共查询到20条相似文献,搜索用时 15 毫秒
1.
We studied the effect of intact red blood cells on the exogenous H2O2-mediated damage as well as on the hyperoxia-induced injury of cultured endothelial cells. Red blood cells protected endothelial cells against H2O2-mediated injury efficiently, but had no effect on the hyperoxia-induced damage. Failure of red blood cells to protect endothelial cells against hyperoxia-induced injury was not due to hemolysis. Furthermore, hyperoxia-exposed red blood cells were still capable of protecting endothelial cells against H2O2-mediated damage. 相似文献
3.
Proteins are modified by reactive oxygen species, and oxidation of specific amino acid residues can impair their biological functions, leading to an alteration in cellular homeostasis. Oxidized proteins can be eliminated through either degradation or repair. Repair is limited to the reversion of a few modifications such as the reduction of methionine oxidation by the methionine sulfoxide reductase (Msr) system. However, accumulation of oxidized proteins occurs during aging, replicative senescence, or neurological disorders or after an oxidative stress, while Msr activity is impaired. In order to more precisely analyze the relationship between oxidative stress, protein oxidative damage, and MsrA, we stably overexpressed MsrA full-length cDNA in SV40 T antigen-immortalized WI-38 human fibroblasts. We report here that MsrA-overexpressing cells are more resistant than control cells to hydrogen peroxide-induced oxidative stress, but not to ultraviolet A irradiation. This MsrA-mediated resistance is accompanied by a decrease in intracellular reactive oxygen species and is partially abolished when cells are cultivated at suboptimal concentration of methionine. These results indicate that MsrA may play an important role in cellular defenses against oxidative stress, by catalytic removal of oxidant through the reduction of methionine sulfoxide, and in protection against death by limiting, at least in part, the accumulation of oxidative damage to proteins. 相似文献
4.
The production of reactive oxygen species (ROS) during oxidative stress may cause cellular injury. Interleukin-15 (IL-15) is one of the skeletal muscle secreted myokines, and there is no information that reported its anti-oxidative capability in skeletal muscle. The aim of this study therefore is to investigate the protective effects of myokine IL-15 against H 2O 2-mediated oxidative stress in C2C12 myoblasts. The results showed that IL-15 pre-incubation reduced the intracellular creatine kinase and lactate dehydrogenase activities, decreased the ROS overload, and protect the mitochondrial network via up-regulated mRNA expression levels of IL-15 and uncoupling protein 3. It also down-regulated the levels of IL-6 and p21 of the myoblasts compared to the cells treated only with H 2O 2. Meanwhile, apurinic/aprimidinic endonuclease 1 expression and the Akt signaling pathway were stimulated. These effects could contribute to the resumption of cell viability and act as protective mechanism. In conclusion, myokine IL-15 could be a novel endogenous regulator to control intracellular ROS production and attenuate oxidative stress in skeletal muscle cells. 相似文献
5.
Hydroxytyrosol (2-(3′,4′-dihydroxyphenyl)ethanol; HT), the most active ortho-diphenolic compound, present either in free or esterified form in extravirgin olive oil, is extensively metabolized in vivo mainly to O-methylated, O-sulfated and glucuronide metabolites. We investigated the capacity of three glucuronide metabolites of HT, 3′- O-β-d-glucuronide and 4′- O-β-d-glucuronide derivatives and 2-(3′,4′-dihydroxyphenyl)ethanol-1- O-β-d-glucuronide, in comparison with the parent compound, to inhibit H 2O 2 induced oxidative damage and cell death in LLC-PK1 cells, a porcine kidney epithelial cell line. H 2O 2 treatment exerted a toxic effect inducing cell death, interacting selectively within the pro-death extracellular-signal relate kinase (ERK 1/2) and the pro-survival Akt/PKB signaling pathways. It also produced direct oxidative damage initiating the membrane lipid peroxidation process. None of the tested glucuronides exhibited any protection against the loss in renal cell viability. They also failed to prevent the changes in the phosphorylation states of ERK and Akt, probably reflecting their inability to enter the cells, while HT was highly effective. Notably, pretreatment with glucuronides exerted a protective effect at the highest concentration tested against membrane oxidative damage, comparable to that of HT: the formation of malondialdehyde, fatty acid hydroperoxides and 7-ketocholesterol was significantly inhibited. 相似文献
6.
Background
Mycobacterium ulcerans is the causative agent of necrotizing skin ulcerations in distinctive geographical areas. M. ulcerans produces a macrolide toxin, mycolactone, which has been identified as an important virulence factor in ulcer formation. Mycolactone is cytotoxic to fibroblasts and adipocytes in vitro and has modulating activity on immune cell functions. The effect of mycolactone on keratinocytes has not been reported previously and the mechanism of mycolactone toxicity is presently unknown. Many other macrolide substances have cytotoxic and immunosuppressive activities and mediate some of their effects via production of reactive oxygen species (ROS). We have studied the effect of mycolactone in vitro on human keratinocytes—key cells in wound healing—and tested the hypothesis that the cytotoxic effect of mycolactone is mediated by ROS. Methodology/Principal FindingsThe effect of mycolactone on primary skin keratinocyte growth and cell numbers was investigated in serum free growth medium in the presence of different antioxidants. A concentration and time dependent reduction in keratinocyte cell numbers was observed after exposure to mycolactone. Several different antioxidants inhibited this effect partly. The ROS inhibiting substance deferoxamine, which acts via chelation of Fe 2+, completely prevented mycolactone mediated cytotoxicity. Conclusions/SignificanceThis study demonstrates that mycolactone mediated cytotoxicity can be inhibited by deferoxamine, suggesting a role of iron and ROS in mycolactone induced cytotoxicity of keratinocytes. The data provide a basis for the understanding of Buruli ulcer pathology and the development of improved therapies for this disease. 相似文献
7.
The protective effect of di-tert-butylhydroxylated flavonoids (chalcones and arylidenes) against minimally oxidized LDL (mO-LDL)-induced cytotoxicity was studied in cultured bovine aortic endothelial cells. Most of the tested compounds decreased aldehydes formation in medium containing mO-LDL, but their capacity to inhibit LDL oxidation in the cellular medium was not sufficient to totally reduce the cellular toxicity of mO-LDL. Most of the tested flavonoids improved the integrity of cells exposed to mO-LDL, whereas butylated hydroxytoluene was ineffective and quercetin worsened the toxicity of mO-LDL. Moreover these flavonoids induced an increase in GSH cellular levels and their protective effects might be because of their inability to reduce metal ion. Arylidene 6 substituted at position 7 by a hydroxyl group was the most potent compound. 相似文献
8.
Hydrogen-peroxide-resistant Chinese hamster fibroblasts, derived from the HA-1 cell line, were isolated following continuous culturing in the presence of progressively increasing concentrations of hydrogen peroxide. The hydrogen-peroxide-resistant phenotype has been stable for over 360 days following removal from H2O2 stress. These H2O2-resistant cell lines demonstrate increased resistance to hyperthermic cell killing mediated by continuous heating at 43 degrees C but not 45 degrees C. The relationship between mammalian cellular adaptation to oxidative stress mediated by H2O2 and resistance to 43 degrees C hyperthermia is discussed. 相似文献
9.
Objectives: Reactive oxygen species-mediated cell death contributes to the pathophysiology of cardiovascular disease and myocardial dysfunction. We recently showed that mitochondrial NADP +-dependent isocitrate dehydrogenase (IDH2) functions as an antioxidant and anti-apoptotic protein by supplying NADPH to antioxidant systems. Methods: In the present study, we demonstrated that H2O2-induced apoptosis and hypertrophy of H9c2 cardiomyoblasts was markedly exacerbated by small interfering RNA (siRNA) specific for IDH2. Results: Attenuated IDH2 expression resulted in the modulation of cellular and mitochondrial redox status, mitochondrial function, and cellular oxidative damage. MitoTEMPO, a mitochondria-targeted antioxidant, efficiently suppressed increased caspase-3 activity, increased cell size, and depletion of cellular GSH levels in IDH2 siRNA-transfected cells that were treated with H2O2. Discussion: These results indicated that the disruption of cellular redox balance might be responsible for the enhanced H2O2-induced apoptosis and hypertrophy of cultured cardiomyocytes by the attenuated IDH2 expression. 相似文献
10.
Infection of the human lymphocyte CEM cell line with the HIV-1 (human immunodeficiency virus-1, LAV-1 strain) results in cell death. A fluoroquinolone antibiotic, ofloxacin, protected the infected cells from HIV-1-mediated cytolysis. Other fluoroquinolones, e.g. ciprofloxacin, norfloxacin, and enoxacin, also protected the infected cells from HIV-1-mediated cytolysis. The d-isomer of ofloxacin (DR-3354) was about 50-fold less effective than the l-isomer (DR-3355). Almost none of the rescued cells had detectable HIV-antigens and they could be maintained for long periods in vitro without drugs. 相似文献
11.
Neisseria gonorrhoeae cells defective in the biosynthesis of the recA gene product are no more sensitive to hydrogen peroxide than wild-type cells. Although gonococci possess nearly 100-fold-greater catalase levels than Escherichia coli, they are more susceptible to hydrogen peroxide than this organism. The natural niche of gonococci undoubtedly results in exposure to oxidant stress; however, they do not demonstrate particularly efficient antioxidant defense systems. 相似文献
12.
Oxidation of arachidonic acid leads to the formation of highly reactive gamma-ketoaldehydes now termed isoketals. Isoketals react with proteins at a rate that far exceeds other well studied products of lipid peroxidation such as 4-hydroxynonenal and demonstrate a remarkable proclivity to crosslink these proteins. For these reasons, isoketals have the potential to significantly alter protein function and contribute to disease processes. This article reviews the chemistry of isoketal formation, of their adduction to proteins, and of their proclivity to crosslink proteins, as well as their effects on protein function, and their potential role in diseases associated with oxidative injury. 相似文献
13.
Antioxidant therapy has been shown to be beneficial in neurological disorders including Alzheimer's disease and cerebral ischemia. Glutamate-induced cytotoxicity in HT-4 neuronal cells has been previously demonstrated to be due to oxidative stress caused by depletion of cellular glutathione (GSH). The present study demonstrates that a wide variety of antioxidants inhibit glutamate-induced cytotoxicity in HT-4 neuronal cells. Low concentrations of alpha-tocopherol and its analogs were highly effective in protecting neuronal cells against cytotoxicity. Purified flavonoids and herbal extracts of Gingko biloba (EGb 761) and French maritime pine bark (Pycnogenol) were also effective. We have previously shown that pro-glutathione agents can spare GSH and protect cells from glutamate insult in a C6 glial cell model. The protective effects of nonthiol-based antioxidants tested in the HT-4 line were not mediated via GSH level modulation. In contrast, protective effects of thiol-based pro-glutathione agents alpha-lipoic acid (LA) and N-acetyl cysteine (NAC) corresponded with a sparing effect on GSH levels in glutamate-treated HT-4 cells. Glutamate-induced cytotoxicity in HT-4 cells is a useful model system for testing compounds or mixtures for antioxidant activity. 相似文献
14.
Various 2-amido docetaxel analogues were prepared and evaluated for their cytotoxicities. Among them, m-methoxy and m-chlorobenzoylamido analogues were most active but not superior to docetaxel and paclitaxel, and D-seco analogues inactive. Change of 2-benzoate to 2-benzamide may not improve their activities to drug-resistant cell lines. 相似文献
15.
The effect on acetaminophen-induced cytotoxicity of three calcium channel blocking agents-diltiazem, verapamil and gallopamil-was studied in primary cultures of rat hepatocytes and compared with the chelating agent EGTA. Using the measurement of cytosolic lactate dehydrogenase (LDH) as an index of cytotoxicity, it was demonstrated that a 1-hr pretreatment with calcium channel blocking agents protected cells against acetaminophen cytotoxicity, but were less effective than EGTA. These data suggest that influx of extracellular Ca 2+ into the cells could have a role in the genesis of hepatocyte injury by acetaminophen. 相似文献
16.
BackgroundHorseradish peroxidase (HRP) catalyzes H 2O 2 dismutation while undergoing heme inactivation. The mechanism underlying this process has not been fully elucidated. The effects of nitroxides, which protect metmyoglobin and methemoglobin against H 2O 2-induced inactivation, have been investigated. MethodsHRP reaction with H 2O 2 was studied by following H 2O 2 depletion, O 2 evolution and heme spectral changes. Nitroxide concentration was followed by EPR spectroscopy, and its reactions with the oxidized heme species were studied using stopped-flow. ResultsNitroxide protects HRP against H 2O 2-induced inactivation. The rate of H 2O 2 dismutation in the presence of nitroxide obeys zero-order kinetics and increases as [nitroxide] increases. Nitroxide acts catalytically since its oxidized form is readily reduced to the nitroxide mainly by H 2O 2. The nitroxide efficacy follows the order 2,2,6,6-tetramethyl-piperidine-N-oxyl (TPO) > 4-OH-TPO > 3-carbamoyl proxyl > 4-oxo-TPO, which correlates with the order of the rate constants of nitroxide reactions with compounds I, II, and III. ConclusionsNitroxide catalytically protects HRP against inactivation induced by H 2O 2 while modulating its catalase-like activity. The protective role of nitroxide at μM concentrations is attributed to its efficient oxidation by P940, which is the precursor of the inactivated form P670. Modeling the dismutation kinetics in the presence of nitroxide adequately fits the experimental data. In the absence of nitroxide the simulation fits the observed kinetics only if it does not include the formation of a Michaelis-Menten complex. General SignificanceNitroxides catalytically protect heme proteins against inactivation induced by H 2O 2 revealing an additional role played by nitroxide antioxidants in vivo. 相似文献
17.
Abstract The aim of this work was to clarify the effect of the position of the hydroxyl group on the antioxidant capacity of hydroxyferrocifen
by means of a chemical kinetic method. Propionylferrocene and benzoylferrocene condensed with 4-hydroxydiphenylketone, 3,4-dihydroxydiphenylketone,
and 4,4′-dihydroxydiphenylketone to form FP3, FP4, FB3, and FB4 with a single hydroxyl group and FP34, FP44, FB34, and FB44 with two hydroxyl groups. These hydroxyferrocifens were applied in Cu 2+/glutathione (GSH)-induced, hydroxyl radical (·OH)-induced, and 2,2′-azobis(2-amidinopropane hydrochloride) (AAPH)-induced
oxidation of DNA, and in trapping 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonate) cationic radical (ABTS +·). It was found that these hydroxyferrocifens acted as prooxidants in Cu 2+/GSH-induced oxidation of DNA and exhibited very weak effects on ·OH-induced oxidation of DNA. FP3, FP4, FB3, and FB4 can only retard the rate of AAPH-induced oxidation of DNA, whereas FP44, FB44, FB34, and FP34 can trap 11.9, 7.1, 6.2, and 4.9 radicals, respectively, in AAPH-induced oxidation of DNA. The ability to trap ABTS +· followed the order FB4 > FP44 > FB34 > FB44 > FP34. It was concluded that two hydroxyl groups at the para position of two benzene rings rather than at the ortho position in the same benzene ring were beneficial for hydroxyferrocifen to increase the antioxidant capacity. 相似文献
18.
The effect on acetaminophen-induced cytotoxicity of three calcium channel blocking agents--diltiazem, verapamil and gallopamil--was studied in primary cultures of rat hepatocytes and compared with the chelating agent EGTA. Using the measurement of cytosolic lactate dehydrogenase (LDH) as an index of cytotoxicity, it was demonstrated that a 1-hr pretreatment with calcium channel blocking agents protected cells against acetaminophen cytotoxicity, but were less effective than EGTA. These data suggest that influx of extracellular Ca2+ into the cells could have a role in the genesis of hepatocyte injury by acetaminophen. 相似文献
19.
We previously showed that cryopreservation of bull spermatozoa in egg yolk Tris extender (EYTG) significantly reduced the intracellular level of thiols. Other studies showed the beneficial effects of adding antioxidants to cryopreserved bull spermatozoa. These studies led us to investigate the effects of various thiols, an important class of antioxidants, on sperm motility of cryopreserved bull semen in a commonly used extender, EYTG. Sperm motility was analyzed by computer-assisted semen analysis (CASA). After thawing, a diluted pool of bull semen was incubated at 38.5 degrees C in airtight tubes with the following thiols for 6 hours: glutathione (GSH/GSSG), cysteine, N-acetyl-L-cysteine (NAC) and 2-mercaptoethanol in the presence or absence of oxidative stress. The oxidative stress was caused by adding H2O2 (100 microM) to diluted semen. Incubation of diluted bull semen in EYTG at 38.5 degrees C over a period of 6 h decreased sperm motility by approximately 9 fold from the start (72 +/- 3, mean +/- SEM, n=4) to the end (9 +/- 4, n=4) of the incubation. We found that all thiols to a concentration above 0.5 mM maintained high sperm motility for 6 h in the absence of an external source of oxidative stress (52 +/- 4, for 4 thiols). However, one mM of each thiol was required to efficiently protect sperm motility in the presence of 100 microM of H2O2 for 6 h. We also found that the GSH concentration in diluted semen was too low (microM) to adequately supply exogenous addition of 72 U/mL of glutathione peroxidase (GPx), an enzyme that detoxifies H2O2 and hydroperoxides using GSH as a cofactor. In fact, a better protection of sperm motility could be achieved with only 5 U/mL of GPx and 0.1 mM of GSH added to diluted semen. Our results also demonstrated that added GSSG (0.5 mM) in diluted semen was not regenerated efficiently to GSH over 6 h. The latter result indicated in the extender that the glutathione redox-cycle was deficient. Therefore, deleterious effects sperm motility after cryopreservation in EYTG can be counteracted by adding various thiols at mM concentration. 相似文献
20.
The H(2)O(2)-dependent reaction of lactoperoxidase (LPO) with sperm whale myoglobin (SwMb) or horse myoglobin (HoMb) produces LPO-Mb cross-linked species, in addition to LPO and SwMb homodimers. The HoMb products are a LPO(HoMb) dimer and LPO(HoMb)(2) trimer. Dityrosine cross-links are shown by their fluorescence to be present in the oligomeric products. Addition of H(2)O(2) to myoglobin (Mb), followed by catalase to quench excess H(2)O(2) before the addition of LPO, still yields LPO cross-linked products. LPO oligomerization therefore requires radical transfer from Mb to LPO. In contrast to native LPO, recombinant LPO undergoes little self-dimerization in the absence of Mb but occurs normally in its presence. Simultaneous addition of 3,5-dibromo-4-nitrosobenzenesulfonic acid (DBNBS) and LPO to activated Mb produces a spin-trapped radical electron paramagnetic resonance signal located primarily on LPO, confirming the radical transfer. Mutation of Tyr-103 or Tyr-151 in SwMb decreased cross-linking with LPO, but mutation of Tyr-146, Trp-7, or Trp-14 did not. However, because DBNBS-trapped LPO radicals were observed with all the mutants, DBNBS traps LPO radicals other than those involved in protein oligomerization. The results clearly establish that radical transfer occurs from Mb to LPO and suggest that intermolecularly transferred radicals may reside on residues other than those that are generated by intramolecular reactions. 相似文献
|