首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the past, it has been proposed that the rat vibrissae play an important role in other hand, postural abnormalities, muscle tone decreases and hypomotility after sensory organ destructions were proposed as evidence supporting the "level setting" or "tonic" hypothesis. This hypothesis postulates that afferent activity, besides its well know transductive functions, sets the excitability state of the central nervous system. We thought the vibrissal system to be a good model to dissect these two postulated roles because vibrissae trimming would annul the transductive function without affecting the integrity of nerve activity. Thus we compare the effects of trimming the whiskers with blocking the vibrissal afferent nerves on two types of motor behavior: activity in an open field and walking over a rope connecting two elevated platforms. We found that only vibrissal afferent blockage (both nerve section and local anaesthesia) produced severe failures in the motor performances studied. These effects could not be fully explained by the abolition of the vibrissae as a sensory modality because cutting the whiskers did not significantly affect the motor performance. These data are discussed in reference to a tonic or general excitatory function of sensory inputs upon the central nervous system.  相似文献   

2.
A choleratoxin B subunit transganglionic labelling technique and NPY immunohistochemistry were applied in the rat to achieve the chemoanatomical separation of myelinated vibrissal primary afferents, previously considered to be morphologically indistinguishable. Further, a special central representation pattern of supraorbital vibrissae was observed in the trigeminal brainstem nuclear complex: (1) Choleratoxin-labelled supraorbital vibrissal primary afferents terminated densely in their appropriate barrelettes in the trigeminal principal sensory nucleus, in the spinal oral subnucleus, in the caudal part of the spinal interpolar subnucleus, and in lamina IV of the caudal part of the spinal caudal subnucleus. (2) A second population of choleratoxin-labelled vibrissal afferents was also observed, terminating only in lamina III of the caudal subnucleus. (3) After peripheral nerve transection, NPY-immunoreactive supraorbital vibrissal primary afferent fibres appeared in their appropriate barrelettes in the principal sensory nucleus and the caudal part of the interpolar subnucleus, while in the caudal part of the caudal subnucleus NPY-immunoreactive vibrissal primary afferent terminals were found exclusively in the inner part of lamina II, extending over the outer part of lamina III. NPY-immunoreactive supraorbital vibrissal primary afferents were never found in the oral subnucleus. In contrast with the rules of the central representation of the mystacial (infraorbital) vibrissae, the multiple representation of the supraorbital vibrissae in the caudal subnucleus and the dense, barrelette-like terminal arborization of the choleratoxin-labelled supraorbital vibrissal primary afferents in the oral subnucleus apparently indicate an enhanced role of supraorbital vibrissae in reflexes that protect the eyes and the head from damage.  相似文献   

3.
When rats acquire sensory information by actively moving their vibrissae, a neural code is manifested at different levels of the sensory system. Behavioral studies in tactile discrimination agree that rats can distinguish different roughness surfaces by whisking their vibrissae. The present study explores the existence of neural encoding in the afferent activity of one vibrissal nerve. Two neural encoding schemes based on “events” were proposed (cumulative event count and median inter-event time). The events were detected by using an event detection algorithm based on multiscale decomposition of the signal (Continuous Wavelet Transform). The encoding schemes were quantitatively evaluated through the maximum amount of information which was obtained by the Shannon’s mutual information formula. Moreover, the effect of difference distances between rat snout and swept surfaces on the information values was also studied. We found that roughness information was encoded by events of 0.8 ms duration in the cumulative event count and event of 1.0 to 1.6 ms duration in the median inter-event count. It was also observed that an extreme decrease of the distance between rat snout and swept surfaces significantly reduces the information values and the capacity to discriminate among the sweep situations.  相似文献   

4.
This study investigated the cycle of rat vibrissae by counting their number relative to their topographic arrangement. The average duration of maintaining single or double vibrissal shafts was analyzed. The ratio of the lifetime of the single and double shafts was around 3:2 weeks. The rostral and caudal vibrissae had relatively short and long cyclic durations, respectively; this difference may be related to their length and function.  相似文献   

5.
In this study, we used the quinacrine fluorescence technique to investigate the embryonic and early postnatal development of two distinct populations of Merkel cells in the rat whisker pad and the consequences of neonatal deafferentation on their subsequent development. Annular clusters of Merkel cells first appear in the epidermis near the caudal margin of the mystacial region between embryonic days E14 and E15 at dome sites located on horizontal ridges where the primordial vibrissal follicles develop. The development of these cells progresses in a caudorostral sequence across the whisker pad as does the development of the vibrissal follicles. Each cluster eventually forms a conical ridge or collar of about 130 Merkel cells that surrounds the vibrissal hair shaft as it penetrates the overlying pad epidermis. In the vibrissae, which develop as downgrowths from the horizontal ridges at the dome sites, Merkel cells first appear (caudally) between E16 and E17 and form a cylindrical cuff within the outer root sheath; cells are added progressively until about the end of the first postnatal week when a plateau level of about 750-800 cells is reached. Following unilateral transection of the infraorbital nerve at 24-36 hr after birth, these vibrissal Merkel cells continued to develop along a time course that was indistinguishable from normal, at least over the first 2 weeks of postnatal life. In contrast, all or most of the Merkel cells that normally develop within collars or annular clusters in the pad epidermis (around both the vibrissal and intervibrissal or pelage hairs) either disappeared within a few days or failed to develop. Other light and electron microscopic procedures supported the main findings and confirmed that the denervation was successful. Thus, the vibrissal Merkel cells, like those in the glabrous hindpaw, behaved as a distinct class which develops postnatally and is maintained (at least over a 2-week period) without the presence of sensory nerves. Since both the mystacial vibrissae and glabrous hindpaw have specialized cortical representations, a possible relationship between these findings and the organization of the somatosensory cortex during development is discussed.  相似文献   

6.
In the stem lineage of therians, a comprehensive reorganization of limb and body mechanics took place to provide dynamic stability for rapid locomotion in a highly structured environment. At what was probably the same time, mammals developed an active sense of touch in the form of movable mystacial vibrissae. The rhythmic movements of the limbs and vibrissae are controlled by central pattern-generating networks which might interact with each other in sensorimotor control. To test this possible interaction, we studied covariation between the two by investigating speed-dependent adjustments in temporal and spatial parameters of forelimb and vibrissal kinematics in the rat. Furthermore, the possible role of carpal vibrissae in connecting the two oscillating systems was explored. We compared locomotion on continuous and discontinuous substrates in the presence and absence of the mystacial or/and carpal vibrissae across a speed range of 0.2–0.5 m/s and found that a close coupling of the kinematics of the two oscillating systems appears to be precluded by their differential dependence on the animal's speed. Speed-related changes in forelimb kinematics mainly occur in temporal parameters, whereas vibrissae change their spatial excursion. However, whisking frequency is always high enough that at least one whisk cycle falls into the swing phase of the limb, which is the maximum critical period for sensing the substrate on which the forepaw will be placed. The influence of tactile cues on forelimb positional control is more subtle than expected. Tactile cues appear to affect the degree of parameter variation but not average parameters or the failure rate of limbs during walking on a perforated treadmill. The carpal vibrissae appear to play a role in sensing the animal's speed by measuring the duration of the stance phase. The absence of this cue significantly reduces speed-related variation in stride frequency and vibrissal protraction.  相似文献   

7.
Light microscopic study of the thalamic ventro-basal complex (VB), after unilateral coagulation of vibrissae follicles in newborn mouse, revealed an excess of neuronal perikarya on the controlateral "deafferented" side as compared to the normal side. The higher density of nerve cells was confined to the vibrissal relay in the medial part of VB nucleus (VBm), whereas the cell number in the non vibrissal-lateral part of this nucleus (VB1) remained on the control level. Electron microscopic investigation of the thalamic vibrissal relay has shown signs of a modified synaptogenesis on the "deafferented" side: (a) the number of specific afferents has diminished and in contrast to the normal side, most of the specific sensory terminals contain small spheroid synaptic vesicles and (b) the number of axon terminals with ovoid pleomorphic vesicles has been doubled.  相似文献   

8.
Facial morphology and vibrissal movement in the golden hamster   总被引:4,自引:0,他引:4  
The major cranial vibrissae in the golden hamster can be moved in complex ways that suggest they are served by a finely controlled motor system. Movements are hypothesized to be the products of differential blood flow and pressure regulation in the sinus surrounding each vibrissal follicle, contractions of the striated facial muscles, and elastic rebound in the connective tissues. The vasculature contributes hydrostatic forces that erect the vibrissae slightly and distort their connective tissue bedding, rigidify the vibrissal capsules, thus forming firm bases of attachment for certain facial muscles, and theoretically provide a pressure plate around the follicle, important in lowering the firing thresholds of receptor endings. The facial muscles supply the major forces in erection and protraction of the vibrissae by acting on both the capsules and the connective tissue bedding. The connective tissues are organized into capsular and extracapsular systems that serve to stabilize the vibrissae and return them to initial rest positions. The slight movements of the genal vibrissa are the effects of vascular and connective tissue dynamics, the musculature being uninvolved. Wide angle movements of the supraorbital vibrissae are products of the vasculature and connective tissues, plus contractions of the Mm. orbicularis oculi and frontalis. Mystacial vibrissal movement is quite complex. The vasculature supplies a small degree of capsular erection and mystacial pad distortion, but primarily rigidifies the capsules. The bulk of erection and protraction is produced by the M. nasolabialis profundus (NLP) and the vibrissal capsular muscles (VCM). The NLP distorts the mystacial pad; the VCM tilt the capsules relative to the pad. Retraction is mainly accomplished by elastic rebound in the pad, this being aided in its extreme degrees by the Mm. nasolabialis and maxillolabialis. The Mm. nasolabialis superficialis and buccinator pars orbicularis oris help to spread the vibrissae into a dorsoventral fan and stabilize the mystacial pad during whisking.  相似文献   

9.
Vibrissae (whiskers) are important components of the mammalian tactile sensory system, and primarily function as detectors of vibrotactile information from the environment. Pinnipeds possess the largest vibrissae among mammals and their vibrissal hair shafts demonstrate a diversity of shapes. The vibrissae of most phocid seals exhibit a beaded morphology with repeating sequences of crests and troughs along their length. However, there are few detailed analyses of pinniped vibrissal morphology, and these are limited to a few species. Therefore, we comparatively characterized differences in vibrissal hair shaft morphologies among phocid species with a beaded profile, phocid species with a smooth profile, and otariids with a smooth profile using traditional and geometric morphometric methods. Traditional morphometric measurements (peak-to-peak distance, crest width, trough width and total length) were collected using digital photographs. Elliptic Fourier analysis (geometric morphometrics) was used to quantify the outlines of whole vibrissae. The traditional and geometric morphometric datasets were subsequently combined by mathematically scaling each to true rank, followed by a single eigendecomposition. Quadratic discriminant function analysis demonstrated that 79.3, 97.8 and 100% of individuals could be correctly classified to their species based on vibrissal shape variables in the traditional, geometric and combined morphometric analyses, respectively. Phocids with beaded vibrissae, phocids with smooth vibrissae, and otariids each occupied distinct morphospace in the geometric morphometric and combined data analyses. Otariids split into two groups in the geometric morphometric analysis and gray seals appeared intermediate between beaded- and smooth-whiskered species in the traditional and combined analyses. Vibrissal hair shafts modulate the transduction of environmental stimuli to the mechanoreceptors in the follicle-sinus complex (F-SC), which results in vibrotactile reception, but it is currently unclear how the diversity of shapes affects environmental signal modulation.  相似文献   

10.
The mystacial vibrissae of pinnipeds constitute a sensory system for active touch and detection of hydrodynamic events. Harbour seals (Phoca vitulina) and California sea lions (Zalophus californianus) can both detect hydrodynamic stimuli caused by a small sphere vibrating in the water (hydrodynamic dipole stimuli). Hydrodynamic trail following has only been shown in harbour seals. Hydrodynamical and biomechanical studies of single vibrissae of the two species showed that the specialized undulated structure of harbour seal vibrissae, as opposed to the smooth structure of sea lion vibrissae, suppresses self-generated noise in the actively moving animal. Here we tested whether also sea lions were able to perform hydrodynamic trail following in spite of their non-specialized hair structure. Hydrodynamic trails were generated by a remote-controlled miniature submarine. Linear trails could be followed with high accuracy, comparable to the performance of harbour seals, but in contrast, increasing delay resulted in a reduced performance as compared to harbour seals. The results of this study are consistent with the hypothesis that structural differences in the vibrissal hair types of otariid compared to phocid pinnipeds lead to different sensitivity of the vibrissae during forward swimming, but still reveal a good performance even in the species with non-specialized hair type.  相似文献   

11.
Summary The problem of the regional specification of snout vibrissae and dorsal pelage hairs has been analysed in mouse embryos. Reconstituted homo-and heterotopic skin explants, consisting of epidermis and dermis from both regions, were cultured on the chorioallantoic membrane of the chick embryo.Recombinants of 12.5-day upper lip dermis and 12.5-day dorsal epidermis developed a small number of large vibrissal type follicles arranged in a recognizable rectangular vibrissal pattern. The reverse combinations of 12.5- or 14.5-day dorsal dermis and 11- to 12.5-day upper lip epidermis formed a single population of numerous and small follicles arranged in a typical pelage hair pattern (trio groups) or gave rise to a mixed population of follicles with both whiskers and pelage hairs.It is concluded that the dermis is responsible for the regional specification of the cutaneous appendages and their distribution pattern. However, at the time it was isolated, the upper lip epidermis already possesses the information for the morphogenesis of vibrissae, but remains malleable and responsive to the dermal influence.This work was supported in part by DGRST and CNRS  相似文献   

12.
Vibrissae are a unique sensory system of mammals that is characterized by a rich and diverse innervation involved in numerous sensory tasks with the potential for species-specific differences. In the present study, indocarbocyanine dyes (DiI and PTIR271) and confocal microscopy were combined to study the innervation of the mystacial vibrissae and vibrissa-specific sensory neuron distribution in the maxillary portion of the trigeminal ganglion of the mouse. The deeper regions of the vibrissa cavernous sinus (CS) contained a dense plexus of free nerve endings, possibly of autonomic fibers. The superficial part of this sinus displayed a massive array of corpuscular endings. Innervation in the region of the ring sinus consisted of Merkel endings and different morphological variances of lanceolate endings. The region of the inner conical body had a circular plexus of free nerve endings. In addition to confirming previous observations obtained by a variety of other techniques and ultrastructural studies, our studies revealed denser terminal receptor endings in a different distribution pattern than previously demonstrated in studies using the rat. We also revealed the distribution of sensory neurons in the trigeminal ganglion using retrograde tracing with fluorescent tracers from two nearby vibrissae. We determined that the populations of sensory neurons innervating the two vibrissae were largely overlapping. This suggests that the somatotopic maps of vibrissal projections reported at the different levels in the neuraxis are not faithfully reproduced at the level of the ganglion.This work was supported by a grant from the NIDCD (RO1 DC 005590; BF), the Egyptian government (AM), and the NIH (ES00365-01 and RR-02-003; LH).  相似文献   

13.
We have shown signs of behavioral depression after vibrissal deafferentation. Locomotor slowing, motor impairments and footshock thresholds increment were demonstrated after vibrissal afferent blockages. Here, we study the electrocortical (ECoG) effects of vibrissal pad anaesthesia, also replicated by bilateral brachial plexus blockage. We found in both cases, that this acute and massive deafferentation produces synchronization over the entire neocortex accompanied by an important loss of muscular electrical activity. Slow waves observed in this condition were similar to those recorded in the sleeping rat without any treatment, but in our case, there were no behavioral signs of sleep. Thus a clear behavioral electroencephalographic dissociation was obtained by acute deafferentation. These results would seem to support the sleep deafferentation hypothesis.  相似文献   

14.
Responses of 375 primary somatosensory cortical neurons located in the projection area of the vibrissae to electrical stimulation of the infraorbital nerve and also to adequate stimulation of the vibrissae were investigated in unanesthetized cats immobilized with tubocurarine. Stimulation of the nerve and vibrissae most frequently evoked synaptic responses in the neurons, in the form of a short EPSP followed by an IPSP or, less frequently, as a primary IPSP; during extracellular recordings corresponding changes were observed in spike activity. In response to stimulation of the vibrissae, initial inhibition was found more often than to stimulation of the nerve (in 45 and 16% of neurons respectively). The difference between the minimal values of latent periods of IPSP and EPSP evoked by stimulation of the infraorbital nerve was 0.8 msec in different neurons, and the difference between the mean values 1.4 msec. Directional sensitivity of the cortical neurons was demonstrated (to a change in the direction of deflection of the vibrissae). Neurons located close together could differ in the character of their directional sensitivity during stimulation of the same vibrissae. It is concluded that short-latency inhibition arising in the primary projection area of the cat somatosensory cortex is predominantly afferent and not recurrent. The probable mechanisms of directional sensitivity of the neurons studied are discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSSR, Kiev. Translated from Neirofiziologia, Vol. 11, No. 6, pp. 550–559, November, 1979.  相似文献   

15.
Two types of vibrissal surface structures, undulated and smooth, exist among pinnipeds. Most Phocidae have vibrissae with undulated surfaces, while Otariidae, Odobenidae, and a few phocid species possess vibrissae with smooth surfaces. Variations in cross-sectional profile and orientation of the vibrissae also exist between pinniped species. These factors may influence the way that the vibrissae behave when exposed to water flow. This study investigated the effect that vibrissal surface structure and orientation have on flow-induced vibrations of pinniped vibrissae. Laser vibrometry was used to record vibrations along the whisker shaft from the undulated vibrissae of harbor seals (Phoca vitulina) and northern elephant seals (Mirounga angustirostris) and the smooth vibrissae of California sea lions (Zalophus californianus). Vibrations along the whisker shaft were measured in a flume tank, at three orientations (0°, 45°, 90°) to the water flow. The results show that vibration frequency and velocity ranges were similar for both undulated and smooth vibrissae. Angle of orientation, rather than surface structure, had the greatest effect on flow-induced vibrations. Vibration velocity was up to 60 times higher when the wide, flat aspect of the whisker faced into the flow (90°), compared to when the thin edge faced into the flow (0°). Vibration frequency was also dependent on angle of orientation. Peak frequencies were measured up to 270 Hz and were highest at the 0° orientation for all whiskers. Furthermore, CT scanning was used to quantify the three-dimensional structure of pinniped vibrissae that may influence flow interactions. The CT data provide evidence that all vibrissae are flattened in cross-section to some extent and that differences exist in the orientation of this profile with respect to the major curvature of the hair shaft. These data support the hypothesis that a compressed cross-sectional profile may play a key role in reducing self-noise of the vibrissae.  相似文献   

16.
Calcitonin gene-related peptide (CGRP)-immunoreactive afferent nerve fibers are abundant in the rat penis. In addition, NADPH-diaphorase, which stains for nitric oxide synthase, has been localized within both autonomic and sensory dorsal root ganglia (DRG) and may be part of an important biochemical pathway involved in penile tumescence. The purpose of this study was: 1) to examine the circuitry of afferent nerves that are CGRP immunoreactive from the L6 DRG, 2) to examine the possibility that there are NADPH-diaphorase-positive afferent fibers from the L6 DRG to the rat penis, and 3) to examine the localization and colocalization of CGRP and NADPH-diaphorase within L6 DRG afferent perikarya. Calcitonin gene-related peptide immunostaining in the penis was eliminated following a bilateral transection of the pudendal nerves, but was unchanged following a bilateral transection of the pelvic splanchnic or hypogastric nerves. The NADPH-diaphorase staining was not altered by any of the nerve transections. Injection of the retrograde axonal tracer fluorogold (FG) into the dorsum penis labeled perikarya in the L6 DRG. Although the majority of FG-labeled perikarya contained neither CGRP nor NADPH-diaphorase, small subpopulations of perikarya contained either CGRP immunoreactivity, NADPH-diaphorase, or both. A unilateral pudendal nerve transection virtually eliminated (>99%) FG labeling in the ipsilateral L6 DRG. These data suggest that NADPH-diaphorase and CGRP are present, either together or separately, within a subpopulation of penile afferent perikarya. In addition, CGRP-immunoreactive afferent nerve fibers reach the penis primarily via the pudendal nerves. Finally, NADPH-diaphorase-positive penile afferents may be another important source of nitric oxide (NO) for penile tumescence.  相似文献   

17.
Pinnipeds, that is true seals (Phocidae), eared seals (Otariidae), and walruses (Odobenidae), possess highly developed vibrissal systems for mechanoreception. They can use their vibrissae to detect and discriminate objects by direct touch. At least in Phocidae and Otariidae, the vibrissae can also be used to detect and analyse water movements. Here, we review what is known about this ability, known as hydrodynamic perception, in pinnipeds. Hydrodynamic perception in pinnipeds developed convergently to the hydrodynamic perception with the lateral line system in fish and the sensory hairs in crustaceans. So far two species of pinnipeds, the harbour seal (Phoca vitulina) representing the Phocidae and the California sea lion (Zalophus californianus) representing the Otariidae, have been studied for their ability to detect local water movements (dipole stimuli) and to follow hydrodynamic trails, that is the water movements left behind by objects that have passed by at an earlier point in time. Both species are highly sensitive to dipole stimuli and can follow hydrodynamic trails accurately. In the individuals tested, California sea lions were clearly more sensitive to dipole stimuli than harbour seals, and harbour seals showed a superior trail following ability as compared to California sea lions. Harbour seals have also been shown to derive additional information from hydrodynamic trails, such as motion direction, size and shape of the object that caused the trail (California sea lions have not yet been tested). The peculiar undulated shape of the harbour seals’ vibrissae appears to play a crucial role in trail following, as it suppresses self-generated noise while the animal is swimming.  相似文献   

18.
Extra- and intracellular responses of neurons in the primary somatosensory cortex to repetitive mechanical stimulation of the vibrissae at different frequencies were studied in unanesthetized curarized adult cats. Unlike responses to electrical stimulation of the combined afferent input (the infraorbital nerve) spike discharges of neurons in response to vibrissal stimulation can reproduce rather higher frequencies of stimulation and their initial character changes more often in the course of the repetitive series. Most cortical neurons were characterized by limitation of the area of their peripheral receptive fields with an increase in the frequency of adequate repetitive stimulation. A group of cortical neurons was distinguished by its ability to respond to high-frequency stimulation and to generate burst discharges. Comparison of the frequency characteristics of spike responses of these cells and of inhibitory synaptic action in other cortical neurons led to the conclusion that this group of cells thus distinguished may be inhibitory cortical neurons. The role of interaction between excitatory and inhibitory processes arising in cortical neurons during repetitive stimulation of different areas of their receptive fields is discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 14, No. 2, pp. 164–171, March–April, 1982.  相似文献   

19.
Vibrissae or follicle-sinus complexes (F-SCs) are highly developed mammalian sensory structures. These blood-filled sinuses are richly innervated and possess novel mechanoreceptors. Although much is known regarding the function of F-SCs in terrestrial mammals, much less is known regarding marine carnivores such as pinnipeds. Pinnipeds possess the largest, most highly innervated vibrissae of any mammal. One such pinniped is the California sea lion, which are generalist marine predators that rely heavily upon tactile discrimination capabilities. Psychophysical studies demonstrate that haptic tactile discrimination using F-SCs is exceptionally sensitive. However, our knowledge of the structure and function of F-SCs in otariids is limited. Our objectives were to investigate the innervation and microstructure of F-SCs across the mystacial vibrissal field and infer function from haptic performance studies in California sea lions. Innervation and microstructure of vibrissae differed considerably compared to similar data available for phocids. Total innervation of mystacial vibrissae was estimated to be 86,042 axons. Investigations of innervation density and investment of microvibrissae versus macrovibrissae demonstrated a significantly increased axon density per F-SC in medial microvibrissal regions compared to lateral macrovibrissae, which supports psychophysical data and somatotopic organization of the central nervous system involved with tactile discrimination capability. Innervation increased from medial microvibrissae (705 ± 125 axons/F-SC) to lateral macrovibrissae (1,447 ± 154) as well as from dorsal (541 ± 60) to ventral (1,493 ± 327) vibrissal regions. These data provide a more complete picture of the sensory ecology of this important aquatic mammalian lineage; the specialization of peripheral sensory structures, central nervous structures with demonstrated enhanced haptic capabilities behaviorally has likely led to the ecological success of California sea lions.  相似文献   

20.
Facial motor responses to microstimulation of different zones of the superior colliculi have been investigated in the albino mice craniotomized under thiopental anaesthesia. Local responses of the mystacial vibrissae, upper lip and eyelids were initiated by microstimulation of the rostral parts of the inner layers of the colliculus superior (high-frequency volleys of 5-7 pulses with a current limit of 35 microA). Sequential changes in the pattern of facial responses were observed within microelectrode traces indicating vertical orientation of facial motor representations in the superior colliculus. Some differences in the localization and pattern of facial responses in the right and left superior colliculi were revealed: 1) vibrissae and lip representations in the right superior colliculus occupy more extensive zone (vertical distribution from 300 to 2,300 microns) as compared to those in the left one (700-2,000 microns); 2) microstimulations of the right superior colliculus produce both uni- and bilateral vibrissal motor responses, whereas stimulation of the left superior colliculus evokes only unilateral responses. The duration of the latent period of the vibrissal and lip motor responses to stimulation of the right superior colliculus varied from 10 to 26 ms (16.1 +/- 2.4 ms; n = 199), to stimulation of the left one-from 10 to 18 ms (mean 14.9 +/- 1.8 ms; n = 55). It is suggested that polysynaptic motor responses to microstimulation of the superior colliculi are realized via the reticular and other premotor nuclei of the brain stem which have direct inputs from the superior colliculus and direct projections to the facial motor nucleus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号