fatty acid biosynthesis.  相似文献   

17.
Eicosapentaenoic acid (FPA, 20:5n-3) and arachidonic acid (AA, 20:4n-3)were obtained from the microalga Porphyridium cruentum by a three-stepprocess: fatty acid extraction by direct saponification of biomass,polyunsaturated fatty acid (PUFA) concentration by urea inclusion complexingand EPA isolation by high-performance liquid chromatography (HPLC). Twosolvents were tested for direct saponification of lipids in biomass. Themost efficient solvent, ethanol (96% v/v), extracted 75% ofthe fatty acids. PUFAs concentration by urea inclusion employed a urea/fattyacid ratio of 4:1 wt/wt at the crystallization temperatures of 4°C and28°C. Concentration factors were similar at both temperatures, but theEPA and AA recoveries were higher at 28°C (67.7% and 61.8%for the two acids, respectively). EPA and AA were purified from this PUFAconcentrate using analytical scale HPLC and the best results of thisseparation were scaled up to preparative level (4.7 i. d. × 30 cmcompression radial cartridge). A 94.3% pure EPA fraction and a81.4% pure AA fraction were obtained. Suitability of severalmicroalgae (Porphyridium cruentum, Phaeodactylum tricornutum and Isochrysisgalbana) and cod liver oil as sources of highly pure PUFAs, mainly EPA, wascompared.  相似文献   

18.
Several studies have shown that major depression is accompanied by alterations in serum fatty acid composition, e.g. reduced n-3 fatty acids and an increased 20:4n-6/20:5n-3 ratio in serum. Moreover, pregnancy leads to depletion of maternal serum 22:6n-3 and after delivery maternal serum 22:6n-3 steadily declines further. Therefore, the aim of the present study was to investigate whether the postpartum fatty acid profile of maternal serum phospholipids (PL) and cholesteryl esters (CE) differs in women who develop postpartum depression compared to controls. We compared the fatty acid composition shortly after delivery of 10 women who developed postpartum depression and 38 women who did not. After delivery, 22:6n-3 and the sum of the n-3 fatty acids in PL and CE was significantly lower in the group of mothers who developed a postpartum depression. The ratio of Sigman-6/Sigman-3 fatty acids in PL was, postpartum, significantly higher in the depressed group as compared to the controls. The abnormalities in fatty acid status previously observed in major depression are now also confirmed in postpartum depression. These results indicate that pregnant women who are at risk to develop postpartum depression may benefit from a prophylactic treatment with n-3 PUFAs, such as a combination of 20:5n-3 and 22:6n-3.  相似文献   

19.
The presence of long-chain polyunsaturated fatty acids (PUFA; ca. 9% of total fatty acids) in marine sediments near Dover, southern Tasmania, Australia prompted a search for their likely source. Analysis of a number of different species of benthic fauna isolated from these sediments revealed that the brittle star Amphiura elandiformis contained abundant PUFA including high contents of the uncommon long-chain fatty acid 24:6(n-3), but much smaller amounts of the more common animal PUFA 22:6(n-3). This is the first report of the lipid composition of this animal. Identifications of the unsaturated fatty acids were confirmed by formation of DMOX derivatives which gave characteristic and easily interpreted mass spectra. The 24:6(n-3) PUFA has been identified in some genera of brittle stars, but not others. It is rarely found in significant amounts in other marine animals. DMDS adducts were used to identify the positions of double bonds in the monounsaturated fatty acids. The major 20:1 isomer was identified as the rarely reported 20:1(n-13) fatty acid. The two fatty acids 20:1(n-13) and 24:6(n-3) may be useful biomarkers in food-web studies for identifying a brittle star diet and for recognising contributions of organic detritus from this benthic animal to marine sediments.  相似文献   

20.
The phospholipids, particularly phosphatidylethanolamine, of brain gray matter are enriched with docosahexaenoic acid (22:6n-3). The importance of uptake of preformed 22:6n-3 from plasma compared with synthesis from the alpha-linolenic acid (18:3n-3) precursor in brain is not known. Deficiency of 18:3n-3 results in a compensatory increase in the n-6 docosapentaenoic acid (22:5n-6) in brain, which could be formed from the precursor linoleic acid (18:2n-6) in liver or brain. We studied n-3 and n-6 fatty acid incorporation in brain astrocytes cultured in chemically defined medium using delipidated serum supplemented with specific fatty acids. High performance liquid chromatography with evaporative light scattering detection and gas liquid chromatography were used to separate and quantify cell and media lipids and fatty acids. Although astrocytes are able to form 22:6n-3, incubation with 18:3n-3 or eicosapentaenoic acid (20:5n-3) resulted in a time and concentration dependent accumulation of 22:5n-3 and decrease in 22:6n-3 g/g cell fatty acids. Astrocytes cultured with 18:2n-6 failed to accumulate 22:5n-6. Astrocytes secreted cholesterol esters (CE) and phosphatidylethanolamine containing saturated and monounsaturated fatty acids, and arachidonic acid (20:4n-6) and 22:6n-3. These studies suggest conversion of 22:5n-3 limits 22:6n-3 synthesis, and show astrocytes release fatty acids in CE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号