首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Cole SD  Schleif R 《Proteins》2012,80(5):1465-1475
An interaction between the dimerization domains and DNA binding domains of the dimeric AraC protein has previously been shown to facilitate repression of the Escherichia coli araBAD operon by AraC in the absence of arabinose. A new interaction between the domains of AraC in the presence of arabinose is reported here, the regulatory consequences of which are unknown. Evidence for the interaction is the following: the dissociation rate of arabinose-bound AraC from half-site DNA is considerably faster than that of free DNA binding domain, and the affinity of the dimerization domains for arabinose is increased when half-site DNA is bound. In addition, an increase in the fluorescence intensity of tryptophan residues located in the arabinose-bound dimerization domain is observed upon binding of half-site DNA to the DNA binding domains. Direct physical evidence of the new domain-domain interaction is demonstrated by chemical crosslinking and NMR experiments.  相似文献   

5.
The previously isolated hemiplegic, induction-negative, repression-positive mutants, H80R and Y82C, were found to be defective in the binding of arabinose. Randomization of other residues close to arabinose in the three-dimensional structure of AraC or that make strong interactions with arabinose yielded induction-negative, repression-positive mutants. The induction and repression properties of mutants obtained by randomizing individual residues of the N-terminal arm of AraC allowed identification of the domain with which that residue very likely makes its predominant interactions. Residues 8-14 of the arm appear to make their predominant interaction with the DNA-binding domain. Although the side-chain of residue 15 interacts directly with arabinose bound to the N-terminal dimerization domain, the properties of mutant F15L indicate that this mutation increases the affinity of the arm for the DNA-binding domain.  相似文献   

6.
7.
8.
9.
10.
Ghosh M  Schleif RF 《Proteins》2001,42(2):177-181
We examined the effects of the metabolic stability of random sequences appended to the C-terminus of the dimerization domain of the regulatory protein of the Escherichia coli arabinose operon, AraC. Genetic scoring utilized the trans dominant negative effect of the dimerization domain on the activity of intact AraC, and physical scoring used sodium dodecyl sulfate (SDS) gel electrophoresis. We confirmed previous results obtained with Arc and lambda repressors that C-terminal charged residues tend to be stabilizing and that hydrophobic residues are destabilizing. Additionally, we found that the provision of a single, charged C-terminal residue conferred significant stability that was independent of interior sequence. Hence, it appears that in the engineering of proteins, flexible tails may be freely added, with only the identity of the C-terminal amino acid being restricted. Proteins 2001;42:177-181.  相似文献   

11.
Deletion of the regulatory N-terminal arms of the AraC protein from its dimerization domain fragments increases the susceptibility of the dimerization domain to form a series of higher order polymers by indefinite self-association. We investigated how the normal presence of the arm inhibits this self-association. One possibility is that arms can act as an entropic bristles to interfere with the approach of other macromolecules, thereby decreasing collision frequencies. We examined the repulsive effect of flexible arms by measuring the rate of trypsin cleavage of a specially constructed ubiquitin-arm protein. Adding an arm to ubiquitin or increasing its length produced only a modest repulsive effect. This suggests that arms such as the N-terminal arm of AraC do not reduce self-association by entropic exclusion. We consequently tested the hypothesis that the arm on AraC reduces self-association by binding to the core of the dimerization domain even in the absence of arabinose. The behaviors of dimerization domain mutants containing deletions or alterations in the N-terminal arms substantiate this hypothesis. Apparently, interactions between the N-terminal arm and the dimerization domain core position the arm to interfere with the protein-protein contacts necessary for self-association.  相似文献   

12.
Intact AraC protein is poorly soluble and difficult to purify, whereas its dimerization domain is the opposite. Unexpectedly, the DNA binding domain of AraC proved also to be soluble in cells when overproduced and is easily purified to homogeneity. The DNA binding affinity of the DNA binding domain for its binding site could not be measured by electrophoretic mobility shift because of its rapid association and dissociation rates, but its affinity could be measured with a fluorescence assay and was found to have a dissociation constant of 1 x 10(-8)M in 100 mM KCl. The binding of monomers of the DNA binding domain to adjacent half-sites occurs without substantial positive or negative cooperativity. A simple analysis relates the DNA binding affinities of monomers of DNA binding domain and normal dimeric AraC protein.  相似文献   

13.
Synthetic biological systems often require multiple, independently inducible promoters in order to control the expression levels of several genes; however, cross talk between the promoters limits this ability. Here, we demonstrate the directed evolution of AraC to construct an arabinose-inducible (P(BAD)) system that is more compatible with IPTG (isopropyl-beta-D-1-thiogalactopyranoside) induction of a lactose-inducible (P(lac)) system. The constructed system is 10 times more sensitive to arabinose and tolerates IPTG significantly better than the wild type. Detailed studies indicate that the AraC dimerization domain and C terminus are important for the increased sensitivity of AraC to arabinose.  相似文献   

14.
Most members of the AraC/XylS family contain a conserved carboxy-terminal DNA binding domain and a less conserved amino-terminal domain involved in binding small-molecule effectors and dimerization. However, there is no evidence that Rns, a regulator of enterotoxigenic Escherichia coli virulence genes, responds to an effector ligand, and in this study we found that the amino-terminal domain of Rns does not form homodimers in vivo. Exposure of Rns to the chemical cross-linker glutaraldehyde revealed that the full-length protein is also a monomer in vitro. Nevertheless, deletion analysis of Rns demonstrated that the first 60 amino acids of the protein are essential for the activation and repression of Rns-regulated promoters in vivo. Amino-terminal truncation of Rns abolished DNA binding in vitro, and two randomly generated mutations, I14T and N16D, that independently abolished Rns autoregulation were isolated. Further analysis of these mutations revealed that they have disparate effects at other Rns-regulated promoters and suggest that they may be involved in an interaction with the carboxy-terminal domain of Rns. Thus, evolution may have preserved the amino terminus of Rns because it is essential for the regulator's activity even though it apparently lacks the two functions, dimerization and ligand binding, usually associated with the amino-terminal domains of AraC/XylS family members.  相似文献   

15.
16.
17.
The Escherichia coli disulfide isomerase, DsbC is a V-shaped homodimer with each monomer comprising a dimerization region that forms part of a putative peptide-binding pocket and a thioredoxin catalytic domain. Disulfide isomerases from prokaryotes and eukaryotes exhibit little sequence homology but display very similar structural organization with two thioredoxin domains facing each other on top of the dimerization/peptide-binding region. To aid the understanding of the mechanistic significance of thioredoxin domain dimerization and of the peptide-binding cleft of DsbC, we constructed a series of protein chimeras comprising unrelated protein dimerization domains fused to thioredoxin superfamily enzymes. Chimeras consisting of the dimerization domain and the alpha-helical linker of the bacterial proline cis/trans isomerase FkpA and the periplasmic oxidase DsbA gave rise to enzymes that catalyzed the folding of multidisulfide substrate proteins in vivo with comparable efficiency to E. coli DsbC. In addition, expression of FkpA-DsbAs conferred modest resistance to CuCl2, a phenotype that depends on disulfide bond isomerization. Selection for resistance to elevated CuCl2 concentrations led to the isolation of FkpA-DsbA mutants containing a single amino acid substitution that changed the active site of the DsbA domain from CPHC into CPYC, increasing the similarity to the DsbC active site (CGYC). Unlike DsbC, which is resistant to oxidation by DsbB-DsbA and does not normally catalyze disulfide bond formation under physiological conditions, the FkpA-DsbA chimeras functioned both as oxidases and isomerases. The engineering of these efficient artificial isomerases delineates the key features of catalysis of disulfide bond isomerization and enhances our understanding of its evolution.  相似文献   

18.
Alpha-L-arabinofuranosidase catalyses the hydrolysis of the alpha-1,2-, alpha-1,3-, and alpha-1,5-L-arabinofuranosidic bonds in L-arabinose-containing hemicelluloses such as arabinoxylan. AkAbf54 (the glycoside hydrolase family 54 alpha-L-arabinofuranosidase from Aspergillus kawachii) consists of two domains, a catalytic and an arabinose-binding domain. The latter has been named AkCBM42 [family 42 CBM (carbohydrate-binding module) of AkAbf54] because homologous domains are classified into CBM family 42. In the complex between AkAbf54 and arabinofuranosyl-alpha-1,2-xylobiose, the arabinose moiety occupies the binding pocket of AkCBM42, whereas the xylobiose moiety is exposed to the solvent. AkCBM42 was found to facilitate the hydrolysis of insoluble arabinoxylan, because mutants at the arabinose binding site exhibited markedly decreased activity. The results of binding assays and affinity gel electrophoresis showed that AkCBM42 interacts with arabinose-substituted, but not with unsubstituted, hemicelluloses. Isothermal titration calorimetry and frontal affinity chromatography analyses showed that the association constant of AkCBM42 with the arabinose moiety is approximately 10(3) M(-1). These results indicate that AkCBM42 binds the non-reducing-end arabinofuranosidic moiety of hemicellulose. To our knowledge, this is the first example of a CBM that can specifically recognize the side-chain monosaccharides of branched hemicelluloses.  相似文献   

19.
The Escherichia coli regulatory protein AraC regulates expression of ara genes in response to l ‐arabinose. In efforts to develop genetically encoded molecular reporters, we previously engineered an AraC variant that responds to the compound triacetic acid lactone (TAL). This variant (named “AraC‐TAL1”) was isolated by screening a library of AraC variants, in which five amino acid positions in the ligand‐binding pocket were simultaneously randomized. Screening was carried out through multiple rounds of alternating positive and negative fluorescence‐activated cell sorting. Here we show that changing the screening protocol results in the identification of different TAL‐responsive variants (nine new variants). Individual substituted residues within these variants were found to primarily act cooperatively toward the gene expression response. Finally, X‐ray diffraction was used to solve the crystal structure of the apo AraC‐TAL1 ligand‐binding domain. The resolved crystal structure confirms that this variant takes on a structure nearly identical to the apo wild‐type AraC ligand‐binding domain (root‐mean‐square deviation 0.93 Å), suggesting that AraC‐TAL1 behaves similar to wild‐type with regard to ligand recognition and gene regulation. Our results provide amino acid sequence–function data sets for training and validating AraC modeling studies, and contribute to our understanding of how to design new biosensors based on AraC.  相似文献   

20.
We report development of a method for the direct measurement of the interaction between the N-terminal arm and the remainder of the dimerization domain in the Escherichia coli AraC protein, the regulator of the l-arabinose operon. The interaction was measured using surface plasmon resonance to monitor the association between the immobilized peptide arm and the dimerization domain, truncated of its arm, in solution. As expected from genetic and physiological data, the interaction is strongly stimulated by l-arabinose and is insensitive to sugars like d-glucose or d-galactose. Alterations in the sequence of the arm which physiological experiments predict either to strengthen or weaken the arm produce the expected responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号