首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
S Iuchi  E C Lin 《Journal of bacteriology》1992,174(12):3972-3980
In Escherichia coli, the expression of a group of operons involved in aerobic metabolism is regulated by a two-component signal transduction system in which the arcB gene specifies the membrane sensor protein and the arcA gene specifies the cytoplasmic regulator protein. ArcB is a large protein belonging to a subclass of sensors that have both a transmitter domain (on the N-terminal side) and a receiver domain (on the C-terminal side). In this study, we explored the essential structural features of ArcB by using mutant analysis. The conserved His-292 in the transmitter domain is indispensable, indicating that this residue is the autophosphorylation site, as shown for other homologous sensor proteins. Compression of the range of respiratory control resulting from deletion of the receiver domain and the importance of the conserved Asp-533 and Asp-576 therein suggest that the domain has a kinetic regulatory role in ArcB. There is no evidence that the receiver domain enhances the specificity of signal transduction by ArcB. The defective phenotype of all arcB mutants was corrected by the presence of the wild-type gene. We also showed that the expression of the gene itself is not under respiratory regulation.  相似文献   

2.
3.
Signal transduction in biological systems typically involves receptor proteins that possess an extracytosolic sensory domain connected to a cytosolic catalytic domain. Relatively little is known about the mechanism by which the signal is transmitted from the sensory site to the catalytic site. At least in the case of Tar (methyl-accepting chemotaxis protein for sensing aspartate) of Escherichia coli, vertical piston-like displacements of one transmembrane segment relative to the other within the monomer induced by ligand binding has been shown to modulate the catalytic activity of the cytosolic domain. The ArcB sensor kinase of E. coli is a transmembrane protein without a significant periplasmic domain. Here, we explore how the signal is conveyed to the catalytic site by analyzing the property of various Tar-ArcB hybrids. Our results suggest that, in contrast to the piston-like displacement that operates in Tar, the catalytic activity of ArcB is set by altering the orientation of the cytosolic domain of one monomer relative to the other in the homodimer. Thus, ArcB represents a distinct family of membrane receptor proteins whose catalytic activity is determined by rotational movements of the cytosolic domain.  相似文献   

4.
Bacterial transmembrane receptors regulate an intracellular catalytic output in response to extracellular sensory input. To investigate the conformational changes that relay the regulatory signal, we have studied the HAMP domain, a ubiquitous intracellular module connecting input to output domains. HAMP forms a parallel, dimeric, four-helical coiled coil, and rational substitutions in our model domain (Af1503 HAMP) induce a transition in its interhelical packing, characterized by axial rotation of all four helices (the gearbox signaling model). We now illustrate how these conformational changes are propagated to a downstream domain by fusing Af1503 HAMP variants to the DHp domain of EnvZ, a bacterial histidine kinase. Structures of wild-type and mutant constructs are correlated with ligand response in vivo, clearly associating them with distinct signaling states. We propose that altered recognition of the catalytic domain by DHp, rather than a shift in position of the phospho-accepting histidine, forms the basis for regulation of kinase activity.  相似文献   

5.
The yeast histidine kinase, Sln1p, is a plasma membrane-associated osmosensor that regulates the activity of the osmotic stress MAP kinase pathway. Changes in the osmotic environment of the cell influence the autokinase activity of the cytoplasmic kinase domain of Sln1p. Neither the nature of the stimulus, the mechanism by which the osmotic signal is transduced nor the manner in which the kinase is regulated is currently clear. We have identified several mutations located in the linker region of the Sln1 kinase (just upstream of the kinase domain) that cause hyperactivity of the Sln1 kinase. This region of histidine kinases is largely uncharacterized, but its location between the transmembrane domains and the cytoplasmic kinase domain suggests that it may have a potential role in signal transduction. In this study, we have investigated the Sln1 linker region in order to understand its function in signal transduction and regulation of Sln1 kinase activity. Our results indicate that the linker region forms a coiled-coil structure and suggest a mechanism by which alterations induced by osmotic stress influence kinase activity by altering the alignment of the phospho-accepting histidine with respect to the catalytic domain of the kinase.  相似文献   

6.
7.
G B Hecht  T Lane  N Ohta  J M Sommer    A Newton 《The EMBO journal》1995,14(16):3915-3924
Signal transduction pathways mediated by sensor histidine kinases and cognate response regulators control a variety of physiological processes in response to environmental conditions. Here we show that in Caulobacter crescentus these systems also play essential roles in the regulation of polar morphogenesis and cell division. Previous studies have implicated histidine kinase genes pleC and divJ in the regulation of these developmental events. We now report that divK encodes an essential, cell cycle-regulated homolog of the CheY/Spo0F subfamily and present evidence that this protein is a cognate response regulator of the histidine kinase PleC. The purified kinase domain of PleC, like that of DivJ, can serve as an efficient phosphodonor to DivK and as a phospho-DivK phosphatase. Based on these and earlier genetic results we propose that PleC and DivK are members of a signal transduction pathway that couples motility and stalk formation to completion of a late cell division cycle event. Gene disruption experiments and the filamentous phenotype of the conditional divK341 mutant reveal that DivK also functions in an essential signal transduction pathway required for cell division, apparently in response to another histidine kinase. We suggest that phosphotransfer mediated by these two-component signal transduction systems may represent a general mechanism regulating cell differentiation and cell division in response to successive cell cycle checkpoints.  相似文献   

8.
The BarA-UvrY two-component system family is strongly associated with virulence but is poorly understood at the molecular level. During our attempts to complement a barA deletion mutant, we consistently generated various mutated BarA proteins. We reasoned that characterization of the mutants would help us to better understand the signal transduction mechanism in tripartite sensors. This was aided by the demonstrated ability to activate the UvrY regulator with acetyl phosphate independently of the BarA sensor. Many of the mutated BarA proteins had poor complementation activity but could counteract the activity of the wild-type sensor in a dominant-negative fashion. These proteins carried point mutations in or near the recently identified HAMP linker, previously implicated in signal transduction between the periplasm and cytoplasm. This created sensor proteins with an impaired kinase activity and a net dephosphorylating activity. Using further site-directed mutagenesis of a HAMP linker-mutated protein, we could demonstrate that the phosphoaccepting aspartate 718 and histidine 861 are crucial for the dephosphorylating activity. Additional analysis of the HAMP linker-mutated BarA sensors demonstrated that a dephosphorylating activity can operate via phosphotransfer within a tripartite sensor dimer in vivo. This also means that a tripartite sensor can be arranged as a dimer even in the dephosphorylating mode.  相似文献   

9.
His-Asp phosphorelays are widespread signal transduction mechanisms in bacteria, fungi, and higher plants. In order to investigate a His-Asp phosphorelay network in filamentous fungi, which has been genetically characterized in part, we attempted to construct an in vitro phosphotransfer network in Aspergillus nidulans comprising all the necessary components. As a first step, we established an in vitro phosphotransfer system with a histidine-containing phosphotransmitter YpdA, a response regulator SrrA, and a bacterial histidine kinase ArcB as a phosphate donor. We demonstrated the phosphotransfer from ArcB to A. nidulans YpdA and the subsequent transfer from YpdA to SrrA. This is the first direct biochemical evidence for the presence of the phosphotransfer system in filamentous fungi. Furthermore, a retrograde phosphorylation from YpdA to FphA, a histidine kinase similar to bacterial phytochrome, was found. The overall picture of the His-Asp phosphorelays in A. nidulans is discussed based on the results of the in vitro study.  相似文献   

10.
Tripartite sensor kinases (TSKs) have three phosphorylation sites on His, Asp, and His residues, which are conserved in a histidine kinase (HK) domain, a receiver domain, and a histidine-containing phosphotransmitter (HPt) domain, respectively. By means of a three-step phosphorelay, TSKs convey a phosphoryl group from the γ-phosphate group of ATP to the first His residue in the HK domain, then to the Asp residue in the receiver domain, and finally to the second His residue in the HPt domain. Although TSKs generally form homodimers, it was unknown whether the mode of phosphorylation in each step was intramolecular (cis) or intermolecular (trans). To examine this mode, we performed in vitro complementation analyses using Ala-substituted mutants of the ATP-binding region and three phosphorylation sites of recombinant ArcB, EvgS, and BarA TSKs derived from Escherichia coli. Phosphorylation profiles of these kinases, determined by using Phos-tag SDS-PAGE, showed that the sequential modes of the three-step phosphoryl-transfer reactions of ArcB, EvgS, and BarA are all different: cis-trans-trans, cis-cis-cis, and trans-trans-trans, respectively. The inclusion of a trans mode is consistent with the need to form a homodimer; the fact that all the steps for EvgS have cis modes is particularly interesting. Phos-tag SDS-PAGE therefore provides a simple method for identifying the unique and specific phosphotransfer mode for a given kinase, without taking complicated intracellular elements into consideration.  相似文献   

11.
12.
13.
NtrB is the bifunctional histidine kinase for nitrogen regulation. Dependent on the availability of nitrogen, it either autophosphorylates and serves as the phosphodonor for its cognate response regulator, NtrC, or, it promotes the rapid dephosphorylation of NtrC-P. The activity of NtrB depends on the interaction of two subdomains within its transmitter domain, the H-domain and the kinase domain. Both phosphotransfer activity and phosphatase activity reside in the H-domain. When separately expressed, this domain acts as a phosphatase. Interaction with the kinase domain results in the inhibition of the phosphatase activity and the phosphorylation of the conserved histidine of the H-domain.  相似文献   

14.
15.
"Two-component" phosphorelay signal transduction systems constitute a potential target for antibacterial and antifungal agents, since they are found exclusively in prokaryotes and lower eukaryotes (yeast, fungi, slime mold, and plants) but not in mammalian organisms. Saccharomyces cerevisiae Ypd1p, a key intermediate in the osmosensing multistep phosphorelay signal transduction, catalyzes the phosphoryl group transfer between response regulators. Its 1.8 A structure, representing the first example of a eukaryotic phosphorelay protein, contains a four-helix bundle as in the HPt domain of Escherichia coli ArcB sensor kinase. However, Ypd1p has a 44-residue insertion between the last two helices of the helix bundle. The side-chain of His64, the site of phosphorylation, protrudes into the solvent. The structural resemblance between Ypd1p and ArcB HPt domain suggests that both prokaryotes and lower eukaryotes utilize the same basic protein fold for phosphorelay signal transduction. This study sheds light on the best characterized eukaryotic phosphorelay system.  相似文献   

16.
In this work we used the yeast two-hybrid (Y2H) system to deepen our understanding of protein-protein interactions that are involved in the nitrogen regulatory network in Escherichia coli. Three different genes, encoding GlnB, GlnK and AspA, respectively, were found among 64 positive clones identified from E. coli Sau 3AI Y2H libraries using the nitrogen regulator NtrB as bait. Structural and functional analysis of the prey clones provided information on library features and the degree of saturation achieved in the screens. Further analysis revealed that the C-terminal kinase domain of NtrB is required for the interaction with GlnK, while AspA91–312 interacts specifically with the conserved histidine phosphotransfer domain of NtrB, thus providing additional evidence for the involvement of the conserved transmitter module of the histidine kinase NtrB in input sensory functions.Communicated by A. Kondorosi  相似文献   

17.
18.
The CheA histidine kinase initiates the signal transduction pathway of bacterial chemotaxis by autophosphorylating a conserved histidine on its phosphotransferase domain (P1). Site-directed mutations of neighboring conserved P1 residues (Glu-67, Lys-48, and His-64) show that a hydrogen-bonding network controls the reactivity of the phospho-accepting His (His-45) in Thermotoga maritima CheA. In particular, the conservative mutation E67Q dramatically reduces phosphotransfer to P1 without significantly affecting the affinity of P1 for the CheA ATP-binding domain. High resolution crystallographic studies revealed that although all mutants disrupt the hydrogen-bonding network to varying degrees, none affect the conformation of His-45. 15N-NMR chemical shift studies instead showed that Glu-67 functions to stabilize the unfavored N(delta1)H tautomer of His-45, thereby rendering the N(epsilon2) imidazole unprotonated and well positioned for accepting the ATP phosphoryl group.  相似文献   

19.
In all species of the genus Shewanella, the redox-sensing Arc two-component system consists of the response regulator ArcA, the sensor kinase ArcS, and the separate phosphotransfer protein HptA. Compared to its counterpart ArcB in Escherichia coli, ArcS has a significantly different domain structure. Resequencing and reannotation revealed that in the N-terminal part, ArcS possesses a periplasmic CaChe-sensing domain bracketed by two transmembrane domains and, moreover, that ArcS has two cytoplasmic PAS-sensing domains and two receiver domains, compared to a single one of each in ArcB. Here, we used a combination of in vitro phosphotransfer studies on purified proteins and phenotypic in vivo mutant analysis to determine the roles of the different domains in ArcS function. The analysis revealed that phosphotransfer occurs from and toward the response regulator ArcA and involves mainly the C-terminal RecII domain. However, RecI also can receive a phosphate from HptA. In addition, the PAS-II domain, located upstream of the histidine kinase domain, is crucial for function. The results support a model in which phosphorylation of RecI stimulates histidine kinase activity of ArcS in order to maintain an appropriate level of phosphorylated ArcA according to environmental conditions. In addition, the study reveals some fundamental mechanistic differences between ArcS/HptA and ArcB with respect to signal perception and phosphotransfer despite functional conservation of the Arc system in Shewanella and E. coli.  相似文献   

20.
The biochemical mechanism by which the phytochrome family of plant sensory photoreceptors transmit perceived informational light signals downstream to transduction pathway components is undetermined. The recent sequencing of the entire genome of the cyanobacterium Synechocystis, however, has revealed a protein that has an NH2-terminal domain with striking sequence similarity to the photosensory NH2-terminal domain of the phytochromes, and a COOH-terminal domain strongly related to the transmitter histidine kinase module of bacterial two-component sensors. The Synechocystis protein is capable of autocatalytic chromophore ligation and exhibits photoreversible light-absorption changes analogous to the phytochromes, indicating its capacity to function as an informational photoreceptor. Together with earlier observations that the COOH-terminal domains of the plant phytochromes also have sequence similarity to the histidine kinases, these data suggest that the cyanobacteria utilize photoregulated histidine kinases as a sensory system and that the plant phytochromes may be evolutionary descendants of these photoreceptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号