首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have investigated whether a raft heterogeneity exists in human monocyte-derived macrophages and fibroblasts and whether these microdomains are modulated by lipid efflux. Triton X-100 (Triton) or Lubrol WX (Lubrol) detergent-resistant membranes from cholesterol-loaded monocytes were associated with the following findings: (i) Lubrol-DRM contained most of the cellular cholesterol and at least 75% of Triton-detergent-resistant membranes. (ii) 'Lubrol rafts', defined by their solubility in Triton but insolubility in Lubrol, were enriched in unsaturated phosphatidylcholine and showed a lower cholesterol to choline-phospholipid ratio compared to Triton rafts. (iii) CD14 and CD55 were recovered in Triton- and Lubrol-detergent-resistant membranes, whereas CD11b was found exclusively in Triton DRM. ABCA1 implicated in apo AI-mediated lipid efflux and CDC42 were partially localized in Lubrol- but not in Triton-detergent-resistant membranes. (iv) Apo AI preferentially depleted cholesterol and choline-phospholipids from Lubrol rafts, whereas HDL3 additionally decreased the cholesterol content of Triton rafts. In fibroblasts, neither ABCA1 nor CDC42 was found in Lubrol rafts, and both apo AI and HDL3 reduced the lipid content in Lubrol- as well as in Triton-detergent-resistant membranes. In summary, we provide evidence for the existence of compositionally distinct membrane microdomains in human cells and their modulation by apo AI/ABCA1-dependent and HDL3-mediated lipid efflux.  相似文献   

2.
3.
Abstract: Time courses of the activation-inactivation sequence in rat midbrain tryptophan hydroxylase after preincubation with calcium, ATP + MgCl2, or sulfhydryl reagents and after freezing and thawing suggest that the activated enzyme is more vulnerable to loss of activity. The sequence induced by calcium was prevented by the protease inhibitor leupeptin, and an accelerated decline in activity after activation by ATP + MgCl2 was reduced greatly by increasing levels of tetrahydrobiopterin (BH4) cofactor. The effects of calcium and ATP + MgCl2 were additive, which suggests independent mechanisms. The findings suggest that time courses of enzyme activation and inactivation processes may offer a useful way to study the influence of a range of effectors on tryptophan hydroxylase function.  相似文献   

4.
Abstract: Using a radioligand binding assay, we examined ionic modulation and G protein coupling of neuropeptide FF(NPFF) receptors in membranes of rat brain and spinal cord. We found that NaCl (but not KCl or LiCl) and MgCl2 increased specific 125I-YLFQPQRFamide (125I-Y8Fa) binding to NPFF receptors in both tissues in a dose-dependent manner, with optimal conditions being 60 m M NaCl and 1 m M MgCl2. Guanine nucleotides dose-dependently inhibited specific 125I-Y8Fa binding to rat brain and spinal cord membranes with maximal effects of 64 ± 6 and 71 ± 2%, respectively. The order of potency was nonhydrolyzable GTP analogues > GTP GDP > GMP, ATP. The guanine nucleotide inhibition was observed in the absence and presence of NaCl and MgCl2. The mechanism of inhibition in spinal cord membranes appeared to be a reduction in the number of NPFF receptors; in one experiment, control KD and Bmax values were 0.068 n M and 7.2 fmol/mg of protein, respectively, and with 0.1 μ M guanylylimidodiphosphate the respective values were 0.081 n M and 4.9 fmol/mg, a 32% reduction in receptor number. Similar results were obtained with guanosine 5'-0-(3-thiotriphosphate). Our data suggest that 125I-Y8Fa binding sites in rat CNS are G protein-coupled NPFF receptors regulated by GTP and cations.  相似文献   

5.
Abstract: Brain membranes contain several protein kinases, all of which appear to play a role in the regulation of neuronal functioning. These membranes also contain numerous (phospho) proteins. It has been proposed that the degree of phosphorylation of some of these proteins may affect neuronal membrane properties. In a series of previous reports we showed that ACTH1-24 inhibits the endogenous phosphorylation of several synaptosomal plasmamembrane (SPM) proteins including the B-50 protein. Although we have speculated that the degree of phosphorylation of B-50 may be important in regulating the turnover of membrane (poly)-phosphoinositides, the exact nature of the interaction between ACTH1-24 and B-50/B-50 protein kinase is unknown. The purpose of the present study was to determine whether treatment of SPM with ACTH1-24 will lead to a specific release of proteins from SPM. We found that ACTH1-24 specifically releases a 41,000 Mr protein from rat brain SPM. Although we are not certain about the biological significance of the release of this polypeptide, it is of sufficient interest for further research in view of the lack of success of finding binding of labeled ACTH to brain membranes.  相似文献   

6.
In a plastid-free assay, Mg-chelatase from pea ( Pisum sativum L. cv. Spring) and cucumber ( Cucumis sativus L. cv. Sumter) chloroplasts is inhibited to equal extents by the mercurial reagents. p -chloromercuribenzoate (PCMB) and p -chloromercuribenzene sulfonate (PCMBS). However, in intact chloroplasts PCMB inhibits Mg-chelatase fourfold more strongly than does PCMBS. Since PCMBS cannot penetrate membranes as readily as PCMB, Mg-chelatase may be localized interior to the inner chloroplast envelope. When Mg-chelatase is assayed with photosynthetically generated ATP, the presence of an external ATP trap does not inhibit activity, suggesting that the enzyme is not located in the interenvelope space. None of the components of Mg-chelatase are integral membrane proteins: Mg-chelatase activity is readily solubilized by washing the total chloroplast membranes in buffers of low MgCl2 content. This precludes localization by purifying individual thylakoid and envelope membranes which requires low MgCl2 concentrations.  相似文献   

7.
SYNOPSIS. The effect of osmotic pressure, different electrolytes and organic compounds on cyst formation in Acanthamoeba palestinensis has been tested. The optimal osmolarity for encystment was similar to that of the growth medium. Iso-osmotic solutions of NaCl, KCl, MgCl2, CaCl2, glycine and sucrose led to maximum cyst formation. The involvement of various agents in the induction of encystment is discussed.  相似文献   

8.
Amylase activity extracted from tulip ( Tulipa gesneriana L. cv. Apeldoorn) bulbs that had been stored for 6 weeks at 4°C was resolved to 3 peaks by anion-exchange chromatography on diethylaminoethyl-Sephacel. These 3 amylases exhibited different relative mobilities during non-denaturing polyacrylamide gel electrophoresis (PAGE). The most abundant amylase form (amylase I) was purified to apparent homogeneity using hydrophobic interaction chromatography, gel filtration and chromatofocusing. The apparent molecular mass of the purified amylase was estimated to be 51 kDa by sodium dodecyl sulfate-PAGE and 45 kDa by gel filtration chromatography. The purified amylase was determined to be an endoamylase (EC 3.2.1.1) based on substrate specificity and end-product analysis. The enzyme had a pH optimum of 6.0 and a temperature optimum of 55°C. The apparent Km value with soluble starch (potato) was 1.28 mg ml−1. The presence of Ca2+ increased the activity and thermal stability of the enzyme. The presence of dithiothreitol enhanced the activity, while β -mercaptoethanol and reduced glutathione had no significant effect. When pre-incubated in the absence of the substrate, N-ethylmaleimide and 5,5'-dithiobis-(2-nitrobenzoic acid) partially inhibited the enzyme. α -cyclodextrins or β -cyclodextrins had no effect on enzyme activity up to 10 m M . In addition to CaCl2, CoCl2 slightly enhanced activity, while MgCl2 and MnCl2 had no significant effect at a concentration of 2 m M . ZnCl2, CuSO4, AgNO3 and EDTA partially inhibited enzyme activity, while AgNO3 and HgCl2 completely inhibited it at 2.0 m M .  相似文献   

9.
Cleared maize ( Zea mays L. cv. LG 11) root homogenates were prepared and layered on the top of sucrose step gradients (10, 35 and 45%). The ATP- and pyrophosphate (PPi)-dependent proton-pumping activities were recovered almost completely at the 10%/35% interface, corresponding to the microsomal fraction (Golgi, tonoplast and endoplasmic reticulum). The PPi-dependent proton pump was characterized by the fluorescence quenching of quenching of quinacrine. The pH optimum was 7 to 8. The H+-PPase was Mg2+-dependent and the Km for PPi (in the presence of 3 m M MgSO4) was 28 μ M . The pump was electrogenic, K+-dependent and a permeant anion was necessary to dissipate the membrane potential (NO3= I >Br > Cl). No activity was detected in the presence of electroneutral proton inonophores or, when valinomycin was added, with electrogenic ionophores. The H+-PPase was insensitive to vanadate, oligomycin and molybdate. -Diethylstilbestrol (DES) and N,N'-dicyclohexylcarbodiimide (DCCD) were strongly inhibitory at 100 μ M .  相似文献   

10.
Microdomains in the plasma membrane (PM) have been proposedto be involved in many important cellular events in plant cells.To understand the role of PM microdomains in plant cold acclimation,we isolated the microdomains as detergent-resistant plasma membranefractions (DRMs) from Arabidopsis seedlings and compared lipidand protein compositions before and after cold acclimation.The DRM was enriched in sterols and glucocerebrosides, and theproportion of free sterols in the DRM increased after cold acclimation.The protein-to-lipid ratio in the DRM was greater than thatin the total PM fraction. The protein amount recovered in DRMsdecreased gradually during cold acclimation. Cold acclimationfurther resulted in quantitative changes in DRM protein profiles.Subsequent mass spectrometry and Western blot analyses revealedthat P-type H+-ATPases, aquaporins and endocytosis-related proteinsincreased and, conversely, tubulins, actins and V-type H+-ATPasesubunits decreased in DRMs during cold acclimation. Functionalcategorization of cold-responsive proteins in DRMs suggeststhat plant PM microdomains function as platforms of membranetransport, membrane trafficking and cytoskeleton interaction.These comprehensive changes in microdomains may be associatedwith cold acclimation of Arabidopsis.  相似文献   

11.
Abstract: When synaptosomes from rat brain were incubated with S -adenosylmethionine (10−3 M ), noradrenaline uptake and KCI-stimulated release were decreased. These effects were dependent on MgCl2, temperature, and incubation time. We have investigated the enzymatic methylation of phosphatidylethanolamine to give phosphatidylcholine.  相似文献   

12.
Abstract: Amyloid β-peptides (Aβ) may alter the neuronal membrane lipid environment by changing fluidity and inducing free radical lipid peroxidation. The effects of Aβ1–40 and Aβ25–35 on the fluidity of lipids adjacent to proteins (annular fluidity), bulk lipid fluidity, and lipid peroxidation were determined in rat synaptic plasma membranes (SPM). A fluorescent method based on radiationless energy transfer from tryptophan of SPM proteins to pyrene and pyrene monomer-eximer formation was used to determine SPM annular fluidity and bulk fluidity, respectively. Lipid peroxidation was determined by the thiobarbituric acid assay. Annular fluidity and bulk fluidity of SPM were increased significantly ( p ≤ 0.02) by Aβ1–40. Similar effects on fluidity were observed for Aβ25–35 ( p ≤ 0.002). Increased fluidity was associated with lipid peroxidation. Both Aβ peptides significantly increased ( p ≤ 0.006) the amount of malondialdehyde in SPM. The addition of a water-soluble analogue of vitamin E (Trolox) inhibited effects of Aβ on lipid peroxidation and fluidity in SPM. The fluidizing action of Aβ peptides on SPM may be due to the induction of lipid peroxidation by those peptides. Aβ-induced changes in neuronal function, such as ion flux and enzyme activity, that have been reported previously may result from the combined effects of lipid peroxidation and increased membrane fluidity.  相似文献   

13.
A β-glucan synthetase was isolated from a membrane fraction of the crayfish parasitic fungus Aphanomyces astaci Schikora, strain Si. [14C]-UDP-glucose was incorporated linearly for about 1 h at 30°C into an acid insoluble product. The apparent Km for UDP-glucose was found to be approximately 4.5 m M and the apparent Ki for UDP, a competitive inhibitor of the reaction, was 1 m M . The acid insoluble product obtained after incubating this glucan synthetase with[14C]-UDP-glucose was partially characterized by glucanase treatment. This product mainly consisted of β-1,3-linked glucosyl units. Synthetase activity was not stimulated by MgCl2, but cellobiose as well as GTP and EDTA in combination or ATP alone enhanced enzyme activity. A high proportion of the A. astaci synthetase was probably already activated during preparation and not accessible to further stimulation by nucleotide additions as found for glucan synthetase of Saccharomyces cerevisiae and Candida albicans. No synthetase activity or any factors affecting this enzyme was present in the cytosol. An exudate prepared from the cuticle of the crayfish host, did not inhibit glucan synthetase activity in vitro.  相似文献   

14.
15.
A comparative study was made of the effects of high concentrations of NaCl, KCl and MgCl2 on two electron transport reactions of thylakoids isolated from a mesophyte, Pisum sativum and a halophyte, Aster tripolium . The rate of photosystem I mediated electron transport from reduced N, N, N', N'-tetramethyl- p -phenylenediamine (TMPD) to methyl viologen was determined polarographically, and photosystem II mediated electron flow from water to 2,6-dichlorophenolindophenol (DCPIP) was monitored spectrophotometrically. The response of photosystem II to increasing in vitro salt concentrations was similar for thylakoids isolated from both A. tripolium and P. sativum , but differences in the response of photosystem I to salinity changes were observed for the two species. Increasing NaCl, KCl and MgCl2 concentrations produced similar patterns of response of photosystem I activity in P. sativum thylakoids, whilst for A. tripolium KCl induced a completely different response pattern compared to NaCl and MgCl2. The salinity of the culture medium in which A. tripolium was grown also had an effect on both the absolute in vitro activities of photosystems I and II and their response to changes in salt concentration of the reaction media.  相似文献   

16.
Root elongation in wheat seedlings ( Triticum aestivum L. cv. Atlas 66) was inhibited by micromolar activities of SeO42–. SeO42– inhibition was enhanced by supplementation of the rooting medium with CaCl2, MgCl2, SrCl2, or the reduction of pH. These solute treatments, as well as the addition of tris (ethylenediamine)cobalt3+, enhanced the uptake of Se by the roots. The results are interpreted to reflect an elevated PM-surface activity of SeO42– caused by solute-induced reductions of plasma membrane (PM) surface negativity. (PM-surface electrical potential is sometimes measured electrophoretically as the zeta potential.) This study complements an extensive literature documenting the suitability of an electrostatic model (Gouy-Chapman-Stern), based almost entirely upon experiments with cations rather than anions. The close correspondence among uptake, intoxication, and model-computed SeO42– activity at the PM surface adds credibility to the model and its evaluated parameters. The model may be useful for the interpretation of other plant-anion interactions, and phosphate and sulphate nutrition in acidic soils are considered as examples.  相似文献   

17.
Abstract— Activation of nerve elements in vivo and in vitro is associated with an increased rate of choline uptake by a Na+-dependent high affinity transport system. Following the methodology of B arker (1976), rat cortical synaptosomes were depolarized (37°C, 10min) by 25mM-KCl in the presence of CaCl2 (1 mM) or other divalent cations. After reisolation by centrifugation, the rate of 3H-choline uptake (1.25μM) was measured by Millipore filtration. KCl treatment alone failed to accelerate the rate of uptake in the reisolated synaptosomes. CaCl2, BaC12 or SrCl2 (but not MgCl2 or MnCl2) were necessary (1 mM) to observe the KCl induced acceleration. Moreover, RbCl, but not LiCl or CsCl, also produced the calcium-dependent rate enhancement in the reisolated synaptosomes. The conditions mediating the enhanced rate of choline uptake correlated strongly with those associated with neurotransmitter release. To test this possibility, synaptosomal acetylcholine content was measured in response to the various salt treatments. Treatment with KCI (25 mM) and CaCl2 (1 mM), but not KCl alone, reduced the synaptosomal acetylcholine content from 154 to 113pmol/mg protein. The respective rates of choline uptake increased about 60%. The increased rate was reversed by incubation with 50 μM-choline followed by synaptosome reisolation. This procedure also normalized the acetylcholine content. In summary, the rate of choline uptake by the high affinity choline uptake system is inversely related to the synaptosomal acetylcholine content.  相似文献   

18.
Membrane-bound MgATPase activity from roots of young sugar beet ( Beta vulgaris L. cv. Monohill) was investigated in a membrane fraction purified by partition in an aqueous polymer two-phase system. After two steps of "washing" with fresh bottom phase (rich in dextran), the polyethylene glycol rich top phase (U3) was practically free of mitochondrial membranes (cytochrome oxidase), and the remaining MgATPase activity showed high substrate specificity for ATP. An optimum for the MgATPase activity was found at pH 7. The activation by Na+ or K+ was strongest on the acid side without any observable shift in pH optimum. Oligomycin had no effect, but vanadate strongly inhibited the U3 MgATPase and the K+ activation was lost. The complex activation pattern achieved by varying the Na+/K+ ratio at constant total concentration was interpreted as a synergistic (Na++ K+)-activation. The U3 fraction MgATP-ase activity showed a 4-fold increase in the presence of 0.01% Triton X-100 implying that the MgATPase activity is located in vesicles of which 75% or more are sealed with the ATP binding site on the inside. Comparison with the properties of plasma membrane. ATPases from other plants indicated that the U3 fraction MgATPase was mainly of plasma membrane origin.  相似文献   

19.
Among 30 plant species examined, the PPi-phosphofructokinase (EC 2.7.1.90) was found in leaves of 21 plants. Some of the plants exhibit no activity of ATP-dependent phosphofructokinase but display only activity of PPi-phosphofructokinase. A partly purified preparation of PPi-phosphofructokinase with specific activity of 8.4 Hmol (mg protein)−1 min−1 was obtained from Sanseviera trifasciata leaves. The enzyme is restricted to the cytoplasm, it exhibits pronounced substrate specifity, requires Mg2+ ions, is inhibited by AMP, PEP, methylenediphosphonate and stabilized by mercaptoethanol. At pH 7.8 with 1.5 m M MgCl2 the following KM values were observed: pyrophosphate, 0.58 m M ; fructose 6-phosphate, 0.8 m M . The KM values for substrates of reverse reaction (pH 7.3; 2 m M MgCl2) are of the same order of magnitude: 0.83 m M for fructose 1,6-diphosphate, and 0.14 m M for orthophosphate. The molecular weight of the studied enzyme is about 125 000 dalton as estimated by gel filtration.  相似文献   

20.
The biological functions of prion protein (PrPC) and its possible interaction with other specific molecular membrane partners remain largely unknown. The aim of this study is to gain information on the molecular environment of PrPC by analyzing the lipid and protein composition of a PrPC-enriched membrane subfraction, called prion domain, PrD . This domain was obtained by immunoprecipitation of detergent-resistant microdomains (DRM) of rat cerebellar granule cells under conditions designed to preserve lipid-mediated membrane organization. The electrophoretic pattern of PrD , after staining with Coomassie blue, showed the enrichment of some protein bands in comparison with DRM. μLiquid cromatography-electrospray ionization-mass spectrometry (μLC-ESI-MS)/MS analysis showed that Thy-1 and different types of myosin were strongly enriched in PrD and, in a lesser extent, also OBCAM, LSAMP and tubulin, present altogether in a single band. Experiments using the chemical cross-linker BS3 suggested the existence of an interaction between PrPC and neural cell adhesion molecule (NCAM). Concerning lipids, the comparison between PrD and DRM showed a similar phospholipid/sphingolipid ratio, a phospholipid/cholesterol ratio doubled, and a strong decrease of plasmenilethanolamine (19.7 ± 3.5% vs. 38.3 ± 1.2%). In conclusion, the peculiar lipid composition and in particular the presence of proteins involved in synaptic plasticity, cell adhesion, cytoskeleton regulation and signalling, suggest an important physiological role in neurons of Prion Domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号