首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transfer RNAs have been prepared from control and regenerating rat skeletal muscle. The yield of tRNA is highest during the early stages of the regeneration process (5 and 8 days following the induction of regeneration) and decreases to near control values thereafter. The amino acid acceptor activity (extent of aminoacylation) of tRNA from regenerating muscle was also found to be higher for some amino acids than the activity of control tRNA, and the maximum increase in activity was observed between 5 and 8 days following the initiation of regeneration with a decrease to control levels through 15 and 30 days. The isoacceptor pattern, determined by RPC-5 chromatography, for methionyl-tRNAs from control muscle and 5-day regenerating muscle were essentially indistinguishable, while a minor peak of prolyl-tRNA was observed in the population from 5-, 8- and 15-day regenerates which was apparently absent from the control tRNA. Lysyl-tRNAs from control muscle contain two major isoacceptors while a third isoacceptor is observed in the tRNA preparations from 5-, 8- and 15-day regenerating muscle. The relative amount of this third isoacceptor is highest in the 8-day population and decreases in amount in tRNAs from 15- and 30-day regenerates. Control muscle also contains two major glutamyl-tRNA species while a third isoacceptor can be detected in regenerates. The relative amount of this species increases during the early course of the regeneration process but is present at near control levels by 30 days following Marcaine injection. Cell-free protein synthesis using muscle polyribosomes showed that tRNAs from regenerating muscle were more effective in stimulating [35S]methionine incorporation than tRNAs from control muscle.  相似文献   

2.
The possibility that tyrosine tRNA modifies the catalytic activity of tryptophan oxygenase that is produced by the vermilion mutant (v) in Drosophila melanogaster is reconsidered. Dietary conditions can modify the ratio of the two major isoacceptors of tyrosine tRNA: one condition allows 85--90% to exist as the second isoacceptor, and another condition allows less than 5% to exist in this form. The function lacking in the vermilion mutant is partially restored when the second isoacceptor of tRNATyr is reduced to low levels (less than 40%), but the function is greatly reduced when this isoacceptor is present as 50% or more of the total. These data support the hypothesis that tRNATyr may be associated with and regulate tryptophan oxygenase. The corresponding isoacceptor of tRNATyr found in a suppressor mutant, su(s)2, should not have any effect on the function of the vermilion gene, and, indeed, it did not. The tRNAs for tyrosine, aspartic acid, and histidine all have one isoacceptor that contains nucleoside Q and all undergo parallel changes in flies raised on the various diets. It appears that these dietary changes affect the ability to synthesize or modify Q or to remove or insert it into tRNA.  相似文献   

3.
4.
F Yamao  Y Andachi  A Muto  T Ikemura    S Osawa 《Nucleic acids research》1991,19(22):6119-6122
Transfer RNAs of Mycoplasma capricolum were separated by two-dimensional polyacrylamide gel electrophoresis, and the relative abundance of each of the 28 known tRNA species was measured. There existed a correlation between the relative amount of isoacceptor tRNAs and the frequency in choosing synonymous codons that could be translated by the isoacceptors. Furthermore, it was observed that the total amount of tRNAs for a particular amino acid was paralleled by the composition of the amino acid in ribosomal proteins. A similar relationship was obtained from reexamination of the previous data on Escherichia coli tRNAs, suggesting that the amount of tRNAs for an amino acid is affected by the usage of the amino acid in proteins.  相似文献   

5.
The number and relative amount of isoacceptor tRNAs for each amino acid in Micrococcus luteus, a Gram-positive bacterium with high genomic G + C content, have been determined by sequencing their anticodon loop and its adjacent regions and by selective labelling of tRNAs. Thirty-one tRNA species with 29 different anticodon sequences have been detected. All the tRNAs have G or C at the anticodon first position except for tRNA(ICGArg) and tRNA(NGASer), in response to the abundant usage of NNC and NNG codons. No tRNA with the anticodon UNN capable of translating codon NNA has been detected, in accordance with a very low or zero usage of NNA codons. The relative amount of isoacceptor tRNAs for an amino acid determined by selective labelling strongly correlates with usage of the corresponding codons. On the basis of these and other observations in this and other eubacterial species, we conclude that the relative amount and anticodon composition of isoacceptor tRNA species are flexible, and their changes are mainly adaptive phenomena that have been primarily affected by codon usage, which in turn is affected by directional mutation pressure.  相似文献   

6.
Growth rate dependence of transfer RNA abundance in Escherichia coli.   总被引:13,自引:1,他引:13       下载免费PDF全文
We have tested the predictions of a model that accounts for the codon preferences of bacteria in terms of a growth maximization strategy. According to this model the tRNA species cognate to minor and major codons should be regulated differently under different growth conditions: the isoacceptors cognate to major codons should increase at fast growth rates while those cognate to minor codons should decrease at fast growth rates. We have used a quantitative Northern blotting technique to measure the abundance of the methionine and the leucine isoacceptor families over growth rates ranging from 0.5 to 2.1 doublings per hour. Five tRNA species that are cognate to major codons (tRNA(eMet), tRNA(1fMet), tRNA(2fMet), tRNA(1Leu) and tRNA(3Leu) increase both as a relative fraction of total tRNA and in absolute concentration with increasing growth rates. Three tRNA species that are cognate to minor codons (tRNA(2Leu), tRNA(4Leu) and tRNA(5Leu) decrease as a relative fraction of total RNA and in absolute concentration with increasing growth rates. These data suggest that the abundances of groups of tRNA species are regulated in different ways, and that they are not regulated simply according to isoacceptor specificity. In particular, the data support the growth optimization model for codon bias.  相似文献   

7.
8.
Examination of the transfer ribonucleic acid (tRNA) produced by starving, relaxed-control (rel minus) strains of Escherichia coli for required amino acids revealed the occurrence of a number of chromatographically unique subspecies. Leucine starvation results in the formation of new isoacceptor species of leucine-, histidine-, arginine-, valine-, and phenylalanine-specific tRNA and quantitative changes in the column profiles of serine, glycine, and isoleucine tRNA. Evidence that the unique tRNA species are synthesized de novo during amino acid starvation comes from the findings that the major unique leucine isoacceptor species is not formed in stringent control cells or in rel minus cells starved for uracil or treated with rifampin. Furthermore, heat treatment of the unique leucine tRNA does not alter its chromatographic behavior, indicating that the species is not an aggregate or nuclease-damaged form of a normal isoacceptor tRNA. The methyl acceptor activities of tRNA from leucine-starved and nonstarved rel+ or rel minus cells were found to be essentially the same. This result and the finding that the chromatographic behavior of the unique leucine-specific tRNA was not altered after treatment with tRNA methylase suggests that gross methyl deficiency is probably not the biochemical basis for the occurrence of the unique species.  相似文献   

9.
During many pathological conditions, the tryptophan concentration in blood may be reduced. However, the effects of oxidative stress on tryptophan metabolism remain unknown. In this study, we investigated the effects of oxidative stress on growth performance and tryptophan metabolism in weaned pigs. A total of 24 weaned pigs were assigned to one of three treatments that included pigs fed ad libitum (control), pigs challenged with diquat at a dose of 10 mg/kg BW and fed ad libitum (oxidative stress) or pigs pair-fed to receive the same amount of feed as the diquat-challenged pigs. The trial lasted for 7 days. The growth performance and activities of antioxidant enzymes were declined in diquat-challenged pigs. The diquat challenge decreased the tryptophan concentration in serum and the 5-hydroxytryptamine concentration in the hypothalamus, and increased large neutral amino acids, kynurenine (Kyn) and malondialdehyde in serum. The 544-bp porcine partial mRNA sequence of the tryptophan 2,3-dioxygenase (TDO) gene was obtained according to the conserved region in the human gene sequence. In addition, the oxidative stress induced by the diquat challenge stimulated TDO-relative mRNA abundance in the liver and γ-glutamyl transpeptidase activity in intestinal mucosa, but did not affect the mRNA levels of Na+-neutral amino acid transporter B0. These results suggested that oxidative stress induced by diquat depressed growth performance and increased metabolism of tryptophan via Kyn pathway that upregulated TDO mRNA expression in weaned pigs.  相似文献   

10.
Bacillus alvei excretes indole during early exponential growth in acid-hydrolyzed casein medium. l-Threonine is the amino acid responsible for "early" indole excretion, and the amount of indole excreted is directly related to the amount of l-threonine in the medium. "Early-indole" excretion can be prevented by the continuous addition of serine (3.1 mumoles per ml per hr) or by substituting a mutant with an impaired ability to degrade serine. The addition of serine to a culture during the period of indole excretion halts the excretion and stimulates indole utilization. Threonine is a competitive inhibitor of serine (K(i) = 0.6 m) in the tryptophan synthetase B reaction. The internal tryptophan concentration increases during the period of indole excretion, suggesting that threonine acts by increasing the activity of the tryptophan pathway. This view is supported by experiments demonstrating that anthranilic acid and indoleacrylic acid also stimulate indole excretion. A metabolic explanation is offered and discussed.  相似文献   

11.
12.
We have cloned an isogenetic set of UAG, UAA, and UGA suppressors. These include the Su7 -UAG, Su7 -UAA, and Su7 -UGA suppressors derived from base substitutions in the anticodon of Escherichia coli tRNATrp and also Su9 , a UGA suppressor derived from a base substitution in the D-arm of the same tRNA. These genes are cloned on high-copy-number plasmids under lac promoter control. The construction of the Su7 -UAG plasmid and the wild-type trpT plasmid have been previously described ( Yarus , et al., Proc. Natl. Acad. Sci. U.S.A. 77:5092-5097, 1980). Su7 -UAA ( trpT177 ) is a weak suppressor which recognizes both UAA and UAG nonsense codons and probably inserts glutamine. Su7 -UGA ( trpT176 ) is a strong UGA suppressor which may insert tryptophan. Su9 ( trpT178 ) is a moderately strong UGA suppressor which also recognizes UGG (Trp) codons, and it inserts tryptophan. The construction of these plasmids is detailed within. Data on the DNA sequences of these trpT alleles and on amino acid specificity of the suppressors are presented. The efficiency of the cloned suppressors at certain nonsense mutations has been measured and is discussed with respect to the context of these codons.  相似文献   

13.
The cruciferous plant Arabidopsis thaliana has two closely related, nonallelic tryptophan synthase beta genes (TSB1 and TSB2), each containing four introns and a chloroplast leader sequence. Both genes are transcribed, although TSB1 produces greater than 90% of tryptophan synthase beta mRNA in leaf tissue. A tryptophan-requiring mutant, trp2-1, has been identified that has about 10% of the wild-type tryptophan synthase beta activity. The trp2-1 mutation is complemented by the TSB1 transgene and is linked genetically to a polymorphism in the TSB1 gene, strongly suggesting that trp2-1 is a mutation in TSB1. The trp2-1 mutants are conditional: they require tryptophan for growth under standard illumination but not under very low light conditions. Presumably, under low light the poorly expressed gene, TSB2, is capable of supporting growth. Genetic redundancy may be common to many aromatic amino acid biosynthetic enzymes in plants because mutants defective in two other genes (TRP1 and TRP3) also exhibit a conditional tryptophan auxotrophy. The existence of two tryptophan pathways has important consequences for tissue-specific regulation of amino acid and secondary metabolite biosynthesis.  相似文献   

14.
1. The isoacceptor patterns of mitochondrial seryl and alanyl-tRNAs from Saccharomyces cerevisiae grown under different conditions and committed to fermentative or respiratory metabolism have been studied by reversed-phase chromatography. 2. An extensive variability of the chromatographic patterns of the four isoacceptors for serine and of the three isoacceptors for alanine has been observed as a function of carbon source and stage of growth, but the main differences were observed in the different stages of growth on glucose. 3. In order to distinguish the effects due to stage of growth from those due to relief from glucose repression, the isoacceptor patterns of mitochondrial tRNA were compared in repressed and derepressed resting cells; results show that some of the mitochondrial species are almost undetectable in resting repressed cells, but are the major ones after recovery of respiration. 4. Two of the serine isoacceptors (species 1 and 2), one of which is absent or not acylable in repressed resting cells, are different gene products.  相似文献   

15.
16.
17.
A tryptophan-requiring auxotroph of Agmenellum quadruplicatum strain BG1, a species of blue-green bacteria, was isolated by means of a nitrosoguanidine-penicillin procedure. Its growth characteristics were determined, and the enzymological block was identified in the A activity of tryptophan synthetase. Starvation of the auxotroph for tryptophan resulted in the derepression of the synthesis of all five enzymes. The first four enzymes derepressed 2- to 3-fold, and tryptophan synthetase B derepressed 20-fold. In the parental prototroph, BG1, anthranilate synthetase was active in crude extracts with ammonia as the amino donor reactant, but not with glutamine.  相似文献   

18.
Fundamental properties of the trp promoter were investigated in fed-batch culture using a recombinant containing the lacZ gene controlled by this promoter. In tryptophan-deficient conditions, the amount of β-galactosidase accumulated in the cell was 10% of total cellular proteins. In the presence of the amino acid, it was repressed at a lower level, but considerable expression was observed in the later stages of cultivation. Although increasing concentration of tryptophan seemed to repress the promoter more completely, it strongly inhibited the bacterial growth. On-off regulation of the promoter was achieved by controlling the tryptophan level during fed-batch culture.  相似文献   

19.
Growth conditions that result in the accumulation of the tryptophan intermediate indoleglycerol phosphate or of the histidine intermediate imidazoleglycerol phosphate cause mycelia of Neurospora crassa to exhibit an immediate and sustained increase in the differential rate at which the biosynthetic enzymes of the tryptophan, histidine, and arginine pathways are synthesized. These accumulated intermediates are shown to be inhibitors of the activity of aminoacyltransfer ribonucleic acid (tRNA) synthetases, as judged by an in vitro esterification assay. The tryptophan intermediate is shown to inhibit the charging of tryptophan, and the histidine intermediate is shown to inhibit charging of histidine. The inhibitions noted are consistent with the finding that the level of charged tRNATrp is decreased significantly in cells that have accumulated indoleglycerol phosphate and that of tRNAHis is decreased significantly in cells that have accumulated imidazoleglycerol phosphate. These results are interpreted as support for the involvement of aminoacyl-tRNA species in mediating cross-pathway regulation of the tryptophan, histidine, and arginine biosynthetic pathways as proposed in Lester's polyrepressor hypothesis (G. Lester, 1971). the correlations noted lead to the conclusion that Neurospora utilizes regulatory mechanisms that have the ability to react to changes in the level of charging of tRNA species.  相似文献   

20.
Most of the isoacceptor species for a particular tRNA can be classified according to the middle base in the anticodon together with the fourth base in the amino acid stem. These specifying nucleotides would operate if a tRNA-tRNA interaction occurs on the aminoacyl-tRNA synthetase so that the anticodon of one tRNA molecule faces the fourth base of the other tRNA molecule. This model explains most of the misacylation reactions or changes in aminoacylation after mutation or chemical modifications of tRNAs. It also provides an explanation for biochemical properties of the aminoacyl-tRNA synthetases such as the presence of two active sites, and for the high fidelity of the aminoacylation. It may give insight into the origin and stability of the genetic code.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号