首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The heterogeneity of histidine decarboxylase from rat gastric mucosa was studied. The partially purified enzyme was fractionated by preparative isoelectric focusing on a flat-gel bed by using narrow pH-range carrier ampholytes and a short focusing time. The activity was resolved, with about 95% recovery, into three forms, designated I, II and III, with pI values of 5.90, 5.60 and 5.35 respectively. These three forms exhibited similar molecular weights, indicating that the forms were not the result of different degrees of polymerization. By preparative refocusing each form refocused as a single peak of enzyme activity with reproducible pI, but a high loss of activity occurred with repeated focusing. Forms I, II and III were purified by the combined use of preparative isoelectric focusing and gel chromatography and other fractionation methods. The active forms could be distinguished by electrophoresis and isoelectric focusing on polyacrylamide gels and displayed protein heterogeneity. These forms were found in the crude extract and in the partially purified preparations in the presence or absence of proteinase inhibitors. Form II had the highest specific activity, but all three forms had the same optimum pH and Km value for histidine.  相似文献   

2.
Multiple forms of myeloperoxidase from normal human neutrophilic granulocytes obtained from a single donor can be resolved by carboxymethyl (CM)-cellulose ion-exchange column chromatography into three forms (I, II, and III) designated in order of elution of adsorbed enzyme using a linear salt gradient. Selective solubilization of individual forms of the enzyme by detergent (form I) or high-ionic-strength procedures (forms II and III) suggested that these forms of the enzyme were compartmentalized differently. All three forms were purified by a combination of preferential extraction, manipulation of ionic strength, and ion-exchange and molecular sieve chromatography. Purified forms II and III had similar specific activities for a variety of substrates. Form I was less active toward several of these same substrates, most notably iodide, with a specific activity about one-half that of forms II and III. All forms had similar spectral properties characteristic of a type alpha heme. The amino acid compositions of the three forms were similar, yet significant differences were found in selected residues such as the charged amino acids. Native polyacrylamide gel electrophoresis resolved small differences in mobility between the forms which were consistent with the charge heterogeneity observed on CM-cellulose. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis data were consistent with the generally accepted subunit structure of two heavy chains and two light chains. All three forms contained a small-molecular-weight subunit of Mr 11,500. Form I contained a large subunit of Mr 63,000, while forms II and III contained a corresponding subunit of Mr approximately 57,500. We conclude that heterogeneity of human myeloperoxidase is accompanied by differences in cellular compartmentalization, enzymatic activity, and subunit structure.  相似文献   

3.
Proopiomelanocortin, the common glycoprotein precursor to adrenocorticotropin (ACTH) and beta-lipotropin (beta-LPH), is the most abundant protein synthesized in rat neurointermediate lobes. It represents 30% of the total amount of radioactive proteins obtained after a 1-h pulse incubation with [3H]phenylalanine. Several forms of this protein can be separated by a high-resolution two-dimensional gel electrophoresis technique. The three most abundant species which can be reproducibly characterized by their apparent molecular weights (Mr) and isoelectric points (pI) were called form I (Mr 34 000; pI 8.2), form II (Mr 36 000; pI 8.2), and form III (Mr 35 000; pI 7.3). Additional minor forms, representing together approximately 30% of the total forms I, II, and III combined, are also observed. They have very close molecular weights but differ by their isoelectric points. When glycosylation is prevented by tunicamycin, forms I and II are replaced by a new molecule with the same pI of 8.2 but a slightly lower Mr (32 000). This form is referred to as form T1. Similarly, form III is replaced by form T2 (Mr 33 000; pI 7.3). Forms T1 and T2 are supposed to be nonglycoslyated peptides. They were further characterized by microsequencing and peptide mapping. They both have the same N-terminal amino acid sequence with leucine residues in positions 3 and 11, and they both contain identical [3H]phenylalanine-labeled tryptic fragments, two of them corresponding to the sequences 1-8 of ACTH and 61-69 of beta-LPH. However, a limited digestion with the Staphylococcus aureus (V8 strain) protease generates a collection of peptides different for each form. These results suggest the presence of at least two different gene products corresponding to the major forms of proopiomelanocortin in the rat pars intermedia.  相似文献   

4.
Two forms (I and II) of alpha-D-mannosidase have been separated by ion-exchange chromatography on DEAE-cellulose from embryonic chicken liver. A third form (III), which is absent in embryos, was also separated from 4-day-old chickens. The optimum pH of form I is at pH 5.0. Form II is named "neutral" because it shows maximal activity at pH 6.5. The optimum pH of form III is 4.5. Forms I and III are heat-stable at 50 degrees C for 1 hr, whereas form II is very unstable under these conditions. Zn2+ and Mg2+ have been found to increase the alpha-D-mannosidase activity of forms I and II. In contrast, Co2+ increases mannosidase I activity and inhibits form II from 18-day-old embryos. alpha-Methyl-D-mannoside, N-acetyl-D-mannosamine and D-mannosamine were found to be inhibitors of both forms I and II. "Neutral" mannosidase was also inhibited by chloride. Competitive inhibition by D-mannose was also studied and Ki values are given.  相似文献   

5.
1. Two forms of phosphorylase kinase having mol. wt of 1,260,000 (form I) and 205,000 (form II) have been identified by gel filtration chromatography of rabbit liver crude extracts. 2. Form I was the majority when the homogenization buffer was supplemented with a mixture of proteinase inhibitors. This form has been purified through a protocol including ultracentrifugation, gel filtration and affinity chromatography on Sepharose-heparin. 3. Form II was purified by a combination of chromatographic procedures including ion exchange, gel filtration and affinity chromatography on Sepharose-Blue Dextran and Sepharose-histone. 4. Upon electrophoresis in the presence of sodium dodecyl sulfate two subunits of 69,000 and 44,000 were identified for this low molecular weight enzyme. Thus, a tetrameric structure comprising two subunits of each kind can be proposed. 5. Treatment of form I with either trypsin or chymotrypsin gave an active fragment having a molecular weight similar to that of form II. On the contrary, other dissociating treatments with salts, thiols and detergents failed in producing forms of lower molecular weight. 6. The similarities between proteolyzed forms I and II were stressed by their behavior in front of antibodies raised against the muscle isoenzyme of phosphorylase kinase. 7. The study of the effect of magnesium and fluoride ions on the activity of both forms showed an inhibitory effect of magnesium when its concentration exceeded that of ATP. 8. The inhibition could nevertheless be reverted by including 50 mM NaF in the reaction mixture. 9. Form I and form II could be distinguished by their pH dependence in the presence of an excess of magnesium ions over ATP, whereas the affinity for both substrates was not significantly different.  相似文献   

6.
Three forms of cathepsin H-like cysteine proteinase were purified from rat spleen by a method involving acid treatment and chromatography on pepstatin-Sepharose, Sephadex G-75, DEAE-Sephacel, CM-Toyopearl, and concanavalin A-Sepharose. The final preparations of these forms all migrated as single protein bands on polyacrylamide gel electrophoresis with and without sodium dodecyl sulfate (SDS). The molecular weights of the three forms were estimated to be 28,000 (form I), 26,000 (form II), and 22,000 (form III). The optimal pH was 6.5 for forms I and III and was 7.0 for form II with L-leucine 2-naphthylamide (Leu-NA) or with alpha-N-benzoyl-DL-arginine 2-naphthylamide (BANA). All of the forms consisted of two major species having isoelectric points of 7.1 and 6.5 on isoelectric focusing gels. They were all stable when incubated at pH values between 5.0 and 9.0 for 1 h at 22 degrees C. They were strongly inhibited by iodoacetic acid and E-64, but not by metal ions or pepstatin. Form III was not affected by leupeptin, chymostatin, antipain or elastatinal, which gave essentially complete inhibition of cathepsin B purified from rat spleen. Forms I and II were slightly inhibited by these compounds at the same concentrations. The properties of these forms were compared with those of the known enzymes cathepsin H and BANA-hydrolase.  相似文献   

7.
Multiple forms of ribonuclease II (EC 3.1.27.5) have been resolved from extracts of crude fractions of mouse liver by ion-exchange chromatography on phosphocellulose and gel permeation chromatography. The forms are designated 6S, 6L, 5S, 5L, 4S, 4L, 3S, 3L, 2, and 1 in increasing order of apparent cationic character. The forms fall into two series of apparent molecular weight. The small series increases from molecular weight equal to 9000 for form 1 to 14,000 for form 6S. The large series increases from molecular weight equal to 22,000 for form 2 to 44,000 for form 6L. All forms have pH-activity profiles with maxima near pH 7. Activity falls to no less than 30% of this maximum at pHs 5 and 8.5. Relative to the other forms, form 1 has a higher ratio of activity in the alkaline compared with acid pH range. Form 1 is found in the cytosolic, "light" particle, and "heavy" particle fractions. The other forms are largely restricted to the heavy particle fraction. In this fraction the proportion of total activity attributable to each form generally decreases in order from form 1 down to form 6. The results are accommodated by models in which one or more gene products give rise to multiple forms of ribonuclease II by processes involving dimerization and glycosylation.  相似文献   

8.
beta-D-Galactosidase has been purified to apparent homogeneity from rabbit spleen. The purification steps involved ammonium sulphate precipitation, DEAE-cellulose, concanavalin A-Sepharose, Sephadex G-200, and Sepharose 4B-(epsilon-aminocaproyl)-2-deoxy-beta-D-glucosylamine affinity chromatographies. In the DEAE-cellulose step, the beta-D-galactosidase was separated into two molecular forms, designated I and II, with similar pH optimum, Km, substrate specificity, and sensitivity to substrate analogues and other substances. Form I was purified 1,800-fold with a yield of about 2% of the total activity. This form is heat-labile, it has an acid optimal pH (4.0), an isoelectric point of 6.7 and a molecular weight of 75,000 daltons. Form II has an optimal pH of 3.6 and three different pI values (5.3, 5.7, and 6.7) whose relative proportions can be modified by treatment with neuraminidase. Form II appeared to be a multimeric form (IIA) of about 600,000 daltons at pH 4.0, which was reversibly dissociated to an oligomeric form (IIB) with an apparent molecular weight of 120,000 at neutral pH values. Both IIA and IIB were purified separately and showed an acid pH optimum and an heterogeneous pI (from 4.6 to 7.2). The dissociation of IIA into IIB can be generated spontaneously, but is increased by the presence of urea in the elution buffer, suggesting that both are aggregates of a common subunit.  相似文献   

9.
Previous studies in our laboratory have shown that rat heart glycogen phosphorylase (1,4-alpha-D-glucan: orthophosphate alpha-D-glucosyltransferase, EC 2.4.1.1) separates into two forms upon ion-exchange chromatography. Both forms could be shown to have the same subunit Mr and to incorporate one molecule of phosphate per subunit. The studies reported here were done to check whether both forms are native isoenzymes and, further, which form might represent the heart-specific phosphorylase. Firstly, the iso-electric points of the purified enzymes are compared with those associated with phosphorylase activity in crude extracts from rat heart. Two out of four major bands coincided with the bands of purified phosphorylase Ib and IIb (isoelectric points: 5.5 and 6.25), indicating apparent identity. Secondly, antibodies to rat skeletal muscle phosphorylase reacted with rat heart phosphorylase I, whereas phosphorylase II was neither inhibited nor precipitated by the antibody. Thirdly, peptide maps obtained after proteolytic digestion of SDS-denatured phosphorylase I and II showed different patterns. In addition to the kinetic differences between these two forms reported earlier, phosphorylase IIa was inhibited by glucose 6-phosphate, whereas phosphorylase Ia was not. These results suggest that phosphorylase II is a heart-specific isoenzyme which is presumably encoded by a different gene.  相似文献   

10.
Cystatin, the protein inhibitor of cysteine proteinases from chicken egg white was purified by a new method. The two major forms with pI 6.5 (Peak I) and 5.6 (Peak II) were separated. Molecular masses of both forms are approx. 12700 Da as determined by gel chromatography; Form A from Peak I has a molecular mass of 12191 Da as calculated from its amino-acid sequence. The complete amino-acid sequence of Form A was determined by automated solid-phase Edman degradation of the whole inhibitor and its cyanogen bromide fragments. It contains 108 amino-acid residues. Form B from Peak II represents an elongation of Form A by 8 amino-acid residues at the N-terminus. Cystatin contains four cysteine residues, presumably forming two disulphide bridges. Comparison of the amino-acid sequences and near ultraviolet circular dichroism spectra of stefin, the cysteine proteinase inhibitor from human granulocytes, and cystatin shows that the two proteins are entirely different. According to the primary structures, probably neither proteinase inhibitor is involved in a thiol-disulphide exchange mechanism in the interaction with its target enzyme.  相似文献   

11.
In the course of chick neural retina development, several forms of DNA ligase have been found. During embryonic life the major DNA ligase activity that is found at seven days is form I (8.2 S) which gradually decreases and disappears by 14 days after incubation, whereas form II (6.2 S) increases to reach a maximum at the time of hatching. Form II then decreases reaching a constant level by Day 7 and from that time new slow sedimenting forms also appear (forms III and IV). Form III(2 S) is first detectable at seven days and increases up to 90 days, whereas form IV (3 S) is the only form detected in the 17- and 18-month-old and also in the 5-year-old birds. These four forms display different elution patterns on phosphocellulose column chromatography. They also differ in their thermal stability and sensitivity towards N-ethylmaleimide.  相似文献   

12.
Changes of DNA Ligases in Chick Neural Retina as a Function of Age   总被引:2,自引:0,他引:2  
In the course of chick neural retina development, several forms of DNA ligase have been found. During embryonic life the major DNA ligase activity that is found at seven days is form I (8.2 S) which gradually decreases and disappears by 14 days after incubation, whereas form II (6.2 S) increases to reach a maximum at the time of hatching. Form II then decreases reaching a constant level by Day 7 and from that time new slow sedimenting forms also appear (forms III and IV). Form III (2 S) is first detectable at seven days and increases up to 90 days, whereas form IV (3 S) is the only form detected in the 17- and 18-month-old and also in the 5-year-old birds. These four forms display different elution patterns on phosphocellulose column chromatography. They also differ in their thermal stability and sensitivity towards N-ethylmaleimide.  相似文献   

13.
Ornithine decarboxylase (ODC) isolated from a variety of tissues has been separated, using DEAE ion-exchange chromatography, into multiple peaks of activity that appear to be related to control of this enzyme stability. Reports of these charge isoforms in current literature are generally unclear as to whether these represent a covalent posttranslational modification or merely an alteration in structural conformation or association. In this study we investigated the relationship of this form separation to the degree of enzyme polymerization, interaction with other proteins and buffer components, and the multiple isoelectric forms of this enzyme noted in denaturing concentrations of urea. High-performance chromatography techniques were used to demonstrate that two of the major enzyme forms, ODC I and II, are really monomers of the enzyme, while minor peaks of activity frequently observed to elute after ODC II contain various dimeric enzyme states. Pyridoxal 5'-phosphate (0.05 mM) added to isolated enzyme preparations composed of I and II monomers induced the formation of I and II dimers as well as a mixed I-II dimer. All three dimer forms were observed to be natural components of freshly isolated crude cell homogenates. The charge distinction between the monomer forms I and II was found to be maintained during ion-exchange chromatography in the presence of 8 M urea, and the enzyme isoforms demonstrated distinct bands on isoelectric focusing gels run in the presence of 9 M urea. Thus, although some of the multiple ornithine decarboxylase forms identified by ion-exchange chromatography of crude mammalian cell homogenates are related to enzyme conformation, the two major forms are distinctly charged protein states that can be visualized using two-dimensional gel electrophoresis of highly purified samples.  相似文献   

14.
The beta-glucuronidase activity of Drosophila melanogaster exists as two chromatographically separable forms, both of which are glycoproteins. Form I is membrane-bound in vivo, has a pI of 8.0-8.5, and can be irreversibly inactivated either by incubation at 55 degrees C for 20 min or by incubation at 37 degrees C in the presence of 6 M urea. Form II exists both membrane-bound as well as membrane-free, has a pI of 4.5, and is resistant to the conditions which inactivate form I. The two forms are similar in Km and Vmax for the artificial substrate 4-methylumbelliferyl-beta-D-glucuronide and both forms are precipitated by antibody to form II. A natural genetic variant, beta-GluL1, completely lacks from I beta-glucuronidase. This variant behaves in a co-dominant fashion for the determination of the presence of form I and has been localized to the extreme distal portion of chromosome 3R. Other data indicate that at least one genetic determinant for the amount of form II is also localized to this portion of chromosome 3R.  相似文献   

15.
The cell surface heparan sulfate produced by primary cultures of 12-day mouse embryo cells has been found to consist of at least two forms, designated I and II. These two forms can be distinguished by both ion-exchange chromatography on DEAE-cellulose and eletrophoresis at pH 1. However, no difference in molecular weight is observed when the two forms are compared by gel filtration on Bio-Gel A-15m. These data suggest that the two forms differ in their content of sulfate residues. Multiple types of cell surface heparan sulfate are also produced by primary cell cultures derived from various mouse embryonic organs, including heart, lung, kidney and liver. Type II, the minor form produced by the primary embryonic mouse cells, behaves on ion-exchange chromatography and electrophoresis at pH 1 as the heparan sulfate produced by several mouse cell lines that exhibit contact inhibition of growth. The predominant form, type I, behaves on ion-exchange chromatography as the heparan sulfate derived from either DNA or RNA virus-transformed cell lines which lack growth control. The cell surface heparan sulfate produced by chick myoblasts, human fibroblasts, and bovine endothelial cells behave as single types on ion-exchange chromatography. These data suggest that an individual cell type produces a single type of cell surface heparan sulfate and provide support for a model in which cell-cell interactions are mediated, in part, by the quantity and, possibly, arrangement of sulfate residues within the heparan sulfate polymer.  相似文献   

16.
A protein fraction with fatty acid binding activity has been isolated from mammary tissue from lactating rats by a process involving DEAE-cellulose ion-exchange chromatography, heat treatment, CM-cellulose ion-exchange chromatography and finally ammonium sulphate precipitation. The purified fraction migrated as a single band on SDS/polyacrylamide-gel electrophoresis with an apparent molecular mass of 14400. However, when this protein fraction was electrophoresed under non-dissociating conditions, two species were observed in a 4:1 ratio. The two components were separated using h.p.l.c. Both bind fatty acids and appear to have similar amino acid compositions although exhibiting different pI values of 4.8 and 4.9. The mammary fatty acid binding proteins appear to be very similar to the fatty acid binding protein isolated from rat heart based on the electrophoretic mobilities and amino acid composition. The major mammary form (pI 4.9) has been partially sequenced and the amino acid sequences obtained can be aligned with 67 residues of the revised rat heart amino acid sequence [Heuckeroth, Birkenmeier, Levin & Gordon (1987) J. Biol. Chem. 262, 9709-9717]. Both mammary species also showed immunochemical identity to rat heart fatty acid binding protein when tested with an anti-serum raised against the heart protein. Anti-sera raised against the minor mammary form (pI 4.8) specifically precipitated this form under non-denaturing conditions but both forms after they had been denatured. Quantitative immunoassays using the anti-(heart fatty acid binding protein) serum showed that concentrations of the fatty acid binding proteins present in mammary cytosols increase during lactation and increase further after feeding a high-fat diet.  相似文献   

17.
As relatively little information is available on the properties of aspartate aminotransferase from photosynthetic tissue, isolation and characterization of the two major electrophoretically distinct forms of this enzyme from seedling oat leaf homogenates were undertaken. These two forms are designated I for the more anionic form and II for the less anionic form. Form I, 80 to 90% of the total activity, has been purified to a specific activity of 120 mumol/min/mg of protein (1100-fold) and is estimated to be 90 to 95% homogeneous, as judged by analytical polyacrylamide gel electrophoresis. Form II, 10 to 20% of the total activity, has been purified to a specific activity of approximately 6 mumol/min/mg of protein (300-fold). Both forms exhibit optimal activity at pH 7.5. Michaelis constants do not differ greatly between forms I and II and are similar to those reported for the pig heart cytosolic enzyme as well as aspartate aminotransferase from other plant sources. A molecular weight of 130,000 for the purified aspartate aminotransferase I was estimated by sedimentation equilibrium centrifugation; molecular weights of the two forms are similar as estimated by sucrose density gradient centrifugation. No activation by pyridoxal phosphate has been observed during purification.  相似文献   

18.
The rat liver soluble catechol-O-methyltransferase (EC 2.1.1.6.) has been purified utilizing a combination of conventional chromatography and HPLC. The purified enzyme has a molecular mass of 25 kDa, a pI of 5.1, and exists in two forms which differ in the nature of their intramolecular disulfide bonds. This difference causes these two protein forms to behave differently in reversed phase chromatography.  相似文献   

19.
Protein carboxymethylase (EC 2.1.1.24) from cytosol of bovine brain was found to exist as two apparent isozymes that could be separated by chromatography on DEAE-cellulose at pH 8.O. Rechromatography of the two forms, designated PCM I and PCM II, indicated that they are not interconvertible. Both enzymes have a molecular weight of 24,300 by sodium dodecyl sulfate-polyacryl-amide gel electrophoresis. PCM I consists mainly of one isoelectric form, pI 6.5, whereas PCM II resolves into two forms of pI 5.6 and 5.7. The relative amounts of PCM I and PCM II show a marked tissue dependence. Brain has approximately twice as much PCM I as II, whereas liver contains only the type II enzyme. The two enzymes were found to have similar substrate specificities when tested with five different methyl-accepting proteins. Synapsin I, a basic protein associated with synaptic vesicles, was found to be an excellent methyl-accepting protein with regard to its Km (1.2 μM), but it exhibited a low stoichiome-try of methyl incorporation.  相似文献   

20.
Two colipases, named colipase I and colipase II, have been isolated from extracts of human pancreatic gland. The two proteins can be separated by ion-exchange chromatography, isoelectric focusing and slab technique gel electrophoresis. The result of this study indicates that the two colipases, both of which are glycoproteins, have identical amino acid compositions. The pI values were found to be 6.1 for colipase I and 5.8 for colipase II. The different colipases have also been found in human pancreatic juice. The N-terminal amino acid was glycine for both colipase I (gland) and colipase II (juice). Only minor differences were found between the colipases isolated from gland and juice, and colipase I from gland alone was examined in detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号