首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Recombinant plasmids were constructed by fusing the gene fragments encoding the full-length (1-191aa) and the truncated (1-40aa and l-69aa) HCV core proteins (HCc) respectively to the core gene of HBV at the position of amino acid 144 and expressed inE. coli. The products were analyzed by ELISA, Western blotting as well as the immunization of the mice. The results showed that those fusion proteins (B144C191, B144C69, B144C40) possessed the dual antigenicity and immunogenicity of both hepatitis B virus core antigen (HBcAg) and hepatitis C virus core protein (HCc). Analysis by electron microscopy and CsCI density gradient ultra-centrifugation revealed that similar to the HBcAg itself, all fusion proteins were able to form particles. Comparison of the antigenicity and immunogenicity of those fusion proteins showed that the length of HCc gene fused to HBcAg had no much effect on the antigenicity and immunogenicity of HBcAg, however, B144C69 and B144C40 induced higher titres antibodies against HCc than B144C191. Using those fusion proteins, ELISA for screening of antibodies against both HBV and HCV in human sera was also established.  相似文献   

2.
Recombinant plasmids were constructed by fusing the gene fragments encoding the full-length (1-191aa) and the truncated (1-40aa and 1-69aa) HCV core proteins (HCc) respectively to the core gene of HBV at the position of amino acid 144 and expressed in E. coli. The products were analyzed by ELISA, Western blotting as well as the immunization of the mice. The results showed that those fusion proteins (B144C191, B144C69, B144C40) possessed the dual antigenicity and immunogenicity of both hepatitis B virus core antigen (HBcAg) and hepatitis C virus core protein (HCc). Analysis by electron microscopy and CsCl density gradient ultra-centrifugation revealed that similar to the HBcAg itself, all fusion proteins were able to form particles. Comparison of the antigenicity and immunogenicity of those fusion proteins showed that the length of HCc gene fused to HBeAg had no much effect on the antigenicity and immunogenicity of HBcAg, however, B144C69 and B144C40 induced higher titres antibodies against HCc than B14d  相似文献   

3.
Hepatitis C virus (HCV) core protein is directed to the surface of lipid droplets (LD), a step that is essential for infectious virus production. However, the process by which core is recruited from LD into nascent virus particles is not well understood. To investigate the kinetics of core trafficking, we developed methods to image functional core protein in live, virus-producing cells. During the peak of virus assembly, core formed polarized caps on large, immotile LDs, adjacent to putative sites of assembly. In addition, LD-independent, motile puncta of core were found to traffic along microtubules. Importantly, core was recruited from LDs into these puncta, and interaction between the viral NS2 and NS3-4A proteins was essential for this recruitment process. These data reveal new aspects of core trafficking and identify a novel role for viral nonstructural proteins in virus particle assembly.  相似文献   

4.
5.
6.
Hepatitis C virus (HCV) core protein is a putative nucleocapsid protein with a number of regulatory functions. In tissue culture cells, HCV core protein is mainly located at the endoplasmic reticulum as well as mitochondria and lipid droplets within the cytoplasm. However, it is also detected in the nucleus in some cells. To elucidate the mechanisms by which cellular trafficking of the protein is controlled, we performed subcellular fractionation experiments and used confocal microscopy to examine the distribution of heterologously expressed fusion proteins involving various deletions and point mutations of the HCV core combined with green fluorescent proteins. We demonstrated that a region spanning amino acids 112 to 152 can mediate association of the core protein not only with the ER but also with the mitochondrial outer membrane. This region contains an 18-amino-acid motif which is predicted to form an amphipathic alpha-helix structure. With regard to the nuclear targeting of the core protein, we identified a novel bipartite nuclear localization signal, which requires two out of three basic-residue clusters for efficient nuclear translocation, possibly by occupying binding sites on importin-alpha. Differences in the cellular trafficking of HCV core protein, achieved and maintained by multiple targeting functions as mentioned above, may in part regulate the diverse range of biological roles of the core protein.  相似文献   

7.
The hepatitis C virus (HCV) core protein is believed to be one of viral proteins that are capable of preventing virus-infected cell death upon various stimuli. But, the effect of the HCV core protein on apoptosis that is induced by various stimuli is contradictory. We examined the possibility that the HCV core protein affects the ceramide-induced cell death in cells expressing the HCV core protein through the sphingomyelin pathway. Cell death that is induced by C(2)-ceramide and bacterial sphingomyelinase was analyzed in 293 cells that constitutively expressed the HCV core protein and compared with 293 cells that were stably transfected only with the expression vector. The HCV core protein inhibited the cell death that was induced by these reagents. The protective effects of the HCV core protein on ceramide-induced cell death were reflected by the reduced expression of p21(WAF1/Cip1/Sid1) and the sustained expression of the Bcl-2 protein in the HCV core-expressing cells with respect to the vector-transfected cells. These results suggest that the HCV core protein in 293 cells plays a role in the modulation of the apoptotic response that is induced by ceramide. Also, the ability of the HCV core protein to suppress apoptosis might have important implications in understanding the pathogenesis of the HCV infection.  相似文献   

8.
9.
Little is known about the assembly pathway and structure of hepatitis C virus (HCV) since insufficient quantities of purified virus are available for detailed biophysical and structural studies. Here, we show that bacterially expressed HCV core proteins can efficiently self-assemble in vitro into nucleocapsid-like particles. These particles have a regular, spherical morphology with a modal distribution of diameters of approximately 60 nm. Self-assembly of nucleocapsid-like particles requires structured RNA molecules. The 124 N-terminal residues of the core protein are sufficient for self-assembly into nucleocapsid-like particles. Inclusion of the carboxy-terminal domain of the core protein modifies the core assembly pathway such that the resultant particles have an irregular outline. However, these particles are similar in size and shape to those assembled from the 124 N-terminal residues of the core protein. These results provide novel opportunities to delineate protein-protein and protein-RNA interactions critical for HCV assembly, to study the molecular details of HCV assembly, and for performing high-throughput screening of assembly inhibitors.  相似文献   

10.
Hepatitis C virus (HCV) core protein plays an important role in the development of hepatic steatosis in patients with chronic HCV infection. Treatment of C57BL/6 mice infected with HCV core recombinant adenoviruses with resveratrol significantly decreased hepatic triacylglycerols (TAG) while the serum TAG level was unaffected. RT-PCR and Western blotting showed that HCV core protein attenuated the expression of Sirt1 and PPAR-α, which would be reversed by resveratrol. This was also confirmed in primary mouse hepatic cells infected with HCV core protein expressing adenovirus. Thus, resveratrol may prevent against hepatic steatosis by blocking the inhibited expression of Sirt1 and PPAR-α induced by HCV core protein.  相似文献   

11.
We have demonstrated previously that the core protein of hepatitis C virus (HCV) exhibits suppression activity on gene expression and replication of hepatitis B virus (HBV). Here we further elucidated the suppression mechanism of HCV core protein. We demonstrated that HCV core protein retained the inhibitory effect on HBV gene expression and replication when expressed as part of the full length of HCV polyprotein. Based on the substitution mutational analysis, our results suggested that mutation introduced into the bipartite nuclear localization signal of the HCV core protein resulted in the cytoplasmic localization of core protein but did not affect its suppression ability on HBV gene expression. Mutational studies also indicated that almost all dibasic residue mutations within the N-terminal 101-amino acid segment of the HCV core protein (except Arg(39)-Arg(40)) impaired the suppression activity on HBV replication but not HBV gene expression. The integrity of Arg residues at positions 101, 113, 114, and 115 was found to be essential for both suppressive effects, whereas the Arg residue at position 104 was important only in the suppression of HBV gene expression. Moreover, our results indicated that the suppression on HBV gene expression was mediated through the direct interaction of HCV core protein with the trans-activator HBx protein, whereas the suppression of HBV replication involved the complex formation between HBV polymerase (pol) and the HCV core protein, resulting in the structural incompetence for the HBV pol to bind the package signal and consequently abolished the formation of the HBV virion. Altogether, this study suggests that these two suppression effects on HBV elicited by the HCV core protein likely depend on different structural context but not on nuclear localization of the core protein, and the two effects can be decoupled as revealed by its differential targets (HBx or HBV pol) on these two processes of the HBV life cycle.  相似文献   

12.
S Y Lo  M J Selby    J H Ou 《Journal of virology》1996,70(8):5177-5182
Hepatitis C virus has three structural genes named C, E1, and E2. The C gene encodes the core (capsid) protein and the E1 and E2 genes encode the envelope proteins. In an immunoprecipitation experiment, the E1 protein was found to be precipitated by an anti-core antibody in the presence but not in the absence of the core protein, indicating that the E1 protein can interact with the core protein. This interaction is independent of whether the E1 and the C genes are linked in cis or separated in different DNA constructs for expression. The interaction between the core and the E1 proteins is confirmed by the observation that a hybrid protein derived from the core protein and the tissue plasminogen activator is localized in the nucleus in the absence of the E1 protein and in the perinuclear region in the presence of the E1 protein. Deletion-mapping studies indicate that the carboxy-terminal sequences of both the core and the E1 proteins are important for their interaction. Since little E1 sequence is exposed on the cytosolic side of the membrane of the endoplasmic reticulum, the interaction between the core and the E1 proteins most likely takes place in the endoplasmic reticulum membrane. The E2 protein could not be coprecipitated with the core protein by the anti-core antibody in a similar assay and likely does not interact with the core protein. The implications of these findings on the morphogenesis of the hepatitis C virus virion are discussed.  相似文献   

13.
The hepatitis C virus (HCV) is a global health problem, with limited treatment options and no vaccine available. HCV uses components of the host cell to proliferate, including lipid droplets (LD) onto which HCV core proteins bind and facilitate viral particle assembly. We have measured the dynamics of HCV core protein-mediated changes in LDs and rates of LD movement on microtubules using a combination of coherent anti-Stokes Raman scattering (CARS), two-photon fluorescence (TPF), and differential interference contrast (DIC) microscopies. Results show that the HCV core protein induces rapid increases in LD size. Particle tracking experiments show that HCV core protein slowly affects LD localization by controlling the directionality of LD movement on microtubules. These dynamic processes ultimately aid HCV in propagating and the molecules and interactions involved represent novel targets for potential therapeutic intervention.  相似文献   

14.
HCVc 120 is a truncated protein from the hepatitis C virus (HCV) core protein that interacts with itself to form nucleocapsid-like particles. We present here the infrared and Raman spectra of oligomeric HCVc 120 protein in order to obtain insights into its secondary structure as well as the environment surrounding some protein side chains. When compared with its monomer form, oligomeric HCVc 120 protein shows an increase in beta-sheet structure. Tryptophan residues have been found to be solvent exposed in the oligomeric form, and they likely do not significantly participate in the protein assembly. However, the beta-sheet content in oligomeric HCVc 120 protein suggests that this structural motif cannot be excluded in nucleocapsid formation, as shown recently in other viruses.  相似文献   

15.
Hepatitis C virus (HCV) core protein is suggested to localize to the endoplasmic reticulum (ER) through a C-terminal hydrophobic region that acts as a membrane anchor for core protein and as a signal sequence for E1 protein. The signal sequence of core protein is further processed by signal peptide peptidase (SPP). We examined the regions of core protein responsible for ER retention and processing by SPP. Analysis of the intracellular localization of deletion mutants of HCV core protein revealed that not only the C-terminal signal-anchor sequence but also an upstream hydrophobic region from amino acid 128 to 151 is required for ER retention of core protein. Precise mutation analyses indicated that replacement of Leu(139), Val(140), and Leu(144) of core protein by Ala inhibited processing by SPP, but cleavage at the core-E1 junction by signal peptidase was maintained. Additionally, the processed E1 protein was translocated into the ER and glycosylated with high-mannose oligosaccharides. Core protein derived from the mutants was translocated into the nucleus in spite of the presence of the unprocessed C-terminal signal-anchor sequence. Although the direct association of core protein with a wild-type SPP was not observed, expression of a loss-of-function SPP mutant inhibited cleavage of the signal sequence by SPP and coimmunoprecipitation with unprocessed core protein. These results indicate that Leu(139), Val(140), and Leu(144) in core protein play crucial roles in the ER retention and SPP cleavage of HCV core protein.  相似文献   

16.
The hepatitis C virus (HCV) core protein is a structural protein that packages the viral genomic RNA. In this study, we demonstrate that a stable core protein dimer could be produced in liver cells. The production of this protein could be enhanced by calphostin C and serum deprivation. This protein was determined to be the core protein dimer because of its reactivity with the anti-core antibody, its similar electrophoretic mobility compared with that of the core protein dimer generated by cross-linking with glutaraldehyde, and its increase in size by a hemagglutinin tag fused to the core protein sequence. This core protein dimer was highly stable and resistant to SDS and beta-mercaptoethanol. The enzyme that mediated the formation of this stable core protein dimer was determined to be the tissue transglutaminase (tTG) because, first, tTG could be activated by calphostin C and serum deprivation; second, the formation of this dimer was suppressed by monodansylcadaverine, a tTG inhibitor; and third, the core protein could be cross-linked by tTG in vitro. Thus, the HCV core protein represents the first known viral structural protein substrate of tTG. The post-translational modification by tTG reduced the RNA binding activity of the core protein, raising the possibility that tTG may regulate the biological functions of the HCV core protein.  相似文献   

17.
18.
19.
Proteolytic activity of hepatitis A virus 3C protein.   总被引:3,自引:10,他引:3       下载免费PDF全文
  相似文献   

20.
Du J  Zhao F  Zhou Y  Yan H  Duan XG  Liang SQ  Wang YL  Fu QX  Wang XH  Peng JC  Zhan LS 《PloS one》2010,5(11):e14043

Background

The development of small molecule inhibitors of hepatitis C virus (HCV) core protein as antiviral agents has been intensively pursued as a viable strategy to eradicate HCV infection. However, lack of a robust and convenient small animal model has hampered the assessment of in vivo efficacy of any antiviral compound.

Methodology/Principal Findings

The objective of this work was to develop a novel method to screen anti-core protein siRNA in the mouse liver by bioluminescence imaging. The inhibitory effect of two shRNAs targeting the highly conserved core region of the HCV genome, shRNA452 and shRNA523, was examined using this method. In the transient mouse model, the effect of shRNA-523 was detectable at as early as 24 h and became even more pronounced at later time points. The effect of shRNA-452 was not detectable until 48 h post-transduction. In a stable mouse model, shRNA523 reduced luciferase levels by up to 76.4±26.0% and 91.8±8.0% at 6 h and 12 h after injection respectively, and the inhibitory effect persisted for 1 day after a single injection while shRNA-Scramble did not seem to have an effect on the luciferase activity in vivo.

Conclusions/Significance

Thus, we developed a simple and quantitative assay for real-time monitoring of HCV core protein inhibitors in mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号