首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In our previous works, a mutation in the RAD57 gene was shown to induce the plasmid DNA double-strand gap (DSG) repair via a special recombinational repair mechanism: homology-dependent ligation responsible for reuniting disrupted plasmid ends without reconstructing the sequence lost because of the DSG. In this work, the role of the RAD55 gene in the plasmid DNA DSG repair was studied. A cold-sensitiverad55-3 mutation markedly decreased the precision of plasmid DNA DSG repair under conditions of restrictive temperature (23°C): only 5–7% of plasmids can repair DSG, whereas under permissive conditions (36°C), DSGs were repaired in approximately 50% of the cells. In the cold-sensitive mutation rad57-1, the proportion of plasmids in which DSGs were repaired was nearly the same under both permissive and restrictive conditions (5–10%). The results indicate that a disturbance in the function of the RAD55 gene, as in the RAD57 gene, leads to a drastic increase in the contribution of homology-dependent ligation to the repair of double-strand DNA breaks.  相似文献   

2.
Cell-free extracts of the yeast Saccharomyces cerevisiae can be used to catalyse the recombination of bacterial plasmids in vitro. Recombination between homologous plasmids containing different mutations in the gene encoding tetracycline resistance is detectable by the appearance of tetracycline-resistance following transformation of the recombinant plasmid DNA into Escherichia coli DH5. This in vitro recombination system was used to determine the involvement of eukaryotic topo-isomerases in genetic recombination. Cell-free extracts prepared from a temperature-sensitive topo-isomerase II mutant (top2-1) of S. cerevisiae yielded tetracycline-resistant recombinants, when the recombination assays were performed at both a non-restrictive temperature (30°C) and the restrictive temperature (37°C). This result was obtained whether or not ATP was present in the recombination buffer. Extracts from a non-conditional topo-isomerase I mutant (top1-1) of S. cerevisiae yielded tetracycline-resistant recombinants, as did a temperature-sensitive double mutant (top2-1/top1-8) at the restrictive temperature. The results of this study indicate that neither topo-isomerase I nor topo-isomerase II was involved in the recombinational activity examined.  相似文献   

3.
Summary By mutagenizing an E. coli strain carrying an amber suppressor supD - (or su I +), we isolated a mutant whose amber suppressor activity was now temperature-sensitive. The mutant suppressor gene was named sup-126, which was found to be cotransduced with the his gene by phage P1vir at the frequency of ca. 20%. At 30° C it suppresses many amber mutations of E. coli, phage T4, and phage . At 42° C, however, it can suppress none of over 30 amber mutations tested so far. The sup-126 mutation is unambiguous and stable enough to be useful for making production of an amber protein temperature-sensitive.  相似文献   

4.
Summary Psoralen photoreaction with DNA produces interstrand crosslinks, which require the activity of excision and recombinational pathways for repair. Yeast replicating plasmids, carrying the HIS3, TRP1, and URA3 genes, were photoreacted with psoralen in vitro and transfected into Saccharomyces cerevisiae cells. Repair was assayed as the relative transformation efficiency. A recombination-deficient rad52 strain was the least efficient in the repair of psoralen-damaged plasmids; excision repair-deficient rad1 and rad3 strains had repair efficiencies intermediate between those of rad52 and RAD cells. The level of repair also depended on the conditions of transformant selection; repair was more efficient in medium lacking tryptophan than in medium from which either histidine or uracil was omitted. The plasmid repair differential between these selective media was greatest in rad1 cells, and depended on RAD52. Plasmid-chromosome recombination was stimulated by psoralen damage, and required RAD52 function. Chromosome to plasmid gene conversion was seen most frequently at the HIS3 locus. In RAD and rad3 cells, the majority of the conversions were associated with plasmid integration, while in rad1 cells most were non-crossover events. Plasmid to chromosome gene conversion was observed most frequently at the TRP1 locus, and was accompanied by plasmid loss.  相似文献   

5.
Summary Nitrogen mustard (HN2) mutagenesis of a plasmid-borne copy of the Saccharomyces cerevisiae SUP4-o gene was examined in a repair-proficient yeast strain and isogenic derivatives defective for excision (radl) or DNA double-strand break (rad52) repair. The excision repair deficiency sensitized the cells to killing by HN2 and abolished mutation induction. Inactivation of RAD52 had no influence on the lethality of HN2 treatment but diminished the induced mutation frequency by 50% at all doses tested. DNA sequence analysis of HN2-induced SUP4-o mutations suggested that RAD52 contributed to the production of basepair substitutions at G·C sites. The rad52 defect appeared to alter the distribution of G·C A·T transitions in SUP4-o relative to the distribution for the wild-type strain. This difference did not seem to be due to an effect of RAD52 on the relative fractions of HN2-induced transitions at localized (flanked by A·T pairs) or contiguous (flanked by at least one G·C pair) G·C sites but instead to an influence on the strand specificity of HN2 mutagenesis. In the repair-proficient strain, the transitions showed a small bias for sites having the guanine on the transcribed strand and this preference was eliminated by inactivation of RAD52.  相似文献   

6.
When pheromone-pretreated cells of an inducible a strain of Saccharomyces cerevisiae carrying the inducible gene saa1 were incubated in a growth medium at 28°C, induction of sexual agglutinability began after a 10 min lag period. If the cells were incubated at 38°C during the lag period, no induction occurred even after incubation at 28°C. Contrary to this, if the cells were incubated at 28°C during the lag period, almost complete induction occurred, even after transfer to 38°C. Temperature shift experiments revealed that 5 min incubation at 28°C was necessary for the initiation of the temperature-sensitive period and further 5 min incubation for the completion of the period. The temperature-sensitive period was sensitive to phenylmethylsulfonyl fluoride.Non-common abbreviations PBS 10-2 M phosphate buffer solution, pH 5.5 - PMSF phenylmethylsulfonyl fluoride  相似文献   

7.
Summary A mutant of the moss, Physcomitrella patens, was isolated which was temperature-sensitive for the production of gametophores. At 17° C this mutant, designated ove 409, produced normal leafy shoots. At 24° C ove 409 produced many abnormal buds characteristic of bud-over-producing (ove) mutants. ove 409 produced an intermediate phenotype at 21° C. The cytokinin levels in the culture medium of this mutant, the wild-type and a cytokinin overproducing mutant, oveA78, were measured by combined gas chromatography mass spectrometry at the permissive and nonpermissive temperatures. Production of cytokinin was found to be affected by temperature in all strains; the change in phenotype of ove 409 correlated with the production of N6-(2-isopentenyl) adenine. Complementation analysis was performed using this mutant by protoplast fusion. ove 409 was found to be in the same complementation group as a previously isolated ove mutant, oveA78.  相似文献   

8.
Summary We have analysed the effect of temperature on both developing and adult eye cell clones homozygous forshi ST139, a temperature-sensitive mutant ofDrosophila melanogaster. The mutant gene, autonomous in its cellular expression, causes structural modifications of ommatidial cells when adult clones of cells are exposed to the restrictive temperature (29°C) for several days. However, the mutant phenotype reverses to normal within 4 days at the permissive temperature (20°C). The results of pulse, shift-up and shift-down experiments show that the temperaturesensitive period for developing compound eye cells is from the late second instar up to the early pupa. Cytodifferentiation of compound eye cells is blocked by restrictive temperature treatment during this period, whereas cell proliferation does not seem to be directly affected. These results are discussed with regard to the other known aspects of the phenotype observed in mutant individuals.  相似文献   

9.
Summary. The temperature-sensitive conditional met1 Chlamydomonas reinhardtii mutant arrests in metaphase at the restrictive temperature (33°C) with an intact spindle and high cell division kinase levels. In this study, met1 was investigated with respect to changes in the microtubule and centrin-based cytoskeletons after arrest at 33°C. Immunofluorescence microscopy revealed that, initially on arrest, the microtubule spindle and centrin-based cytoskeleton appeared as previously reported for wild-type metaphase cells; crescent-shaped spindles were seen with two brightly labelled centrin foci at each spindle pole in the basal body region at the cell surface. Observation of met1 held at the restrictive temperature reveals spindles can detach from one spindle pole and chromosomes eventually detach from the spindles. Moreover, a pseudo-anaphase event of spindle and nucleus elongation occurs in the absence of chromosome separation. Electron microscopy confirms that cytokinesis is initiated, the nuclei maintain a crescent shape but are distended and multiple pyrenoids are detected, suggesting chloroplast division also continues. Interestingly, prolamellar-like bodies usually present in etioplasts of dark-grown plants appear at the nuclear envelope. These results are discussed in relation to the coordination of division events in Chlamydomonas reinhardtii and the loss of viability in arrested cells of this mutant.Correspondence and reprints: Cell Biology Group, School of Plant Science, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia.  相似文献   

10.
Summary Three amber mutants of Escherichia coli, dnaG9, dnaG24 and dnaG26, affected in the structural gene (dnaG) for primase have been isolated from a parental strain carrying a temperature-sensitive amber suppressor (supF-Ts6). These mutants grow at 30° C but not at 42° C since primase is essential for growth and is synthesized only at low temperatures. Chimeric plasmids carrying dnaG + but no other chromosomal genes of E. coli complemented the amber mutations, and the plasmid carrying a part of dnaG lost the complementing activity. Beside, plasmids carrying a dnaG amber mutation complemented a temperature-sensitive dnaG mutation only in the presence of amber suppressor. One of the amber mutation, dnaG24 which maps proximal to the NH2-terminus of the dnaG gene, exerted a polar effect on the synthesis of RNA polymerase factor in E. coli.  相似文献   

11.
Summary A temperature-sensitive cell autonomous mutation ofDrosophila, l(1)ts-1126 (1–16±2), that affects the rate of cell division is described. When mutant animals are exposed to the restrictive temperature of 29°C during the first and second larval stages, the growth rate of the larvae is retarded. A delay in pupariation occurs during which larvae reach their full size, and the resulting flies are normal. When mutant animals are exposed to restrictive temperature during the third larval stage, growth is also retarded but no delay in pupariation occurs, and the resulting flies are reduced in size. Their small size is due in part to a decreased number of cells and in part to a smaller size of the cells.X-ray induced, marked, homozygousl(1)ts-1126 clones in an otherwise normal animal, are smaller in animals exposed to pulses of restrictive temperature when compared to clones in animals kept at permissive temperature of 22°C. Clone size decreases as pulse length increases. Clones on the wing blade induced 24 h after oviposition are smaller than clones induced at 48 h in animals grown at restrictive temperature. This result is interpreted as an inability of the slower dividingl(1)ts-1126 cells to survive when in competition with wildtype cells. The distribution of survivingl(1)ts-1126 clones in gynandromorphs grown at restrictive temperature supports this conclusion.  相似文献   

12.
H. Y. Fan  H. L. Klein 《Genetics》1994,137(4):945-956
The hpr1Δ3 mutant of Saccharomyces cerevisiae is temperature-sensitive for growth at 37° and has a 1000-fold increase in deletion of tandem direct repeats. The hyperrecombination phenotype, measured by deletion of a leu2 direct repeat, is partially dependent on the RAD1 and RAD52 gene products, but mutations in these RAD genes do not suppress the temperature-sensitive growth phenotype. Extragenic suppressors of the temperature-sensitive growth have been isolated and characterized. The 14 soh (suppressor of hpr1) mutants recovered represent eight complementation groups, with both dominant and recessive soh alleles. Some of the soh mutants suppress hpr1 hyperrecombination and are distinct from the rad mutants that suppress hpr1 hyperrecombination. Comparisons between the SOH genes and the RAD genes are presented as well as the requirement of RAD genes for the Soh phenotypes. Double soh mutants have been analyzed and reveal three classes of interactions: epistatic suppression of hpr1 hyperrecombination, synergistic suppression of hpr1 hyperrecombination and synthetic lethality. The SOH1 gene has been cloned and sequenced. The null allele is 10-fold increased for recombination as measured by deletion of a leu2 direct repeat.  相似文献   

13.
In the accompanying paper we demonstrated that endonuclease III-sensitive sites in theMAT andHML loci ofSaccharomyces cerevisiae are repaired by the Nucleotide Excision Repair (NER) pathway. In the current report we investigated the repair of endonuclease III sites, 6-4 photoproducts and cyclobutane pyrimidine dimers (CPDs) in arad14-2 point mutant and in arad14 deletion mutant. TheRAD14 gene is the yeast homologue of the human gene that complements the defect in cells from xeroderma pigmentosum (XP) patients belonging to complementation group A. In the point mutant we observed normal repair of endonuclease III sites (i.e. as wild type), but no removal of CPDs at theMAT andHML loci. Similar experiments were undertaken using the recently createdrad14 deletion mutant. Here, neither endonuclease III sites nor CPDs were repaired inMAT a orHMR a. Thus the point mutant appears to produce a gene product that permits the repair of endonuclease III sites, but prevents the repair of CPDs. Previously it was found that, in the genome overall, repair of 6-4 photoproducts was less impaired than repair of CPDs in the point mutant. The deletion mutant repairs neither CPDs nor 6-4 photoproducts in the genome overall. This finding is consistent with the RAD14 protein being involved in lesion recognition in yeast. A logical interpretation is that therad14-2 point mutant produces a modified protein that enables the cell to repair endonuclease III sites and 6-4 photoproducts much more efficiently than CPDs. This modified protein may aid studies designed to elucidate the role of the RAD14 protein in lesion recognition.  相似文献   

14.
Summary The temperature-sensitive mutation in Bacillus subtilis 168-134ts, a conditional lethal DNA initiation mutant, was transferred to the minicell producing strain, CU 403 div IV-B1, to study he relationship of DNA synthesis to cell division. Markers in the combined mutant were verified by transduction. DNA replication kinetics, genome location by autoradiography, and clonal analysis of cell division patterns during spore outgrowths were investigated. Growth of the double mutant at the restrictive temperature results in an impressive reduction of the percentage cell length covered by DNA grain clusters (60.2% at 30° C compared to 8.6% after 2 h at 45° C). The probability of a minicell producing division in double mutant clones is essentially the same at 30° C and during the initial 2–3 h growth at 45° C at which time lysis begins. Residual division at 45° C is attributable to processes initiated at 30° C. The CU 403 div IV-B1, 134ts, double mutant divides about 25% as frequently relative to growth as do wild type CU 403 clones when incubated at permissive temperature. This is approximately 15% greater division suppression than previously found in the CU 403 div IV-B1 mutant strain, and is presumably due to interactions of the mutant gene products both of which affect DNA.  相似文献   

15.
Summary A class of ompA mutants of Escherichia coli, exhibiting temperature-sensitive resistance towards phages using the OmpA protein as receptor, was analysed. The mutants produce detectable levels of the protein at 42°C but not at 30°C (Manning and Reeves 1976). They were found to have a deletion (one isolate) or insertions (three isolates) upstream of the coding part of the ompA gene. Several previously characterized mutants possessing insertions or a deletion in the non-translated 5 area of the gene also exhibited a similar temperature-sensitive phage resistance. This cold-sensitive phenotype is explained in terms of the recent discovery that the stability of ompA mRNA is regulated by the rate of cell growth (Nilsson et al. 1984).  相似文献   

16.
Summary The mutant T44() of Escherichia coli K12, grown in the presence of adenine, develops an increased tolerance to streptomycin. In cultures grown on streptomycin, the ts character (tif) may temporarily be suppressed but, on further transfer, both the temperature-sensitive phenotype and streptomycin tolerance disappear. In a cell-free system, the relative efficiency of translation of MS2 and poly U messenger RNAs was, respectively, 75 and 50% lower in extracts from cultures grown at 37° with adenine than in extracts from 30° cultures. Similar results were obtained when adenine was added in vitro to an extract from a culture grown at 37° in the absence of adenine, using MS2 RNA as messenger. Moreover, the 37° extracts showed a much lower misincorporation of isoleucine into polyphenylalanine in the poly U system. In addition, the Mg++ concentration required for optimal translational activity was higher for the 37° than for the 30° extracts. Extracts from a culture grown in L medium at 37° or from a tif -/F tif + merodiploid grown at 37° with adenine behaved similarly to that from the 30° culture when poly U was used as messenger RNA. It is suggested that the tif + gene product may play a regulatory role in ribosomal function and the pleiotropic nature of the tif-1 mutation could be due to impairment of translational activity augmented by elevated temperature or by adenine.  相似文献   

17.
Summary Replication of the non-conjugative plasmids ColE1, ColE2 and ColE3 has been examined in a number of DNA polymerase I-deficient strains, two of which contain the amber mutationpolA1 along with either of two temperature-sensitivesupF amber suppressors. These latter two strains produce reduced amounts of DNA polymerase I polymerizing activity of similar, if not identical properties to that produced bypolA+ strains. Our results indicate that the ColE plasmids require different amounts of DNA polymerase I for stable plasmid maintenance. Moreover whereas all three plasmids are maintained in a strain defective in the 53 exonuclease activity of DNA polymerase I, ColE2 and ColE3 are not stably maintained between 30° and 43° in a number of DNA polymerase I-deficient strains that are temperature-sensitive for ColE1 replication.  相似文献   

18.
A yeast strain was constructed that had a disruption of the chromosomal RAD3 gene and carried a series of centromeric plasmids with defined mutations in this gene. Using this isogenic collection, we examined sensitivity to UV radiation, spontaneous and UV radiation-induced mutagenesis, and mitotic recombination. Several alleles resulted in a marked increase in UV sensitivity. Most of these alleles were found to carry mutations located in consensus motifs for DNA helicases. Other alleles caused a modest or no increase in UV sensitivity and carried mutations in regions of the Rad3 polypeptide that are apparently not conserved. This correlation suggests that the DNA helicase activity of Rad3 protein is required for nucleotide excision repair of DNA. Some rad3 alleles conferred a marked increase in the frequency of spontaneous mutagenesis, including nonsuppressor reversion of the lys2-1 ochre mutation. These alleles also showed a good correlation with conserved DNA helicase domains, suggesting that the Rad3 DNA helicase also plays a role in the fidelity of DNA synthesis or postreplicative mismatch correction. Several rad3 mutator alleles also resulted in increased levels of mitotic recombination. Increased spontaneous mutagenesis and mitotic recombination are characteristic features of the Rem- phenotype. However, in contrast to the prototypic Rem- phenotype, the rad3 mutator alleles identified in this study did not confer inviability in the presence of mutations in the RAD50 or RAD52 gene required for strand break repair of DNA.  相似文献   

19.
20.
Summary This study demonstrates that endocytosis in the oocyte of Drosophila melanogaster is reversibly blocked at the stage of pit formation by the temperature-sensitive, single-gene mutant, shibire ts1. Uptake of horseradish peroxidase conjugated with wheat-germ agglutinin was observed to be normal in mutant oocytes at 19°C, but was blocked at 29°C. After 10 min at 29°C, there was a build-up of coated pits along invaginations of the plasma membrane. Also, the endosomal compartment consisting of tubules, bulbs, and small yolk spheres, disappeared. Lowering the temperature to 19°C after 10 min at 29°C released a synchronized wave of endocytosis into a cytoplasm cleared of uptake-related organelles. By observing this synchronized wave after exposure to 19°C for varying durations, we determined that endocytosis proceeds as follows: coated pits/vesiclestubulessmall yolk spheresmature yolk spheres. The observations suggest that these organelles transform one into another within this sequence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号