首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 469 毫秒
1.
Peptoids, oligomers of N-substituted glycine, have been valuable targets for study and diverse application as peptidomimetics and as nanomaterials. Their conformational heterogeneity has made the study of peptoid structures using high-resolution analyses challenging, limiting our understanding of the physiochemical features that mediate peptoid folding. Here, we introduce a new method for the study of peptoid structure that relies on the environmentally sensitive fluorescence properties of 4-N,N-dimethylamino-1,8-naphthalimide (4-DMN). We have prepared a 4-DMN-functionalized primary amine that is compatible with the traditional submonomer peptoid synthesis methods and incorporated it sequence-specifically into 11 of 13 new peptoids. When included as a peptoid side chain modification, the fluorescence emission intensity of 4-DMN correlates with predictions of the fluorophore's local polarity within a putative structure. 4-DMN fluorescence is maximized when the fluorophore is placed in the middle of the hydrophobic face of an amphiphilic helical peptoid. When the fluorophore is placed near the peptoid terminus or on a polar face of an amphiphilic sequence, 4-DMN fluorescence is diminished. Disruption of the peptoid secondary structure or amphiphilicity also modulates 4-DMN fluorescence. The peptoids' helical secondary structures are moderately disrupted by inclusion of a 4-DMN-modified side chain as evaluated by changes in the peptoids' CD spectral features. This new method for peptoid structure evaluation should be a valuable complement to existing peptoid structural analysis tools.  相似文献   

2.
Peptoid oligomers possess many desirable attributes bioactive peptidomimetic agents, including their ease of synthesis, chemical diversity, and capability for molecular recognition. Ongoing efforts to develop functional peptoids will necessitate improved capability for control of peptoid structure, particularly of the backbone amide conformation. We introduce alkoxyamines as a new reagent for solid phase peptoid synthesis. Herein, we describe the synthesis of N-alkoxy peptoids, and present NMR data indicating that the oligomers adopt a single stable conformation featuring trans amide bonds. These findings, combined with results from computational modeling, suggest that N-alkoxy peptoid oligomers have a strong propensity to adopt a polyproline II type secondary structure.  相似文献   

3.
The highly amyloidogenic peptide sequence of amylin(20-29) was transformed into its corresponding peptoid and retropeptoid sequences to design a novel class of beta-sheet breaker peptides as amyloid inhibitors. This report describes the synthesis of the chiral peptoid building block of L-isoleucine, the solid phase synthesis of the peptoid and retropeptoid sequences of amylin(20-29), and the structural analysis of these amylin derivatives in solution by infrared spectroscopy, circular dichroism, and transmission electron microscopy. It was found that the peptoid sequence did not form amyloid fibrils or any other secondary structures and was able to inhibit amyloid formation of native amylin(20-29). Although the retropeptoid did not form amyloid fibrils it had only modest amyloid inhibitor properties since supramolecular tapes were formed.  相似文献   

4.
Peptoid origins     
Zuckermann RN 《Biopolymers》2011,96(5):545-555
Peptoid oligomers were initially developed as part of a larger basic research effort to accelerate the drug-discovery process in the biotech/biopharma industry. Their ease of synthesis, stability, and structural similarity to polypeptides made them ideal candidates for the combinatorial discovery of novel peptidomimetic drug candidates. Diverse libraries of short peptoid oligomers provided one of the first demonstrations in the mid-1990s that high-affinity ligands to pharmaceutically relevant receptors could be discovered from combinatorial libraries of synthetic compounds. The solid-phase submonomer method of peptoid synthesis was so efficient and general that it soon became possible to explore the properties of longer polypeptoid chains in a variety of areas beyond drug discovery (e.g., diagnostics, drug delivery, and materials science). Exploration into protein-mimetic materials soon followed, with the fundamental goal of folding a non-natural sequence-specific heteropolymer into defined secondary or tertiary structures. This effort first yielded the peptoid helix and much later the peptoid sheet, both of which are secondary-structure mimetics that are close relatives to their natural counterparts. These crucial discoveries have brought us closer to building proteinlike structure and function from a non-natural polymer and have provided great insight into the rules governing polymer and protein folding. The accessibility of peptoid synthesis to chemists and nonchemists alike, along with a lack of information-rich non-natural polymers available to study, has led to a rapid growth in the field of peptoid science by many new investigators. This work provides an overview of the initial discovery and early developments in the peptoid field.  相似文献   

5.
Peptoids are a novel class of biomimetic, non-natural, sequence-specific heteropolymers that resist proteolysis, exhibit potent biological activity, and fold into higher order nanostructures. Structurally similar to peptides, peptoids are poly N-substituted glycines, where the side chains are attached to the nitrogen rather than the alpha-carbon. Their ease of synthesis and structural diversity allows testing of basic design principles to drive de novo design and engineering of new biologically-active and nanostructured materials. Here, a simple manual peptoid synthesis protocol is presented that allows the synthesis of long chain polypeptoids (up to 50mers) in excellent yields. Only basic equipment, simple techniques (e.g. liquid transfer, filtration), and commercially available reagents are required, making peptoids an accessible addition to many researchers' toolkits. The peptoid backbone is grown one monomer at a time via the submonomer method which consists of a two-step monomer addition cycle: acylation and displacement. First, bromoacetic acid activated in situ with N,N'-diisopropylcarbodiimide acylates a resin-bound secondary amine. Second, nucleophilic displacement of the bromide by a primary amine follows to introduce the side chain. The two-step cycle is iterated until the desired chain length is reached. The coupling efficiency of this two-step cycle routinely exceeds 98% and enables the synthesis of peptoids as long as 50 residues. Highly tunable, precise and chemically diverse sequences are achievable with the submonomer method as hundreds of readily available primary amines can be directly incorporated. Peptoids are emerging as a versatile biomimetic material for nanobioscience research because of their synthetic flexibility, robustness, and ordering at the atomic level. The folding of a single-chain, amphiphilic, information-rich polypeptoid into a highly-ordered nanosheet was recently demonstrated. This peptoid is a 36-mer that consists of only three different commercially available monomers: hydrophobic, cationic and anionic. The hydrophobic phenylethyl side chains are buried in the nanosheet core whereas the ionic amine and carboxyl side chains align on the hydrophilic faces. The peptoid nanosheets serve as a potential platform for membrane mimetics, protein mimetics, device fabrication, and sensors. Methods for peptoid synthesis, sheet formation, and microscopy imaging are described and provide a simple method to enable future peptoid nanosheet designs.  相似文献   

6.
The metal-chelated 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) has made a significant impact on the field of diagnostic imaging. This imaging mechanism is largely dependent on the four side arm functionalities around the DOTA scaffold. We previously demonstrated the effect of peptoid residue modification on these DOTA side arms, thereby conferring diverse physiochemical properties to the imaging mechanism. We generated two on-bead Eu(III)-DOTA libraries with three side arm modifications, where the remaining arm was used to attach DOTA onto the resin. However, having an on-bead fully symmetric tetra-substituted DOTA synthesis route can greatly improve the fields of diagnostic, therapeutic, and theragnostic agent development. Here, we report an efficient method for the synthesis of symmetric tetra-substituted DOTA derivatives by modification with peptoid moieties on all four arms using a conceptually unique solid-phase synthesis approach. Resins with different loading capacities were examined for synthesis feasibility and high loading resins were most effective. The reaction yields were also studied by varying the number of peptoid residues and incorporating different linkers. We have tested the binding ability of the tetra-substituted derivative with its previously tested tri-substituted analogs as model applications. Our protocol provides an efficient and facile on-bead synthesis route for fully symmetric tetra-substituted DOTA derivatizations.  相似文献   

7.
The synthesis is described of a [D-Ala2]-deltorphin I peptoid analogue in which all amino acid residues have been substituted by the corresponding N-alkylglycine residues. The [D-Ala2]-deltorphin I retropeptoid was also prepared as well as [Ala1 ,D-Ala2]-deltorphin 1 and the corresponding peptoid. Structural investigations by FT-IR and fluorescence measurements were carried out on the synthetic analogues and on some [D-Ala2]-deltorphin 1 peptide-peptoid hybrids previously prepared. According to the fluorescence measurements the distance between the aromatic residues in the deltorphin I peptoid and retropeptoid is similar to that suggested for the delta- and micro-opioids, respectively. Measurements of CD in the presence of beta-cyclodextrin, and some preliminary pharmacological experiments were also performed. No dichroic bands are present in the spectrum of the [Ntyr1,D-Ala2]-deltorphin I, but an increasing dichroic effect appears in the spectra of both the deltorphin I peptoid and retropeptoid. Activity tests on isolated organ preparations showed that the modifications made produced a dramatic decrease in the agonistic activity of the synthetic derivatives.  相似文献   

8.
A simple route to the introduction of a number of chemoselective functional groups into peptoids (oligo(N-substituted glycines)) by an extension of the standard solid-phase submonomer method is reported. The following groups were introduced: aminooxyacetamide, N-(carbamoylmethyl)acetohydrazide, mercaptoacetamide, 2-pyridinesulfenylmercaptoacetamide, and aldehyde-terminated peptoids. The method uses commercially available reagents, is fully compatible with standard peptoid submonomer synthesis conditions, is easily automated, and generates the desired functionalized peptoid in high yield and purity. Peptoids with suitable pairs of chemoselective ligation groups were joined in high yield.  相似文献   

9.
N-hydroxy amides can be found in many naturally occurring and synthetic compounds and are known to act as both strong proton donors and chelators of metal cations. We have initiated studies of peptoids, or N-substituted glycines which contain N-hydroxy amide side chains to investigate the potential effects of these functional groups on peptoid backbone amide rotamer equilibria and local conformations. We reasoned that the propensity of these functional groups to participate in hydrogen bonding could be exploited to enforce intramolecular or intermolecular interactions that yield new peptoid structures. Here, we report the design, synthesis, and detailed conformational analysis of a series of model N-hydroxy peptoids. These peptoids were readily synthesized, and their structures were analyzed in solution by 1D and 2D NMR and in the solid-state by X-ray crystallography. The N-hydroxy amides were found to strongly favor trans conformations with respect to the peptoid backbone in chloroform. More notably, unique sheet-like structures held together via intermolecular hydrogen bonds were observed in the X-ray crystal structures of an N-hydroxy amide peptoid dimer, which to our knowledge represent the first structure of this type reported for peptoids. These results suggest that the N-hydroxy amide can be utilized to control both local backbone geometries and longer-range intermolecular interactions in peptoids, and represents a new functional group in the peptoid design toolbox.  相似文献   

10.
Peptoids are peptidomimetic oligomers composed of N-substituted glycine units. Their convenient synthesis enables strict control over the sequence of highly diverse monomers and is capable of generating extensive compound libraries. Recent studies are beginning to explore the relationship between peptoid sequence, structure and function. We describe new approaches to direct the conformation of the peptoid backbone, leading to secondary structures such as helices, loops, and turns. These advances are enabling the discovery of bioactive peptoids and will establish modules for the design and assembly of protein mimetics.  相似文献   

11.
The design of linear peptoid oligomers adopting well-defined secondary structures while mimicking defined peptide primary sequences is a major challenge in the context of drug discovery. To this end, chemists have developed cis-inducing peptoid side chains to build robust polyproline type I helices. However, the number of efficient examples remains scarce and chemical diversity accessible through the use of these side chains is limited. Herein, we introduce an array of NCα-gem-dimethylated peptoid residues mimicking proteinogenic amino acids. Submonomer synthesis and block-coupling approaches were explored to access heterooligomers incorporating these novel types of side chains. NMR studies of monomer and trimer models showed that the NCα-gem-dimethylated groups exert complete cis control on the backbone amide conformation. Lastly, a preliminary molecular modeling study gave an insight into the preferred orientation of the substituents of the NCα-gem-dimethyl side chains relative to the peptoid backbone.  相似文献   

12.
Drexler KE 《Biopolymers》2011,96(5):537-544
Methods for facile synthesis of extraordinarily diverse peptide-like oligomers have placed peptoids at the center of a broad and vibrant area of foldamer science and technology. The 7th Peptoid Summit offered a perspective on the current state of peptoid science and technology and on prospects for engineering supramolecular assemblies that rival the complexity of biomolecular systems. Methods for engineering biomolecular systems based on DNA and protein are advancing rapidly, building a technology platform for engineering increasingly large and complex self-assembled nanosystems. A comparative review of the physical basis for DNA, protein, and peptoid engineering indicates that the characteristics of peptoids suit them for a strong role in developing self-assembled nanosystems. Physical parallels between peptoids and proteins indicate that peptoid engineering, like protein engineering, will require specialized software to support design. Access to novel side-chain functionality will enable peptoid designers to exploit novel binding interactions, including many that have been discovered and exploited in crystal engineering, a field that has extensively explored the self-assembly of small organic molecules to form well-ordered structures. Developments in DNA, protein, and inorganic nanotechnologies are converging to provide a technology platform for the design and fabrication of complex, functional, atomically precise nanosystems. Peptoid-based foldamer technologies, can contribute to this convergence, expanding the scope of the emerging field of atomically precise macromolecular nanosystems.  相似文献   

13.
Synthetic polymers mimicking antimicrobial peptides have drawn considerable interest as potential therapeutics. N-substituted glycines, or peptoids, are recognized by their in vivo stability and ease of synthesis. Peptoids are thought to act primarily on the negatively charged lipids that are abundant in bacterial cell membranes. A mechanistic understanding of lipid–peptoid interaction at the molecular level will provide insights for rational design and optimization of peptoids. Here, we highlight recent studies that utilize synchrotron liquid surface X-ray scattering to characterize the underlying peptoid interactions with bacterial and eukaryotic membranes. Cellular membranes are highly complex, and difficult to characterize at the molecular level. Model systems including Langmuir monolayers, are used in these studies to reduce system complexity. The general workflow of these systems and the corresponding data analysis techniques are presented alongside recent findings. These studies investigate the role of peptoid physicochemical characteristics on membrane activity. Specifically, the roles of cationic charge, conformational constraint via macrocyclization, and hydrophobicity are shown to correlate their membrane interactions to biological activities in vitro. These structure–activity relationships have led to new insights into the mechanism of action by peptoid antimicrobials, and suggest optimization strategies for future therapeutics based on peptoids.  相似文献   

14.
We have recently reported a peptoid (N-alkyl-oligoglycine) molecule that binds to the Vascular Endothelial Growth Factor Receptor 2 (VEGFR2) with high affinity and specificity. Moreover, this peptoid is capable of inhibiting VEGFR2 function in vivo (Udugamasooriya et al. J Am Chem Soc 130:5744–5745, 2008) and thus is a lead compound for anti-angiogenic agents. Moreover, the assay developed to identify this VEGFR2 inhibitor is likely to be a general route to peptoid antagonists or agonists of integral membrane receptors. Therefore, it is important to determine whether the VEGFR2-targeted peptoid, and indeed peptoids in general, are inherently immunogenic since an anti-peptoid immune response would significantly complicate their development as therapeutic candidates. In this study, the VEGFR2-targeted peptoid as well as other peptoids of varying lengths were injected into mice along with an immunostimulatory agent. We demonstrate that no significant anti-peptoid immune response is induced. It is further shown that this is not a trivial result of the lack of immunogenicity of a particular peptoid sequence, since conjugation of the peptoids to carrier proteins such as KLH prior to injection induces a robust anti-peptoid immune response. We conclude that free peptoid molecules are not immunogenic, probably due to a lack of T cell epitopes and that peptoid-based therapeutics are therefore not likely to be hindered by anti-peptoid antibody production in most cases.  相似文献   

15.
Tang YC  Deber CM 《Biopolymers》2004,76(2):110-118
Lysine tagging of hydrophobic peptides of parent sequence KKAAALAAAAALAAWAALAAAKKKK-NH(2) has been shown to facilitate their synthesis and purification through water solubilization, yet not impact on the intrinsic properties of the hydrophobic core sequence with respect to its insertion into membranes in an alpha-helical conformation. However, due to their positively charged character, such peptides often become bound to phospholipid head groups in membrane surfaces, which inhibits their transbilayer insertion and/or prevents their transport across cellular bilayers. We sought to develop more neutral peptides of membrane-permeable character by replacing most Lys residues with uncharged peptoid [N-(R)glycyl] residues, which might similarly confer water solubility while retaining membrane-interactive properties of the hydrophobic core. Several "peptoid-tagged" derivatives of the parent peptide were prepared with varying peptoid content, with five of the six Lys residues replaced with peptoids Nala and/or Nval. Conformations of these peptides measured by circular dichroism spectroscopy demonstrated that these water-soluble peptides retain the alpha-helix structure in micelles (lysophosphatidylcholine and sodium dodecyl sulfate) notwithstanding the known helix-breaking capacity of the peptoid tags. Blue shifts in Trp fluorescence spectra and quenching experiments with acrylamide confirmed that peptoid-tagged peptides insert spontaneously into micellar membranes. Results suggest that upon introduction of uncharged tags, the interaction between the membrane and the peptides is dominated by the hydrophobicity of the peptide core rather than the electrostatic interactions between the Lys and the head groups of the lipids. The overall findings indicate that peptoid residues are effective surrogates for Lys as uncharged water-solubilizing tags and, as such, provide a potentially valuable feature of design of membrane-interactive peptides.  相似文献   

16.
Conformational control in peptoids, N-substituted glycines, is crucial for the design and synthesis of biologically-active compounds and atomically-defined nanomaterials. While there are a growing number of structural studies in solution, most have been performed with conformationally-constrained short sequences (e.g., sterically-hindered sidechains or macrocyclization). Thus, the inherent degree of heterogeneity of unconstrained peptoids in solution remains largely unstudied. Here, we explored the folding landscape of a series of simple peptoid tetramers in aqueous solution by NMR spectroscopy. By incorporating specific 13C-probes into the backbone using bromoacetic acid-2-13C as a submonomer, we developed a new technique for sequential backbone assignment of peptoids based on the 1,n-Adequate pulse sequence. Unexpectedly, two of the tetramers, containing an N-(2-aminoethyl)glycine residue (Nae), had preferred conformations. NMR and molecular dynamics studies on one of the tetramers showed that the preferred conformer (52%) had a trans-cis-trans configuration about the three amide bonds. Moreover, >80% of the ensemble contained a cis amide bond at the central amide. The backbone dihedral angles observed fall directly within the expected minima in the peptoid Ramachandran plot. Analysis of this compound against similar peptoid analogs suggests that the commonly used Nae monomer plays a key role in the stabilization of peptoid structure via a side-chain-to-main-chain interaction. This discovery may offer a simple, synthetically high-yielding approach to control peptoid structure, and suggests that peptoids have strong intrinsic conformational preferences in solution. These findings should facilitate the predictive design of folded peptoid structures, and accelerate application in areas ranging from drug discovery to biomimetic nanoscience.  相似文献   

17.
Poly-N-substituted glycines or "peptoids" are protease-stable peptide mimics. Although the peptoid backbone is achiral and lacks hydrogen-bond donors, substitution with alpha-chiral side chains can drive the formation of stable helices that give rise to intense CD spectra. To systematically study the solution properties and stability of water-soluble peptoid helices with alpha-chiral side chains, we have synthesized and characterized an amphipathic, 36-residue N-substituted glycine oligomer. CD was used to investigate effects of concentration and solvent environment on this helical peptoid. We saw no significant dependence of helical structure on concentration. Intense, "alpha-helix-like" CD spectra were observed for the 36-mer in aqueous, 2,2,2-trifluorethanol (TFE), and methanol solution, proving a relative insensitivity of peptoid helical structure to solvent environment. While CD spectra taken in these different solvents were fundamentally similar in shape, we did observe some interesting differences in the intensities of particular CD bands in the various solvents. For example, the addition of TFE to an aqueous solvent increases the degree of peptoid helicity, as is observed for polypeptide alpha-helices. Moreover, the helical structure of peptoids appears to be virtually unaffected by heat, even in an aqueous buffer containing 8 M urea. The extraordinary resistance of these peptoid helices to denaturation is consistent with a dominant role of steric forces in their structural stabilization. The structured polypeptoids studied here may have potential as robust mimics of helical polypeptides of therapeutic interest.  相似文献   

18.
19.
The inclusion of peptoid monomers into antimicrobial peptides (AMPs) increases their proteolytic resistance, but introduces conformational flexibility (reduced hydrogen bonding ability and cis/trans isomerism). We here use NMR spectroscopy to answer how the insertion of a peptoid monomer influences the structure of a regular α-helical AMP upon interaction with a dodecyl phosphocholine (DPC) micelle. Insertion of [(2-methylpropyl)amino]acetic acid in maculatin-G15 shows that the structural change and conformational flexibility depends on the site of insertion. This is governed by the micelle interaction of the amphipathic helices flanking the peptoid monomer and the side chain properties of the peptoid and its preceding residue.  相似文献   

20.
The design, synthesis and biological actions of a novel, non-peptide CCK1 receptor agonist (PD 170292) which exhibits a similar pharmacological profile to the CCK analogue JMV180 is reported. PD 170292 was designed based on a consideration of the structures of a peptide based CCK1 receptor selective agonist and a peptoid CCK2 receptor selective antagonist.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号