首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purpose of this study was to examine the specificity of the cyclic pentapeptide ET(A) receptor antagonist BQ-123. BQ-123 competitively antagonized endothelin-1-induced contractions in rabbit aorta, increases in inositol phosphates in cultured rat vascular smooth muscle A10 cells, and binding of [125I]endothelin-1 to the cloned ETA receptor cDNA expressed in Cos 7 cells. In contrast, BQ-123 was a weak antagonist of [125I]endothelin-3 binding to rat cerebellar membranes and to membranes from Cos 7 cells transfected with the cloned ETB receptor cDNA. BQ-123 shifted concentration-response curves in isolated rabbit aorta elicited by angiotensin II, but did not bind to angiotensin II receptors nor affect angiotensin II-induced increases in inositol phosphates. BQ-123 also did not affect contractions induced by KCl or norepinephrine. These data suggest that endothelin may play a role in angiotensin II-induced contractions of rabbit aorta.  相似文献   

2.
Augmented vasoconstriction contributes to arterial stiffness associated with diabetes. It has been shown that capacitative calcium entry induced by sarcoplasmic-endoplasmic reticulum calcium ATPase blocker cyclopiazonic acid (CPA) in endothelial cells stimulates production of constrictor prostaglandins, which causes contractions of vascular smooth muscle cells. The aim of the work was to study the effect of diabetes on the vasoconstrictor response induced by calcium entry into endothelial and smooth muscle cells. Force was measured in isolated aortae of diabetic ob/ob and control C57BL/6J mice under isometric conditions. Contractions caused by 10 mumol/l CPA in diabetic mouse aortae featured higher amplitudes and longer durations in comparison with nondiabetic aortae. These contractions were abolished by a COX inhibitor indomethacin (10 mumol/l) or a specific thromboxane A2 receptor blocker SQ 29548 (1 mumol/l) and were not observed in denuded aortae. The contractions were sensitive to extracellular Ca (2+) and store-operated channel blockers. All together this suggests that vasoconstriction was caused by thromboxane A2 synthesis in endothelial cells induced by Ca (2+) entry through store-operated channels. Higher concentrations of CPA (30 mumol/l) or thapsigargin (1 mumol/l) elicited indomethacin-resistant tonic contractions of aortae with 2-fold amplitude in diabetic mice compared to their nondiabetic littermates, which were sensitive to store-operated channel blockers, but not to indomethacin, SQ 29548, or denudation. In conclusions, increases in intracellular Ca (2+) cause augmented vasoconstriction in diabetic vasculature through endothelial synthesis of contractile prostaglandins. In addition capacitative Ca (2+) entry is enhanced in diabetic vascular smooth muscle. These mechanisms indicate possible targets for clinical applications.  相似文献   

3.
With the aim of comparative estimation of efficacy of well-known inhibitors of energy-dependent Ca(2+)-transporting systems their effects were investigated on the activity of purified Ca2+, Mg(2+)-ATPase of the myometrium cell plasma membranes. From the approved inhibitors (eosin Y, o-vanadate, thapsigargin, cyclopiazonic acid, ruthenium red, sodium azide) only eosin Y and o-vanadate are potent inhibitors of myometrium sarcolemma Ca(2+)-pump: the values of Ki equal 0.8 and 4.7 microM, respectively. Thapsigargin and cyclopiazonic acid as well as ruthenium red in concentrations inhibiting, respectively, endo(sarco)plasmic reticulum Ca(2+)-pump and energy-dependent Ca(2+)-transport in mitochondria had no effect on the Ca2+, Mg(2+)-ATPase of the uterus smooth muscle cell plasma membrane. Sodium azide (10 mM) blocking completely Ca(2+)-transport in mitochondria inhibited activity of the plasma membrane Ca(2+)-transporting ATPase by 14%.  相似文献   

4.
Studies of thapsigargin, cyclopiazonic acid, and ryanodine in isolated pulmonary arteries and smooth muscle cells suggest that release of Ca(2+) from inositol 1,4,5-trisphosphate (IP(3))- and/or ryanodine-sensitive sarcoplasmic reticulum Ca(2+) stores is a component of the mechanism of acute hypoxic pulmonary vasoconstriction (HPV). However, the actions of these agents on HPV in perfused lungs have not been reported. Thus we tested effects of thapsigargin and cyclopiazonic acid, inhibitors of sarcoplasmic reticulum Ca(2+)-ATPase, and of ryanodine, an agent that either locks the ryanodine receptor open or blocks it, on HPV in salt solution-perfused rat lungs. After inhibition of cyclooxygenase and nitric oxide synthase, thapsigargin (10 nM) and cyclopiazonic acid (5 microM) augmented the vasoconstriction to 0% but not to 3% inspired O(2). Relatively high concentrations of ryanodine (100 and 300 microM) blunted HPV in nitric oxide synthase-inhibited lungs. The results indicate that release of Ca(2+) from the ryanodine-sensitive, but not the IP(3)-sensitive, store, contributes to the mechanism of HPV in perfused rat lungs and that Ca(2+)-ATPase-dependent Ca(2+) buffering moderates the response to severe hypoxia.  相似文献   

5.
Sympathetic adrenergic nerves maintain the flaccid state of the penis through the tonic release of norepinephrine that contracts trabecular and arterial smooth muscle. Simultaneous measurements of intracellular Ca(2+) concentration ([Ca(2+)](i)) and tension and experiments with alpha-toxin-permeabilized arteries were performed in branches of the rat dorsal penile artery to investigate the intracellular Ca(2+) signaling pathways underlying alpha(1)-adrenergic vasoconstriction. Phenylephrine increased both [Ca(2+)](i) and tension, these increases being abolished by extracellular Ca(2+) removal and reduced by about 50% by the L-type Ca(2+) channel blocker nifedipine (0.3 microM). Non-L-type Ca(2+) entry through store-operated channels was studied by inhibiting the sarcoplasmic reticulum Ca(2+)-ATPase with cyclopiazonic acid (CPA). CPA (30 microM) induced variable phasic contractions that were abolished by extracellular Ca(2+) removal and by the store-operated channels antagonist 2-aminoethoxydiphenyl borate (2-APB, 50 microM) and largely inhibited by nifedipine (0.3 microM). CPA induced a sustained increase in [Ca(2+)](i) that was reduced in a Ca(2+)-free medium. Under conditions of L-type channels blockade, Ca(2+) readmission after store depletion with CPA evoked a sustained and marked elevation in [Ca(2+)](i) not coupled to contraction. 2-APB (50 microM) inhibited the rise in [Ca(2+)](i) evoked by CPA and the nifedipine-insensitive increases in both [Ca(2+)](i) and contraction elicited by phenylephrine. In alpha-toxin-permeabilized penile arteries, activation of G proteins with guanosine 5'-O-(3-thiotriphosphate) and of the alpha(1)-adrenoceptor with phenylephrine both enhanced the myofilament sensitivity to Ca(2+). This Ca(2+) sensitization was reduced by selective inhibitors of PKC, tyrosine kinase (TK), and Rho kinase (RhoK) by 43%, 67%, and 82%, respectively. As a whole, the present data suggest the alpha(1)-adrenergic vasoconstriction in penile small arteries involves Ca(2+) entry through both L-type and 2-APB-sensitive receptor-operated channels, as well as Ca(2+) sensitization mechanisms mediated by PKC, TK, and RhoK. A capacitative Ca(2+) entry coupled to noncontractile functions of the smooth muscle cell is also demonstrated.  相似文献   

6.
Analysis of small dorsal root ganglion (DRG) neurons revealed novel functions for vanilloid receptor 1 (VR1) in the regulation of cytosolic Ca(2+). The VR1 agonist capsaicin induced Ca(2+) mobilization from intracellular stores in the absence of extracellular Ca(2+), and this release was inhibited by the VR1 antagonist capsazepine but was unaffected by the phospholipase C inhibitor xestospongins, indicating that Ca(2+) mobilization was dependent on capsaicin receptor binding and was not due to intracellular inositol-1,4,5-trisphosphate generation. Confocal microscopy revealed extensive expression of VR1 on endoplasmic reticulum, consistent with VR1 operating as a Ca(2+) release receptor. The main part of the capsaicin-releasable Ca(2+) store was insensitive to thapsigargin, a selective endoplasmic reticulum Ca(2+)-ATPase inhibitor, suggesting that VR1 might be predominantly localized to a thapsigargin-insensitive endoplasmic reticulum Ca(2+) store. In addition, VR1 was observed to behave as a store-operated Ca(2+) influx channel. In DRG neurons, capsazepine attenuated Ca(2+) influx following thapsigargin-induced Ca(2+) store depletion and inhibited thapsigargin-induced inward currents. Conversely, transfected HEK-293 cells expressing VR1 showed enhanced Ca(2+) influx and inward currents following Ca(2+) store depletion. Combined data support topographical and functional diversity for VR1 in the regulation of cytosolic Ca(2+) with the plasma membrane-associated form behaving as a store-operated Ca(2+) influx channel and endoplasmic reticulum-associated VR1 possibly functioning as a Ca(2+) release receptor in sensory neurons.  相似文献   

7.
Ca(2+) influx triggered by depletion of sarcoplasmic reticulum (SR) Ca(2+) stores [mediated via store-operated Ca(2+) channels (SOCC)] was characterized in enzymatically dissociated porcine airway smooth muscle (ASM) cells. When SR Ca(2+) was depleted by either 5 microM cyclopiazonic acid or 5 mM caffeine in the absence of extracellular Ca(2+), subsequent introduction of extracellular Ca(2+) further elevated [Ca(2+)](i). SOCC was insensitive to 1 microM nifedipine- or KCl-induced changes in membrane potential. However, preexposure of cells to 100 nM-1 mM La(3+) or Ni(2+) inhibited SOCC. Exposure to ACh increased Ca(2+) influx both in the presence and absence of a depleted SR. Inhibition of inositol 1,4,5-trisphosphate (IP)-induced SR Ca(2+) release by 20 microM xestospongin D inhibited SOCC, whereas ACh-induced IP(3) production by 5 microM U-73122 had no effect. Inhibition of Ca(2+) release through ryanodine receptors (RyR) by 100 microM ryanodine also prevented Ca(2+) influx via SOCC. Qualitatively similar characteristics of SOCC-mediated Ca(2+) influx were observed with cyclopiazonic acid- vs. caffeine-induced SR Ca(2+) depletion. These data demonstrate that a Ni(2+)/La(3+)-sensitive Ca(2+) influx via SOCC in porcine ASM cells involves SR Ca(2+) release through both IP(3) and RyR channels. Additional regulation of Ca(2+) influx by agonist may be related to a receptor-operated, noncapacitative mechanism.  相似文献   

8.
The main aim of this study was to determine the effects of endothelium removal on tension and intracellular Ca(2+) ([Ca(2+)](i)) during hypoxic pulmonary vasoconstriction (HPV) in rat isolated intrapulmonary arteries (IPA). Rat IPA and mesenteric arteries (MA) were mounted on myographs and loaded with the Ca(2+)-sensitive fluorophore fura PE-3. Arteries were precontracted with prostaglandin F(2alpha), and the effects of hypoxia were examined. HPV in isolated IPA consisted of a transient constriction superimposed on a second sustained phase. Only the latter phase was abolished by endothelial denudation. However, removal of the endothelium had no effect on [Ca(2+)](i) at any point during HPV. The endothelin-1 antagonists BQ-123 and BQ-788 did not affect HPV, although constriction induced by 100 nM endothelin-1 was abolished. In MA, hypoxia induced an initial transient rise in tension and [Ca(2+)](i), followed by vasodilatation and a fall in [Ca(2+)](i) to (but not below) prehypoxic levels. These results are consistent with sustained HPV being mediated by an endothelium-derived constrictor factor that is distinct from endothelin-1 and that elicits vasoconstriction via Ca(2+) sensitization.  相似文献   

9.
Nicotinic acid adenine dinucleotide phosphate (NAADP) has been shown to release intracellular Ca(2+) in several types of cells. We have used Ca(2+)-sensitive fluorescent dyes (Fura-2, Fluo-4) to measure intracellular Ca(2+) in astrocytes in culture and in situ. Bath-applied NAADP elicited a reversible and concentration-dependent Ca(2+) rise in up to 90% of astrocytes in culture (EC(50)=7 microM). The NAADP-evoked Ca(2+) rise was maintained in the absence of extracellular Ca(2+), but was suppressed after depleting the Ca(2+) stores of the ER with ATP (20 microM), with cyclopiazonic acid (10 microM) or with ionomycin (5 microM). P(2) receptor antagonist pyridoxalphosphate-6-azophenyl-2'4'-disulfonic acid (PPADS, 100 microM), IP(3) receptor blocker 2-aminoethoxydiphenyl borate (2-APB, 100 microM) and PLC inhibitor U73122 (10 microM) also reduced or suppressed the NAADP-evoked Ca(2+) rise. NAADP still evoked a Ca(2+) response after application of glycyl-l-phenylalanine-beta-naphthylamide (GPN, 200 microM), which permeabilizes lysosomes, or preincubation with H(+)-ATPase inhibitor bafilomycin A1 (4 microM) and of p-trifluoromethoxy carbonyl cyanide phenylhydrazone (FCCP, 2 microM), that impairs mitochondrial Ca(2+) handling. In acute brain slices, NAADP (10 microM) evoked Ca(2+) transients in cerebellar Bergmann glial cells and in hippocampal astrocytes. Our results suggest that NAADP recruits Ca(2+) from inositol 1,4,5-trisphosphate-sensitive Ca(2+) stores in mammalian astrocytes, at least partly by activating metabotropic P(2)Y receptors.  相似文献   

10.
The precise control of many T cell functions relies on cytosolic Ca(2+) dynamics that is shaped by the Ca(2+) release from the intracellular store and extracellular Ca(2+) influx. The Ca(2+) influx activated following T cell receptor (TCR)-mediated store depletion is considered to be a major mechanism for sustained elevation in cytosolic Ca(2+) concentration ([Ca(2+)](i)) necessary for T cell activation, whereas the role of intracellular Ca(2+) release channels is believed to be minor. We found, however, that in Jurkat T cells [Ca(2+)](i) elevation observed upon activation of the store-operated Ca(2+) entry (SOCE) by passive store depletion with cyclopiazonic acid, a reversible blocker of sarco-endoplasmic reticulum Ca(2+)-ATPase, inversely correlated with store refilling. This indicated that intracellular Ca(2+) release channels were activated in parallel with SOCE and contributed to global [Ca(2+)](i) elevation. Pretreating cells with (-)-xestospongin C (10 microM) or ryanodine (400 microM), the antagonists of inositol 1,4,5-trisphosphate receptor (IP3R) or ryanodine receptor (RyR), respectively, facilitated store refilling and significantly reduced [Ca(2+)](i) elevation evoked by the passive store depletion or TCR ligation. Although the Ca(2+) release from the IP3R can be activated by TCR stimulation, the Ca(2+) release from the RyR was not inducible via TCR engagement and was exclusively activated by the SOCE. We also established that inhibition of IP3R or RyR down-regulated T cell proliferation and T-cell growth factor interleukin 2 production. These studies revealed a new aspect of [Ca(2+)](i) signaling in T cells, that is SOCE-dependent Ca(2+) release via IP3R and/or RyR, and identified the IP3R and RyR as potential targets for manipulation of Ca(2+)-dependent functions of T lymphocytes.  相似文献   

11.
Store-operated Ca(2+) entry in vascular endothelial cells not only serves to refill the intracellular Ca(2+) stores, but also acts to stimulate the synthesis of nitric oxide, a key vasodilatory factor. In this study, we examined the role of cGMP in regulating the store-operated Ca(2+) entry in aortic endothelial cells. Cyclopiazonic acid (CPA) and thapsigargin, two selective inhibitors of endoplasmic reticulum Ca(2+)-ATPase, were used to induce store-operated Ca(2+) entry. 8-Bromo-cGMP, an activator of protein kinase G, inhibited the CPA- or thapsigargin-induced Ca(2+) entry in a concentration-dependent manner. An inhibitor of protein kinase G, KT5823 (1 microM) or H-8 (10 microM), abolished the inhibitory action of 8-bromo-cGMP and resumed Ca(2+) entry. Addition of S-nitroso-N-acetylpenicillamine (a nitric oxide donor) or dipyridamole (a cGMP phosphodiesterase inhibitor) during CPA treatment elevated cellular cGMP levels, stimulated protein kinase G activity, and at the same time reduced Ca(2+) influx due to CPA. Patch clamp study confirmed the existence of a CPA-activated Ca(2+)-permeable channel sensitive to cGMP inhibition. These results suggest that cGMP via a protein kinase G-dependent mechanism may play a key role in the regulation of the store-operated Ca(2+) entry in vascular endothelial cells.  相似文献   

12.
Sievers A  Busch MB 《Planta》1992,188(4):619-622
Cress (Lepidium sativum L.) roots were treated with 20 microM cyclopiazonic acid (CPA), an inhibitor of the Ca(2+)-transporting ATPases present in the sarcoplasmic/endoplasmic reticulum of animals and the endoplasmic reticulum of plants, in order to investigate its effect on the gravitropic response. Root growth was not significantly reduced by the applied dose of CPA, but the gravitropic response (curvature) was drastically inhibited. We hypothesize that the ER Ca(2+)-ATPase of statocytes is involved in transduction of the gravity stimulus and that CPA disturbs a cytosolic Ca2+ signal necessary for graviperception.  相似文献   

13.
We have reported that eucapnic intermittent hypoxia (E-IH) causes systemic hypertension, elevates plasma endothelin 1 (ET-1) levels, and augments vascular reactivity to ET-1 and that a nonspecific ET-1 receptor antagonist acutely lowers blood pressure in E-IH-exposed rats. However, the effect of chronic ET-1 receptor inhibition has not been evaluated, and the ET receptor subtype mediating the vascular effects has not been established. We hypothesized that E-IH causes systemic hypertension through the increased ET-1 activation of vascular ET type A (ET(A)) receptors. We found that mean arterial pressure (MAP) increased after 14 days of 7 h/day E-IH exposure (109 +/- 2 to 137 +/- 4 mmHg; P < 0.005) but did not change in sham-exposed rats. The ET(A) receptor antagonist BQ-123 (10 to 1,000 nmol/kg iv) acutely decreased MAP dose dependently in conscious E-IH but not sham rats, and continuous infusion of BQ-123 (100 nmol.kg(-1).day(-1) sc for 14 days) prevented E-IH-induced increases in MAP. ET-1-induced constriction was augmented in small mesenteric arteries from rats exposed 14 days to E-IH compared with those from sham rats. Constriction was blocked by the ET(A) receptor antagonist BQ-123 (10 microM) but not by the ET type B (ET(B)) receptor antagonist BQ-788 (100 microM). ET(A) receptor mRNA content was greater in renal medulla and coronary arteries from E-IH rats. ET(B) receptor mRNA was not different in any tissues examined, whereas ET-1 mRNA was increased in the heart and in the renal medulla. Thus augmented ET-1-dependent vasoconstriction via vascular ET(A) receptors appears to elevate blood pressure in E-IH-exposed rats.  相似文献   

14.
Intracellular Ca(2+) in Trypanosoma cruzi is mainly located in an acidic compartment named the acidocalcisome, which among other pumps and exchangers possesses a plasma membrane-type Ca(2+)-ATPase. Evidence for an endoplasmic reticulum-located Ca(2+) uptake has been more elusive and based on indirect results. Here we report the cloning and sequencing of a gene encoding a sarcoplasmic-endoplasmic reticulum-type Ca(2+)-ATPase from T. cruzi. The protein (TcSCA) predicted from the nucleotide sequence of the gene has 1006 amino acids and a molecular mass of 109.7 kDa. Several sequence motifs found in sarcoplasmic-endoplasmic reticulum-type Ca(2+)-ATPases were present in TcSCA. Expression of TcSCA in yeast mutants deficient in the Golgi and vacuolar Ca(2+) pumps (pmr1 pmc1 cnb 1) restored growth on EGTA. Membranes were isolated from the pmr1 pmc1 cnb1 mutant transformed with TcSCA, and it was found that the TcSCA polypeptide formed a Ca(2+)-dependent and hydroxylamine-sensitive (32)P-labeled phosphoprotein of 110 kDa in the presence of [gamma-(32)P]ATP. Cyclopiazonic acid, but not thapsigargin, blocked this phosphoprotein formation. Transgenic parasites expressing constructs of TcSCA with green fluorescent protein exhibited co-localization of TcSCA with the endoplasmic reticulum proteins BiP and calreticulin. An endoplasmic reticulum location was also found in amastigotes and trypomastigotes using a polyclonal antibody against a COOH-terminal region of the protein. The ability of TcSCA to restore growth of mutant pmr1 pmc1 cnb 1 on medium containing Mn(2+) suggests that TcSCA may also regulate Mn(2+) homeostasis by pumping Mn(2+) into the endoplasmic reticulum of T. cruzi.  相似文献   

15.
There is some controversy regarding whether vascular responses to endothelin are altered in hypercholesterolemia. Studies performed to date have been compromised by the use of endothelin antagonists at inappropriate concentrations. In the current study, we examine the role of endothelin-1 in hypercholesterolemic patients using lower, more selective doses of specific endothelin antagonists. Twenty-two patients with hypercholesterolemia (total plasma cholesterol > 6.0 mmol/l) and 17 healthy controls were recruited. Forearm vascular responses to endothelin-1 (5 pmol/min), the endothelin A antagonist BQ-123 (10 nmol/min), and the endothelin B antagonist BQ-788 (1 nmol/min) were obtained. Endothelin-1 caused a significant vasoconstriction in both hypercholesterolemic and control subjects, an effect that was not significantly different between the two groups (P = 0.784). BQ-123 caused a significant vasodilatation that was not significantly different between the two groups (P = 0.899). Similarly, responses to BQ-788 (P = 0.774) and mean plasma endothelin-1 levels were not different (control vs. hypercholesterolemia, 1.16 +/- 0.18 vs. 1.06 +/- 0.15 fmol/ml; P = 0.64). Responses to neither exogenous nor endogenous endothelin are influenced by plasma cholesterol levels in humans. It is thus unlikely that the endothelin system contributes to early vascular disease pathology in patients with hypercholesterolemia.  相似文献   

16.
Endoplasmic reticulum Ca(2+) signaling and calpains mediate renal cell death   总被引:17,自引:0,他引:17  
The goal of the current study was to determine the roles of ATP content, endoplasmic reticulum (ER) Ca(2+) stores, cytosolic free Ca(2+) (Ca(2+)(f)) and calpain activity in the signaling of rabbit renal proximal tubular (RPT) cell death (oncosis). Increasing concentrations (0.3-10 microM) of the mitochondrial inhibitor antimycin A produced rapid ATP depletion that correlated to a rapid and sustained increase in Ca(2+)(f), but not phospholipase C activation. The ER Ca(2+)-ATPase inhibitors thapsigargin (5 microM) or cyclopiazonic acid (100 microM) alone produced similar but transient increases in Ca(2+)(f). Pretreatment with thapsigargin prevented antimycin A-induced increases in Ca(2+)(f) and antimycin A pretreatment prevented thapsigargin-induced increases in Ca(2+)(f). Calpain activity increased in conjunction with ER Ca(2+) release. Pretreatment, but not post-treatment, with thapsigargin or cyclopiazonic acid prevented antimycin A-induced cell death. These data demonstrate that extensive ATP depletion signals oncosis through ER Ca(2+) release, a sustained increase in Ca(2+)(f) and calpain activation. Depletion of ER Ca(2+) stores prior to toxicant exposure prevents increases in Ca(2+)(f) and oncosis.  相似文献   

17.
Capacitative calcium entry in guinea pig gallbladder smooth muscle in vitro   总被引:4,自引:0,他引:4  
Quinn T  Molloy M  Smyth A  Baird AW 《Life sciences》2004,74(13):1659-1669
This study investigates the involvement of capacitative Ca2+ entry in excitation-contraction coupling in guinea pig gallbladder smooth muscle. Thapsigargin (0.1 nM-1 microM, a sarcoplasmic reticulum Ca(2+)-ATPase inhibitor) produced slowly developing sustained tonic contractions in guinea pig isolated gallbladder strips. All contractions approached 50% of the response to carbachol (10 microM) after 55 min. Contractile responses to thapsigargin (1 microM) were abolished in a Ca(2+)-free medium. Subsequent re-addition of Ca2+ (2.5 mM) produced a sustained tonic contraction (99 +/- 6% of the carbachol response). The contractile response to Ca2+ re-addition following incubation of tissues in a Ca(2+)-free bathing solution in the absence of thapsigargin was significantly less than in its presence (79 +/- 4 % vs 100 +/- 7 % of carbachol; p < 0.05). Contractile responses to Ca2+ re-addition following treatment with thapsigargin were attenuated by (a) the L-type voltage-operated Ca2+ channel antagonist, nifedipine (10 microM) and (b) the general inhibitor of Ca2+ entry channels including store-operated channels, SK&F96365 (50 microM and 100 microM). In separate experiments, responses to Ca2+ re-addition were essentially abolished by the tyrosine kinase inhibitor, genistein (100 microM). These results suggest that capacitative Ca2+ entry provides a source of activator Ca2+ for guinea pig gallbladder smooth muscle contraction. Contractile responses to Ca2+ re-addition following depletion of sarcoplasmic reticulum Ca2+ stores with thapsigargin, are mediated in part by Ca2+ entry through voltage-operated Ca2+ channels and by capacitative Ca2+ entry through store-operated Ca2+ channels which can be blocked by SK&F96365. Furthermore, capacitative Ca2+ entry in this tissue may be modulated by tyrosine kinase.  相似文献   

18.
The anorectic agent dexfenfluramine (dex) causes the development of primary pulmonary hypertension in susceptible patients by an unknown mechanism. We compared the effects of dex with those of its major metabolite, nordexfenfluamine (nordex), in the isolated perfused rat lung and in isolated rings of resistance pulmonary arteries. Nordex caused a dose-dependent and more intense vasoconstriction, which can be inhibited by the nonspecific 5-hydroxytryptamine type 2 (5-HT(2)) blocker ketanserin. Similarly a rise in cytosolic calcium concentration ([Ca(2+)](i)) in dispersed pulmonary artery smooth muscle cells (PASMCs) induced by nordex could be prevented by ketanserin. Unlike prior observations with dex, nordex did not inhibit K(+) current or cause depolarization in PASMCs. Removal of Ca(2+) from the tissue bath or addition of nifedipine (1 microM) reduced ring contraction to nordex by 60 +/- 9 and 63 +/- 4%, respectively. The addition of 2-aminoethoxydiphenyl borate (2-APB), a blocker of store-operated channels and the inositol 1,4,5-trisphosphate receptor, caused a dose-dependent decrease in the ring contraction elicited by nordex. The combination of 2-APB (10 microM) and nifedipine (1 microM) completely ablated the nordex contraction. Likewise the release of Ca(2+) from the sarcoplasmic reticulum by cyclopiazonic acid markedly reduced the nordex contraction while leaving the KCl contraction unchanged. We conclude that nordex may be responsible for much of the vasoconstriction stimulated by dex, through the activation of 5-HT(2) receptors and that the [Ca(2+)](i) increase in rat PASMCs caused by dex/nordex is due to both influx of extracellular Ca(2+) and release of Ca(2+) from the sarcoplasmic reticulum.  相似文献   

19.
The role of endothelin, PAF and thromboxane A2 in airway hyperreactivity (AHR) to carbachol induced by ovalbumin sensitization and challenge in Balb/c mice was investigated. Ovalbumin sensitization and challenge induced significant AHR to carbachol in actively sensitized and challenged mice. Treatment of these mice with the PAF antagonist CV-3988 (10 microg kg(-1), i.v.) completely abolished OVA-induced AHR to carbachol. Treatment of sensitized mice with the TxA2 antagonist L-654,664 (1 mg kg(-1), i.v.) partially blocked the induction of AHR in OVA-challenged mice. The intranasal administration of 50 pmol of the ET(A) receptor antagonist BQ-123 had no effect on the PIP but produced a significant reduction at the dose of 100 pmol. The intravenous administration of BQ-123 (100 pmol) reduced the PIP only at the highest doses of carbachol. The ET(B) receptor antagonist BQ-788 administered either via the intranasal or intravenous route had no effect on the PIP at the dose of 100 pmol. Na?ve mice treated with either U-44069 (25 or 100 microg kg(-1), i.v.), endothelin-1 (100 pmol, intranasally) or the ET(B) receptor agonist IRL-1620 (100 pmol, intranasally) showed a marked increase in airway reactivity to carbachol. These results suggest an important role for endothelin, PAF and thromboxane A2 in AHR in mice actively sensitized and challenged with ovalbumin.  相似文献   

20.
The effect of sarcoendoplasmic reticulum Ca(2+)-ATPase (SERCA) inhibition on the cytoplasmic Ca(2+) concentration ([Ca(2+)](i)) was studied in primary insulin-releasing pancreatic beta-cells isolated from mice, rats and human subjects as well as in clonal rat insulinoma INS-1 cells. In Ca(2+)-deficient medium the individual primary beta-cells reacted to the SERCA inhibitor cyclopiazonic acid (CPA) with a slow rise of [Ca(2+)](i) followed by an explosive transient elevation. The [Ca(2+)](i) transients were preferentially observed at low intracellular concentrations of the Ca(2+) indicator fura-2 and were unaffected by pre-treatment with 100 microM ryanodine. Whereas 20mM caffeine had no effect on basal [Ca(2+)](i) or the slow rise in response to CPA, it completely prevented the CPA-induced [Ca(2+)](i) transients as well as inositol 1,4,5-trisphosphate-mediated [Ca(2+)](i) transients in response to carbachol. In striking contrast to the primary beta-cells, caffeine readily mobilized intracellular Ca(2+) in INS-1 cells under identical conditions, and such mobilization was prevented by ryanodine pre-treatment. The results indicate that leakage of Ca(2+) from the endoplasmic reticulum after SERCA inhibition is feedback-accelerated by Ca(2+)-induced Ca(2+) release (CICR). In primary pancreatic beta-cells this CICR is due to activation of inositol 1,4,5-trisphosphate receptors. CICR by ryanodine receptor activation may be restricted to clonal beta-cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号