首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ringed seal (Pusa hispida) breeding distribution has been extensively studied across near-shore habitats, but has received limited attention at a seascape scale due to the difficulty in accessing offshore sea ice environments. Employing highly visible predation attempts by polar bears (Ursus maritimus) on ringed seals in subnivean lairs observed by helicopter, the spatial relationship between predatory behaviour and ringed seal breeding habitat was examined. Resource selection functions were used to determine the relative probability of predation attempts on ringed seals in lairs as a function of habitat during a period of low ringed seal natality (2004–2006). Ringed seal pup kill locations were compared between years of low (2003–2006) and high (2007–2011) natality to assess the effect of reproductive output on habitat use. During years of low natality, polar bear hunting attempts were more likely in near-shore fast ice, and pup kills were observed predominately in fast ice (fast = 65 %, pack = 29 %, P = 0.002) at a median distance of 36 km from shore. In years of high natality, pup kills were observed farther from shore (median = 46 km, P = 0.03), and there was no difference in the proportion of observations in fast ice and pack ice (fast = 43 %, pack = 52 %, P = 0.29). These results suggest that the facultative use of adjacent offshore pack ice by breeding ringed seals may be influenced by natality. This study illustrates how documenting the behaviour of a predator can facilitate insight into the distribution of a cryptic prey.  相似文献   

2.
Habitat partitioning by adult and subadult ringed seals (Phoca hispida) is poorly understood. Conclusions about displacement of subadult seals to suboptimal offshore habitat are largely based on nearshore observations as few satellite tagging studies include data from winter months. In this study, movement patterns of 14 subadult and 11 adult ringed seals were monitored in the Bering and Chukchi seas using satellite-linked telemetry. Seals were captured in Kotzebue Sound, Alaska, during October 2007 and 2008 and tracked for 17–297 days. Subadult ringed seals traveled south from the Chukchi Sea into the Bering Sea ([`(x)] \bar{x}  = 36 km/day) as sea ice coverage increased during November and December, remained ~1,000 km south near the ice edge during winter and returned north in the spring with the receding ice edge. Adults remained in the Chukchi and northern Bering seas, where their movements were more localized ([`(x)] \bar{x}  = 22 km/day). Adults were on average 322 km farther from the ice edge and 48 km closer to land and shorefast ice than were subadults. During winter, adult ringed seals construct and maintain breathing holes through the ice, and in spring, females give birth in subnivean lairs, mostly in shorefast ice; adult males defend breeding territories around those lairs. Our results show that subadult ringed seals, unconstrained by the need to maintain territories that contain stable breeding/pupping habitat, moved south to the Bering Sea ice edge, where there are better feeding opportunities, lower energetic costs (no breathing hole maintenance), and less exposure to predation.  相似文献   

3.
The ringed seal breeding habitat of the Van Mijen fiord, Svalbard, Norway, was studied from 30 March to 22 May 1986. A Siberian husky dog was used to detect ringed seal birth lairs and breathing holes. Fifteen percent of the total fiord areas was sampled. We estimated the densitites of birth lairs and breathing holes to be 0.04 km-2 and 1.30 km-2, respectively. The Van Mijen fiord was a poor ringed seal breeding habitat compared with breeding habitats investigated both in Canada and other parts of Svalbard. The main reason is probably shallow snow depth and lack of structures such as pressure ridges around which enough snow could accumulate for the ringed seal females to be able to dig out their lairs. The number of seals inhabiting the area during the breeding period 1986 was approximately 125 animals.  相似文献   

4.
Ringed seal (Pusa hispida) abundance in Spitsbergen, Svalbard, was estimated during the peak molting period via aerial, digital photographic surveys. A total of 9,145 images, covering 41.7%–100% of the total fast‐ice cover (1,496 km2) of 18 different fjords and bays, were inspected for the presence of ringed seals. A total of 1,708 seals were counted, and when accounting for ice areas that were not covered by images, a total of 3,254 (95% CI: 3,071–3,449) ringed seals were estimated to be hauled out during the surveys. Extensive behavioral data from radio‐tagged ringed seals (collected in a companion study) from one of the highest density fjords during the molting period were used to create a model that predicts the proportion of seals hauled out on any given date, time of day, and under various meteorological conditions. Applying this model to the count data from each fjord, we estimated that a total of 7,585 (95% CI: 6,332–9,085) ringed seals were present in the surveyed area during the peak molting period. Data on interannual variability in ringed seal abundance suggested higher numbers of seals in Van Keulenfjorden in 2002 compared to 2003, while other fjords with very stable ice cover showed no statistical differences. Poor ice conditions in general in 2002 probably resulted in seals from a wide area coming to Van Keulenfjorden (a large fjord with stable ice in 2002). The total estimated number of ringed seals present in the study area at the time of the survey must be regarded as a population index, or at least a minimum estimate for the area, because it does not account for individuals leaving and arriving, which might account for a considerable number of animals. The same situation is likely the case for many other studies reporting aerial census data for ringed seals. To achieve accurate estimates of population sizes from aerial surveys, more extensive knowledge of ringed seal behavior will be required.  相似文献   

5.
Polar bear (Ursus maritimus) subpopulations in several areas with seasonal sea ice regimes have shown declines in body condition, reproductive rates, or abundance as a result of declining sea ice habitat. In the Foxe Basin region of Nunavut, Canada, the size of the polar bear subpopulation has remained largely stable over the past 20 years, despite concurrent declines in sea ice habitat. We used fatty acid analysis to examine polar bear feeding habits in Foxe Basin and thus potentially identify ecological factors contributing to population stability. Adipose tissue samples were collected from 103 polar bears harvested during 2010–2012. Polar bear diet composition varied spatially within the region with ringed seal (Pusa hispida) comprising the primary prey in northern and southern Foxe Basin, whereas polar bears in Hudson Strait consumed equal proportions of ringed seal and harp seal (Pagophilus groenlandicus). Walrus (Odobenus rosmarus) consumption was highest in northern Foxe Basin, a trend driven by the ability of adult male bears to capture large‐bodied prey. Importantly, bowhead whale (Balaena mysticetus) contributed to polar bear diets in all areas and all age and sex classes. Bowhead carcasses resulting from killer whale (Orcinus orca) predation and subsistence harvest potentially provide an important supplementary food source for polar bears during the ice‐free period. Our results suggest that the increasing abundance of killer whales and bowhead whales in the region could be indirectly contributing to improved polar bear foraging success despite declining sea ice habitat. However, this indirect interaction between top predators may be temporary if continued sea ice declines eventually severely limit on‐ice feeding opportunities for polar bears.  相似文献   

6.
Diving and circadian behaviour patterns of 7 free-ranging Saimaa ringed sealsPhoca hispida saimensis Nordquist, 1899 were examined by VHF-radiotelemetry during open-water seasons between May and November in Lake Saimaa, eastern Finland. The mean recorded dive duration ranged from 2.8 to 6.5 min, with a maximum of 21 min. The mean dive depth ranged from 9.8 to 15.7 m, with maximum of 39.6 m. The maximum dive depth of each seal was limited by water depth in the study area. The dive depths were positively correlated with dive duration and body mass of the seal. Five different dive types were defined, as based on their depth-time characteristics, each falling into one of the three functional categories: travelling, feeding, and resting. Long duration diving bouts occurred mostly at night and were presumed to be resting dives. Saimaa ringed seals exhibited a circadian pattern of haul-out behaviour that shifted seasonally. During molting (May–June) the seals hauled-out both day and night, but later in summer haul-out was more frequent at night.  相似文献   

7.
Island populations are on average smaller, genetically less diverse, and at a higher risk to go extinct than mainland populations. Low genetic diversity may elevate extinction probability, but the genetic component of the risk can be affected by the mode of diversity loss, which, in turn, is connected to the demographic history of the population. Here, we examined the history of genetic erosion in three Fennoscandian ringed seal subspecies, of which one inhabits the Baltic Sea ‘mainland’ and two the ‘aquatic islands’ composed of Lake Saimaa in Finland and Lake Ladoga in Russia. Both lakes were colonized by marine seals after their formation c. 9500 years ago, but Lake Ladoga is larger and more contiguous than Lake Saimaa. All three populations suffered dramatic declines during the 20th century, but the bottleneck was particularly severe in Lake Saimaa. Data from 17 microsatellite loci and mitochondrial control‐region sequences show that Saimaa ringed seals have lost most of the genetic diversity present in their Baltic ancestors, while the Ladoga population has experienced only minor reductions. Using Approximate Bayesian computing analyses, we show that the genetic uniformity of the Saimaa subspecies derives from an extended founder event and subsequent slow erosion, rather than from the recent bottleneck. This suggests that the population has persisted for nearly 10,000 years despite having low genetic variation. The relatively high diversity of the Ladoga population appears to result from a high number of initial colonizers and a high post‐colonization population size, but possibly also by a shorter isolation period and/or occasional gene flow from the Baltic Sea.  相似文献   

8.
Domoic acid (DA) and saxitoxin (STX)-producing algae are present in Alaskan seas, presenting exposure risks to marine mammals that may be increasing due to climate change. To investigate potential increases in exposure risks to four pagophilic ice seal species (Erignathus barbatus, bearded seals; Pusa hispida, ringed seals; Phoca largha, spotted seals; and Histriophoca fasciata, ribbon seals), this study analyzed samples from 998 seals harvested for subsistence purposes in western and northern Alaska during 2005–2019 for DA and STX. Both toxins were detected in bearded, ringed, and spotted seals, though no clinical signs of acute neurotoxicity were reported in harvested seals. Bearded seals had the highest prevalence of each toxin, followed by ringed seals. Bearded seal stomach content samples from the Bering Sea showed a significant increase in DA prevalence with time (logistic regression, p = .004). These findings are consistent with predicted northward expansion of DA-producing algae. A comparison of paired samples taken from the stomachs and colons of 15 seals found that colon content consistently had higher concentrations of both toxins. Collectively, these results suggest that ice seals, particularly bearded seals (benthic foraging specialists), are suitable sentinels for monitoring HAB prevalence in the Pacific Arctic and subarctic.  相似文献   

9.
Ground counts during 1959–1968 compared with counts using high resolution (0.6 m2) satellite imagery during 2008–2012 indicated many fewer Weddell seals (Leptonychotes weddellii) at two major molting areas in the western Ross Sea: Edisto Inlet‐Moubray Bay, northern Victoria Land, and McMurdo Sound, southern Victoria Land. Breeding seals have largely disappeared from Edisto‐Moubray, though the breeding population in McMurdo Sound appears to have recovered from harvest in the 1960s. The timing of decline, or perhaps spreading (lower numbers of seals in more places), is unknown but appears unrelated to changes in sea ice conditions. We analyzed both historic and satellite‐derived ice data confirming a large expansion of pack ice mostly offshore of the Ross Sea, and not over the continental shelf (main Weddell seal habitat), and a thinning of fast ice along Victoria Land (conceivably beneficial to seals). Timing of fast ice presence and extent in coves and bays along Victoria Land, remains the same. The reduction in numbers is consistent with an altered food web, the reasons for which are complex. In the context of a recent industrial fishery targeting a seal prey species, a large‐scale seal monitoring program is required to increase understanding of seal population changes.  相似文献   

10.

Background

Polar bears (Ursus maritimus) of the Beaufort Sea enter hyperphagia in spring and gain fat reserves to survive periods of low prey availability. We collected information on seals killed by polar bears (n = 650) and hunting attempts on ringed seal (Pusa hispida) lairs (n = 1396) observed from a helicopter during polar bear mark-recapture studies in the eastern Beaufort Sea in spring in 1985–2011. We investigated how temporal shifts in ringed seal reproduction affect kill composition and the intraspecific vulnerabilities of ringed seals to polar bear predation.

Principal Findings

Polar bears primarily preyed on ringed seals (90.2%) while bearded seals (Erignathus barbatus) only comprised 9.8% of the kills, but 33% of the biomass. Adults comprised 43.6% (150/344) of the ringed seals killed, while their pups comprised 38.4% (132/344). Juvenile ringed seals were killed at the lowest proportion, comprising 18.0% (62/344) of the ringed seal kills. The proportion of ringed seal pups was highest between 2007–2011, in association with high ringed seal productivity. Half of the adult ringed seal kills were ≥21 years (60/121), and kill rates of adults increased following the peak of parturition. Determination of sex from DNA revealed that polar bears killed adult male and adult female ringed seals equally (0.50, n = 78). The number of hunting attempts at ringed seal subnivean lair sites was positively correlated with the number of pup kills (r2 = 0.30, P = 0.04), but was not correlated with the number of adult kills (P = 0.37).

Conclusions/Significance

Results are consistent with decadal trends in ringed seal productivity, with low numbers of pups killed by polar bears in spring in years of low pup productivity, and conversely when pup productivity was high. Vulnerability of adult ringed seals to predation increased in relation to reproductive activities and age, but not gender.  相似文献   

11.
Aerial surveys were conducted in 1999 and 2000 to estimate the densities of ringed (Phoca hispida) and bearded (Erignathus barbatus) seals in the eastern Chukchi Sea. Survey lines were focused mainly on the coastal zone within 37 km of the shoreline, with additional lines flown 148–185 km offshore to assess how densities of seals changed as a function of distance from shore. Satellite-linked time-depth recorders were attached to ringed seals in both years to evaluate the time spent basking on the ice surface. Haulout patterns indicated that ringed seals transitioned to basking behavior in late May and early June, and that the largest proportion of seals (60–68%) was hauled out between 0830 and 1530 local solar time. Ringed seals were relatively common in nearshore fast ice and pack ice, with lower densities in offshore pack ice. The average density of ringed seals was 1.91 seals km−2 in 1999 (range 0.37–16.32) and 1.62 seals km−2 in 2000 (range 0.42–19.4), with the highest densities of ringed seals found in coastal waters south of Kivalina and near Kotzebue Sound. The estimated abundance of ringed seals for the entire study area was similar in 1999 (252,488 seals, SE=47,204) and 2000 (208,857 seals, SE=25,502). Bearded seals were generally more common in offshore pack ice, with the exception of high bearded seal numbers observed near the shore south of Kivalina. Bearded seal densities were not adjusted for haulout behavior, and therefore, abundance was not estimated. Unadjusted average bearded seal density was 0.07 seals km−2 in 1999 (range 0.011–0.393) and 0.14 seals km−2 in 2000 (range 0.009–0.652). Levels of primary productivity, benthic biomass, and fast ice distribution may influence the distributions of ringed and bearded seals in the Chukchi Sea. Information on movement and haulout behavior of ringed and bearded seals would be very useful for designing future surveys.  相似文献   

12.
Recent unidirectional climatic trends and changes in top predator population ecology suggest that long-term modifications may be happening in Hudson Bay, Canada. Effects of such changes on ice-obligated seal populations are expected but long-term studies are required to differentiate climate-induced changes from natural variation. We conducted strip-transect surveys in late spring in 1995–1997, 1999–2000 and 2007–2008 to estimate distribution, density and abundance of ice-obligated ringed (Phoca hispida) and bearded (Erignathus barbatus) seals in western Hudson Bay. When hauled out, ringed seals preferred land-fast and consolidated pack ice, whereas bearded seals preferred unconsolidated pack ice. Bearded and ringed seal density estimates varied from 0.0036 to 0.0229 seals/km2 of ice and from 0.46 to 1.60 seals/km2 of ice, respectively. Strong inter-annual variations were recorded in the abundance estimates of both species, with the largest abundance estimates in 1995 (104,162 and 1,494 ringed and bearded seals, respectively) and the lowest in 2008 for ringed seals (33,701) and 1997 for bearded seals (278). A sine function best described seal density estimates in western Hudson Bay and suggested a decadal cycle. Previous studies that reported low ringed seal demographic parameters in the 1990s and a recovery in the 2000s supported our interpretation of the survey results. We discuss our results in the context of climate warming and suggest that a long-term decline in ice-obligated seal density estimates may overlay a possible natural decadal cycle.  相似文献   

13.
Freitas C  Kovacs KM  Ims RA  Fedak MA  Lydersen C 《Oecologia》2008,155(1):193-204
Intra-specific and intra-population variation in movement tactics have been observed in many species, sometimes in association with alternative foraging techniques or large-scale habitat selection. However, whether animals adjust their small-scale habitat selection according to their large-scale tactics has rarely been studied. This study identified two large-scale movement tactics in ringed seals (Phoca hispida) during their non-breeding, post-moulting period. First-passage times (FPT) were used to explore these large-scale patterns. Subsequently, habitat selection was quantified by modelling the FPTs as a function of habitat attributes using Cox proportional hazards models. Some seals moved far offshore into areas preferentially containing 40–80% ice coverage, while other individuals spread along the coasts of Svalbard concentrating their time near glacier fronts. Both tactics resulted in ringed seals being in highly productive areas where they had access to ice-platforms to rest. When offshore, habitat selection was influenced mainly by sea ice concentration and season. Late in the season (autumn), increased risk of leaving an area was identified, even when ice conditions were still favourable, reflecting their need to return to over-wintering/breeding areas before the fjords of the archipelago freeze. For ringed seals that remained inshore, habitat use intensities were influenced mainly by the distance to glacier fronts and season. These animals were already close to their over-wintering habitat and hence their risk of leaving an area decreased as winter approached. This study of ringed seals habitat selection reveals how they fulfil their biological requirements in this dynamic, heterogeneous habitat. Individuals within the same population employed two distinct large-scale movement tactics, adjusting their decisions for small-scale habitat selection accordingly. This flexibility in ringed seal spatial ecology during summer and fall is expected to result in increased population viability in this high Arctic environment. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

14.
Ringed seals (Pusa hispida) are broadly distributed in seasonally ice covered seas, and their survival and reproductive success is intricately linked to sea ice and snow. Climatic warming is diminishing Arctic snow and sea ice and threatens to endanger ringed seals in the foreseeable future. We investigated the population structure and connectedness within and among three subspecies: Arctic (P. hispida hispida), Baltic (P. hispida botnica), and Lake Saimaa (P. hispida saimensis) ringed seals to assess their capacity to respond to rapid environmental changes. We consider (a) the geographical scale of migration, (b) use of sea ice, and (c) the amount of gene flow between subspecies. Seasonal movements and use of sea ice were determined for 27 seals tracked via satellite telemetry. Additionally, population genetic analyses were conducted using 354 seals representative of each subspecies and 11 breeding sites. Genetic analyses included sequences from two mitochondrial regions and genotypes of 9 microsatellite loci. We found that ringed seals disperse on a pan-Arctic scale and both males and females may migrate long distances during the summer months when sea ice extent is minimal. Gene flow among Arctic breeding sites and between the Arctic and the Baltic Sea subspecies was high; these two subspecies are interconnected as are breeding sites within the Arctic subspecies.  相似文献   

15.
In order to evaluate the current state of Lake Ladoga a comprehensive investigation of its pollution by metals, oil products, phenols, anionic detergents and 3,4-benzopyrene was carried out in July 1993. The results indicate a considerable pollution of the lake waters by metals and phenols. High degree of pollution of sediments by oil products and 3,4-benzopyrene was detected in the northern archipelago and bays (Impilahti, Hiidenselka, Pitkäranta) and in the area of Priozersk. A new index (I t ) is suggested for the estimation of biochemical self-purification capacity of freshwaters. Values of the index obtained for different parts of Lake Ladoga led us to the conclusion that at the present time the lake's capability for biochemical self-purification is relatively low. This situation is caused by strong anthropogenic impact on the lake. The approximate pollutant loads to Lake Ladoga were estimated on the basis of our 1991–1993 monitoring survey and from literature data.  相似文献   

16.
Over the last few decades, the period of ice cover in Hudson Bay has decreased, owing to climate warming, with breakup occurring approximately 3 weeks earlier than it did 30 years ago. The trend towards lengthening of the open water season has led to speculation that ringed seal numbers would decline, but then harbour seals might become numerous enough to replace ringed seals in the diet of polar bears. The movement patterns of 18 harbour seals equipped with satellite-linked transmitters in the Churchill River estuary (western Hudson Bay) were examined, as well as the dive behaviour of 11 of these seals. During the ice-free period, seals followed a general central place-foraging strategy, making repeated trips between their haul-out site in the Churchill River estuary and nearshore areas (<20 km) near the river mouth and estuary. Seal behaviour changed significantly as ice started to form along the coast of western Hudson Bay: animals remained significantly farther from the Churchill River haul-out site and from the coast and performed longer and deeper dives. However, throughout the entire tracking period, whether ice was present or not, all animals restricted their movements to a narrow band of shallow coastal waters (<50 m depth) along a 600-km stretch of the western Hudson Bay coastline, centred on the Churchill River estuary haul-out site. This natural self-limitation to nearshore shallow waters could restrict the potential for the population to increase in size and replace ringed seals as a primary energy resource for polar bears.  相似文献   

17.
Polar bears (Ursus maritimus) from the southern Beaufort Sea (SB) subpopulation have traditionally fed predominantly upon ice‐seals; however, as the proportion of the subpopulation using onshore habitat has recently increased, foraging on land‐based resources, including remains of subsistence‐harvested bowhead whales (Balaena mysticetus) and colonial nesting seabirds has been observed. Adipose tissue samples were collected from this subpopulation during the springs of 2013–2016 and analyzed for fatty acid signatures. Diet estimates were generated for the proportional consumption of ringed seal (Pusa hispida), bearded seal (Erignathus barbatus), and beluga whale (Delphinapterus leucas), relative to onshore foods, including bowhead whale remains and seabird, as represented by black guillemot (Cepphus grylle mandtii) nestlings and eggs. Quantitative fatty acid signature analysis (QFASA) estimated that the ice‐obligate prey, ringed seal, remained the predominant prey species of SB polar bears (46.4 ± 1.8%), with much lower consumption of bearded seal (19.6 ± 2.0%), seabird (17.0 ± 1.2%), bowhead whale (15.0 ± 1.4%), and hardly any beluga whale (2.0 ± 0.5%). Adult and subadult females appeared to depend more on the traditional ringed seal prey than adult and subadult males. Diet estimates of SB polar bears showed significant interannual variability for all prey (F12, 456 = 3.17, p < .001). Longer‐term estimates suggested that both types of onshore prey, bowhead whale remains and seabird, have represented a moderate proportion of the food resources used by SB polar bears since at least the start of the 21st Century.  相似文献   

18.
The activity and diving patterns of four adult Saimaa ringed seals ( Phoca hispida saimensis , a landlocked subspecies living in Lake Saimaa, Finland) were examined during spring, summer, and autumn by the use of VHF-transmitters. Over 17,000 dives were registered. The duration of the dives and diving patterns differed among individuals. The mean duration of dives increased from spring to autumn; e.g. , in one individual the mean dive duration increased from 6 min in June to 10.5 min in October. The haul-out periods of one individual in May to early June made up 46.2% of its total activity budget, but in another individual in July to August the haul-out periods made up only 11% of the budget and the seal was submerged for 80% of the time. Periods of successive long duration dives (>10 min) were observed in three individuals in summer and autumn. The longest dive measured was 23 min. The duration of the periods containing long dives was often over three hours (maximum six hours) and the mean duration of the dives about 15 min. These long duration dives are assumed to be aerobic resting dives. Generally, the dives of the Saimaa ringed seal appear to be of longer duration than previously assumed.  相似文献   

19.
The distribution and abundance of spotted seals (Phoca largha) and ribbon seals (Phoca fasciata) were assessed in March and April, 2000, by aerial line-transect surveys along the southern edge of the pack ice off the coast of Hokkaido (southern Sea of Okhotsk), Japan. Five hundred and seventeen spotted seals and 107 ribbon seals were found on the total 2944 km survey line. Total abundance was estimated to be 13 653 spotted (95% CI = 6167–30 252) and 2260 ribbon seals (95% CI = 783–6607) in March, and 6545 spotted (95% CI = 3284–815 644) and 3134 ribbon seals (95% CI = 1247–17 802 512) in April. The pack ice area off Hokkaido had higher densities (0.54 seals km–2 and 0.58 seals km–2 in March and April, respectively) of spotted seals than those reported in eastern Sakhalin, whereas densities (0.09 seals km–2 in March and 0.28 seals km–2 in April) of ribbon seals were lower than those in eastern Sakhalin. The large number of spotted seal pups suggests that the study area is an important breeding center. A greater number of female spotted seals with pups tended to be found in the center of larger and rougher floes than in other categories, and they were more abundant in stable pack ice areas. Observations of ribbon seals were limited because the survey period preceded the peak of pupping season. Ribbon seal surveys were also hampered by the inability to fly over the main breeding area between the Shiretoko Peninsula and Kunashiri Island.  相似文献   

20.
Arctic ecosystem dynamics are shifting in response to warming temperatures and sea ice loss. Such ecosystems may be monitored by examining the diet of upper trophic level species, which varies with prey availability. To assess interannual variation in the Beaufort Sea ecosystem, we examined spatial and temporal trends in ringed seal (Pusa hispida) δ13C and δ15N in claw growth layers grown from 1964 to 2011. Stable isotopes were correlated with climate indices, environmental conditions, seal population productivity, and geographic location. Sex and age did not influence stable isotopes. Enriched 13C was linked to cyclonic circulation regimes, seal productivity, and westward sampling locations. Higher δ15N was linked to lower sea surface temperatures, a higher percentage of pups in the subsistence harvest, and sample locations that were eastward and further from shore. From the 1960s to 2000s, ringed seal niche width expanded, suggesting a diversification of diet due to expansion of prey and/or seal space use. Overall, trends in ringed seal stable isotopes indicate changes within the Beaufort Sea ecosystem affected by water temperatures and circulation regimes. We suggest that continued monitoring of upper trophic level species will yield insights into changing ecosystem structure with climate change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号