首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sympathetic principal neurons were dissociated from the superior cervical ganglia of newborn rats and grown in several culture conditions shown previously to affect the transmitter status of the neurons. In three of these conditions the neurons are known to develop adrenergic functions over a 3- to 4-week period; in a fourth condition, they develop predominantly cholinergic functions. In this ultrastructural study, the transmitter status of the neurons during development in the several different media was examined after permanganate fixation which causes a granular precipitate in synaptic vesicles containing norepinephrine (small granular vesicles or SGV). It was found that as early as 4 days after plating, synapses and varicosities were present. In all four conditions, all of the terminals contained numerous SGV, indicating that the neurons both synthesize and store norepinephrine. Under “adrenergic” growth conditions, the terminals remained adrenergic in appearance during further development. Under “cholinergic” conditions, terminals of cholinergic appearance were present as early as 7 days and their incidence increased with time. Although the cholinergic terminals contained little or no endogenous norepinephrine, many were initially able to take up and store exogenous catecholamine. These results indicate that the dissociated sympathetic neurons of newborn rats which survive in culture acquired adrenergic transmitter functions early. Under “cholinergic” culture conditions, the neurons lose the ability to synthesize detectable quantities of norepinephrine; the ability to take up and store detectable quantities of exogenous catecholamines disappears more slowly.  相似文献   

2.
Although it is clear that adrenergic nervous system control of cardiac function decreases with age and that the effector organ fails to adjust to this decreased control, it is not completely evident which of the many mechanisms operant at the adrenergic-cardiac neuroeffector junction contribute to this state. Prejunctionally, it appears that norepinephrine content decreases with age and that adrenergic axonal degeneration occurs. Also, evidence is available to suggest that modulation by prejunctional alpha adrenergic receptors of norepinephrine release is altered with increasing age, as is neuronal uptake of norepinephrine. Postjunctionally, it appears that beta-adrenergic receptor sensitivity to agonists undergoes age-related alterations, and possibly post receptor mechanisms involved in receptor-response coupling. Other mechanisms, such as those involved in transmitter uptake into extraneuronal sites, adrenergic neuronal responsiveness to stimulation, transmitter release and turnover, calcium and prejunctional receptor modulation of transmitter release, postjunctional receptor development of supersensitivity or subsensitivity, need further elucidation in order to have an understanding of the factors that contribute to the breakdown of homeostatic mechanisms that regulate the heart.  相似文献   

3.
Sympathetic neurons taken from rat superior cervical ganglia and grown in culture acquire cholinergic function under certain conditions. These cholinergic sympathetic neurons, however, retain a number of adrenergic properties, including the enzymes involved in the synthesis of norepinephrine (NE) and the storage of measurable amounts of NE. These neurons also retain a high affinity uptake system for NE; despite this, the majority of the synaptic vesicles remain clear even after incubation in catecholamines. The present study shows, however, that if these neurons are depolarized before incubation in catecholamine, the synaptic vesicles acquire dense cores indicative of amine storage. These manipulations are successful when cholinergic function is induced with either a medium that contains human placental serum and embryo extract or with heart-conditioned medium, and when the catecholamine is either NE or 5-hydroxydopamine. In some experiments, neurons are grown at low densities and shown to have cholinergic function by electrophysiological criteria. After incubation in NE, only 6% of the synaptic vesicles have dense cores. In contrast, similar neurons depolarized (80 mM K+) before incubation in catecholamine contain 82% dense-cored vesicles. These results are confirmed in network cultures where the percentage of dense-cored vesicles is increased 2.5 to 6.5 times by depolarizing the neurons before incubation with catecholamine. In both single neurons and in network cultures, the vesicle reloading is inhibited by reducing vesicle release during depolarization with an increased Mg++/Ca++ ratio or by blocking NE uptake either at the plasma membrane (desipramine) or at the vesicle membrane (reserpine). In addition, choline appears to play a competitive role because its presence during incubation in NE or after reloading results in decreased numbers of dense-cored vesicles. We conclude that the depolarization step preceding catecholamine incubation acts to empty the vesicles of acetylcholine, thus allowing them to reload with catecholamine. These data also suggest that the same vesicles may contain both neurotransmitters simultaneously.  相似文献   

4.
The aim of the present study was to determine in canine bronchi the effects produced by norepinephrine (released from adrenergic nerve terminals) on cholinergic neurotransmission. Electrical stimulation of canine bronchi activates cholinergic and adrenergic nerve fibers. The adrenergic neuronal blocker, bretylium tosylate, inhibited the increase in [3H]norepinephrine overflow evoked by electrical stimulation but did not prevent that caused by the indirect sympathomimetic tyramine. During blockade of the exocytotic release of norepinephrine with bretylium, the pharmacological displacement of the sympathetic neurotransmitter by tyramine significantly decreased the contractions evoked by electrical stimulation but did not affect contractions caused by exogenous acetylcholine. Metoprolol, a beta 1-adrenergic antagonist, abolished and propranolol significantly reduced the effect of tyramine during electrical stimulation. alpha 2-Adrenergic blockade, beta 2-adrenergic blockade, or removal of the epithelium did not significantly affect the response to tyramine. These results suggest that norepinephrine when released from sympathetic nerve endings can activate prejunctional inhibitory beta 1-adrenoceptors to depress cholinergic neurotransmission in the bronchial wall.  相似文献   

5.
Dissociated neurons from the newborn rat superior cervical ganglion were grown under conditions which lead to either adrenergic or cholinergic differentiation. Lectins and toxins were used to detect differences in the cell membrane associated with transmitter status, age of the neurons, or location on the neurons. These ligands were made visible in the light or electron microscope by coupling to rhodamine or colloidal gold. The density of binding sites for concanavalin A (Con A), ricin (RCA60), and wheat germ agglutinin (WGA) increased with age in culture on both adrenergic and cholinergic cells. Soybean agglutinin (SBA) binding increased about threefold on adrenergic axons, but failed to increase on neurons induced to become cholinergic by medium conditioned by rat heart cells (CM). The effect of CM on SBA binding paralleled previously described effects of CM on transmitter production; the CM binding pattern developed slowly and was not readily reversible. Mature adrenergic neurons also appeared to bind more WGA than neurons in CM cultures. Tetanus toxin gold binding was uniform, but low, on axons of adrenergic and cholinergic neurons at all ages. In contrast, cholera toxin binding decreased with age on adrenergic axons. Binding sites for SBA and tetanus toxin were found to be less numerous on the cell body surface than on the axonal surface. Thus growth in CM induces fundamental changes in the phenotype of developing sympathetic neurons involving the cell membrane as well as transmitter choice. Differences also appear with maturation and between axonal and somatic cell surface membranes.  相似文献   

6.
Summary The autonomic nervous control of the cod iris has been studied. The pharmacological properties of the smooth muscles of the iris have been elucidated by agonist/antagonist studies on isolated strip preparations. Electrical stimulation of parasympathetic and sympathetic pathways to the eye have been carried out, with recordings of the movements of the iris margin. Additions of cholinergic and adrenergic antagonists in selective concentrations were made to investigate the nature of the autonomic nerve fibres controlling the iris.Isolated strip preparations of the iris sphincter contracted in response to cholinergic or-adrenoceptor agonists. There appear to be no radial muscular elements in the cod iris. The effect of carbachol on the iris sphincter could be competitively antagonized by atropine, suggesting the presence of muscarinic receptors of the smooth muscles. The effect of adrenaline was similarly antagonized by phentolamine. The effect of phentolamine, and the order of potency for the adrenergic agonists, shows the presence of-adrenoceptors in the iris sphincter.-adrenoceptors of minor importance are also suggested by the inhibitory effects of isoprenaline on preparations pre-contracted by carbachol.The indirectly acting adrenergic agonist tyramine also contracts the isolated sphincter preparations. This effect is probably due to release of nervously stored catecholamines, since tyramine lacks effect on preparations from animals pre-treated with 6-hydroxydopamine. Preparations from 6-hydroxydopamine pre-treated animals also show a 10-fold increase in the affinity for adrenaline, demonstrating the development of a pre-synaptic supersensitivity due to the destruction of adrenergic nerve terminals of the iris. Stimulation of the sympathetic chain or ciliary nerves produces a constriction of the pupil of the same side. Application of selective concentrations of the antagonists atropine and phentolamine shows that the sympathetic constrictory innervation is solely adrenergic. In some preparations a small pupillo-dilatory effect of nerve stimulation is evident after the constrictory effect has been abolished by phentolamine. This inhibitory effect can be abolished by propranolol, indicating the presence of a-adrenoceptor mediated inhibitory control of minor importance. Stimulation of the oculomotor nerve produces no consistent responses of the cod iris.Illumination of one eye produces a pupilloconstriction comparable to that seen after sympathetic nerve stimulation. The light induced response is insensitive to atropine, phentolamine and tetrodotoxin, showing a direct effect on the smooth muscles of the sphincter. There is no consensual reflex in the cod.I wish to thank Dr. Susanne Holmgren for critically examining the original draft of this paper, and Mrs. Lena Utter for skilled assistance with isolated strip preparations and processing of concentration-response data. The fish was kindly supplied by Mr. Ingmar Hakemar. This work has been supported by grants from the Swedish Natural Science Research Council, the M. Bergvall Foundation and the Adlerbert Foundation.  相似文献   

7.
Considerable recent study of the development of transmitter status in sympathetic principal neurons, both in vivo and in culture, has produced several surprising findings. In this paper we review work on cultured immature and adult principal neurons dissociated from the superior cervical ganglia of rats. The main points are; 1) Immature principal neurons that display adrenergic properties during the first postnatal week in culture can be shifted to cholinergic status, including formation of functional cholinergic synapses, by coculture with nonneuronal cells (e.g., dissociated heart cells) or by medium conditioned by such cells. Through the use of microcultures that contain only a single neuron grown on heart cells, it has been possible to demonstrate the transition from adrenergic to cholinergic function directly by serial physiological assays of the same neuron at intervals of days or weeks. 2) During this transition, the cultured neurons display adrenergic/cholinergic dual function. This dual function has also been observed in principal neurons isolated from ganglia of adult rats. 3) Some cultured neurons secrete a third transmitter, probably adenosine or a phosphorylated derivative. This purinergic function is expressed with adrenergic or cholinergic function, or with both (triple function). In some cases, the main effect exerted by a neuron on cocultured cardiac myocytes is purinergic.  相似文献   

8.
Several studies have suggested that the development of cholinergic properties in cranial parasympathetic neurons is determined by these cells' axial level of origin in the neural crest. All cranial parasympathetic neurons normally derive from cranial neural crest. Trunk neural crest cells give rise to sympathetic neurons, most of which are noradrenergic. To determine if there is an intrinsic difference in the ability of cranial and trunk neural crest cells to form cholinergic neurons, we have compared the development of choline acetyltransferase (ChAT)-immunoreactive cells in explants of quail cranial and trunk neural crest in vitro. Both cranial and trunk neural crest explants gave rise to ChAT-immunoreactive cells in vitro. In both types of cultures, some of the ChAT-positive cells also expressed immunoreactivity for the catecholamine synthetic enzyme tyrosine hydroxylase. However, several differences were seen between cranial and trunk cultures. First, ChAT-immunoreactive cells appeared two days earlier in cranial than in trunk cultures. Second, cranial cultures contained a higher proportion of ChAT-immunoreactive cells. Finally, a subpopulation of the ChAT-immunoreactive cells in cranial cultures exhibited neuronal traits, including neurofilament immunoreactivity. In contrast, neurofilament-immunoreactive cells were not seen in trunk cultures. These results suggest that premigratory cranial and trunk neural crest cells differ in their ability to form cholinergic neurons.  相似文献   

9.
To examine whether the attenuated stress response observed in Antarctic notothenioid fishes is a specialism for life in sub-zero waters, the polar cod, Boreogadus saida, and the temperate shorthorned sculpin, Myoxocephalus scorpius, were subjected to various stress treatments. Activity stress in both species had no effect on plasma catecholamine and cortisol levels, splenic mass, and on the haematological variables in B. saida. In contrast, heat stress caused a significant rise in circulating noradrenaline and adrenaline levels in B. saida, accompanied by a significant increase in haematocrit and haemoglobin concentrations, at constant plasma cortisol levels, red blood cell count and splenic mass. A concomitant rise in blood lactate concentrations indicated that heat-stressed B. saida were hypoxaemic. The capacity to synthesise catecholamines in B. saida was 38% of the value in M. scorpius, but similar to the values for Antarctic notothenioids. The lack of any adrenergic response to activity stress suggests that dominance of cholinergic control of the cardiovascular system may not be restricted to Antarctic notothenioids. Rather, the stress response in B. saida appears to be intermediate between Antarctic and temperate teleosts, in keeping with their relatively recent occupation of cold Arctic waters.  相似文献   

10.
The distribution of cholinergic neurons was studies in the brain steam, medulla and rostral spinal cord of the salmon Onchorynchus masu using histochemical choline acetyltransferase (ChAT) detection. Cholinergic neurons were observed in the isthmus, cranial nerve motor nuclei and spinal cord. In order to characterize several cholinergic nuclei observed in the isthmus of O. masu, their projections were studied by application of 1,1'-dioctadecyl-3,3,3',3,'-tetramethylindocarbocyanine perchlorate (DiI) to selected structures of the brain. The secondary gustatory nucleus projected mainly to the lateral hypothalamic lobes, whereas the nucleus isthmi projected to the optic tectum and parvocellular superficial pretectal nucleus, as it was earlier described for the other teleost group. In addition, the other isthmic cholinergic nuclei in O. masu may be homologous to the meso-pontine system of mammals. We conclude that the cholinergic systems of teleosts show many primitive features that have been presented during evolution, together with exclusive to the group characteristics.  相似文献   

11.
the effects of 6-aminodopamine on central and peripheral catecholamine neurons using fluorescence histochemical and isotope techniques have been investigated. Systematic administration of 6-aminodopamine (20 mg/kg intraveneously) produced a rapid (within 1 h) and long-lasting depletion of endogenous noradrenaline in adrenergic nerves of mouse atrium and iris with a concomitant loss of [3H]noradrenaline uptake. The effects were dosedependent. Accumulations of noradrenaline in non-terminal axons were observed histochemically, indicating that 6-aminodopamine induces neuronal damage. Desipramine completely blocked the 6-aminodopamine induced noradrenaline depletion and reduction in [3H]noradrenaline uptake, indicating that 6-aminodopamine has to be taken up by the axonal ‘membrane pump’ to produce its effects. Themonoamine oxidase inhibitor, nialamide, potentiated the effect of 6-aminodopamine on [3H]noradrenaline uptake. 6-Aminodopamine did not affect the cell bodies of the adrenergic neurons and there was a reappearance of adrenergic nerves and recovery of [3H]noradrenaline uptake. 6-Aminodopamine does not seem to pass the blood-brain barrier after systemic injection. Intraventricular injection of 6-aminodopamine in rats led to a considerable reduction in endogenous whole brain noradrenaline and [3H]noradrenaline uptake in slices from cerebral cortex and hypothalamus. Similar, but less pronounced effects were observed on dopamine neurons in the caudate nucleus. Histochemically, pronounced accumulations of transmitter were observed in the axons of the catecholamine neurons. The results obtained favour the view that 6-aminodopamine is able to produce an acute and selective degeneration of catecholamine neurons similar to that seen after the neurotoxicagent, 6-hydroxydopamine. Both compounds seemed to be approximately equally potent in their neurotoxicity, although 6-aminodopamine seemed to be more generally toxic.  相似文献   

12.
In contrast to the majority of sympathetic neurons which are noradrenergic, the sympathetic neurons which innervate sweat glands are cholinergic. Previous studies have demonstrated that during development the sweat gland innervation initially contains catecholamines which are lost as cholinergic function appears. The neurotransmitter phenotype of sweat gland neurons further differs from the majority in that they contain vasoactive intestinal peptide (VIP) rather than neuropeptide Y (NPY). In the experiments described here, we addressed the question of whether sympathetic targets influence the neurotransmitter-related properties of the neurons which innervate them; in particular, do sweat glands play a role in reducing the expression of noradrenergic properties and inducing the expression of cholinergic properties and VIP in sympathetic neurons? This was accomplished by cotransplanting to the anterior chamber of the eye of host rats the superior cervical ganglia (SCG) which contains neurons that normally innervate targets other than the sweat glands and differentiate noradrenergically and footpad tissue from neonatal rats. Sweat glands developed in the transplanted footpad tissue and became innervated by the cotransplanted SCG neurons. The transplanted neurons and sweat gland innervation initially exhibited catecholamine histofluorescence which declined with further development in the anterior chamber. After 4 weeks, choline acetyltransferase (ChAT) and VIP immunoreactivities were evident. These observations suggest that as in the neurons which innervate the glands in situ, noradrenergic properties were suppressed and cholinergic function was induced in the neurons which innervated the glands in oculo. To distinguish a specific influence of the sweat glands on transmitter choice, SCG were also cotransplanted with the pineal gland, a normal target of the ganglion. Neurons cotransplanted with the pineal gland continued to exhibit catecholamine histofluorescence and contained NPY immunoreactivity. At least some neurons in SCG/pineal cotransplants, however, developed ChAT immunoreactivity. The target-appropriate expression of catecholamines and peptides in these experiments is consistent with the hypothesis that some transmitter properties are influenced by target tissues. The indiscriminant expression of ChAT, however, suggests that at least in oculo, additional factors can influence transmitter choice.  相似文献   

13.
Adult neurogenesis and neuronal regeneration in the brain of teleost fish   总被引:3,自引:0,他引:3  
Whereas adult neurogenesis appears to be a universal phenomenon in the vertebrate brain, enormous differences exist in neurogenic potential between “lower” and “higher” vertebrates. Studies in the gymnotiform fish Apteronotus leptorhynchus and in zebrafish have indicated that the relative number of new cells, as well as the number of neurogenic sites, are at least one, if not two, orders of magnitude larger in teleosts than in mammals. In teleosts, these neurogenic sites include brain regions homologous to the mammalian hippocampus and olfactory bulb, both of which have consistently exhibited neurogenesis in all species examined thus far. The source of the new cells in the teleostean brain are intrinsic stem cells that give rise to both glial cells and neurons. In several brain regions, the young cells migrate, guided by radial glial fibers, to specific target areas where they integrate into existing neural networks. Approximately half of the new cells survive for the rest of the fish’s life, whereas the other half are eliminated through apoptotic cell death. A potential mechanism regulating development of the new cells is provided by somatic genomic alterations. The generation of new cells, together with elimination of damaged cells through apoptosis, also enables teleost fish rapid and efficient neuronal regeneration after brain injuries. Proteome analysis has identified a number of proteins potentially involved in the individual regenerative processes. Comparative analysis has suggested that differences between teleosts and mammals in the growth of muscles and sensory organs are key to explain the differences in adult neurogenesis that evolved during phylogenetic development of the two taxa.  相似文献   

14.
Cells derived from the neonatal rat pineal gland were cocultured with cells derived from neonatal rat superior cervical ganglia (SCG) in an attempt to determine whether a sympathetic target organ with only adrenergic properties could enhance the development of adrenergic transmitter properties in sympathetic neurons in tissue culture. Choline acetyltransferase was measured as an index of cholinergic differentiation, and tyrosine hydroxylase was measured as an index of adrenergic differentiation. As indices of total cell number and cellular volume, DNA and protein, respectively, were also measured. We found that the pineal-SCG cocultures contained ten times greater choline acetyltransferase activity than sister neuronal cultures cultured without pineal cells, thus indicating that the pineal cells enhanced cholinergic properties in the sympathetic neurons. This cholinergic enhancement was dependent upon the presence of nerve growth factor and could not be obtained with pineal-conditioned medium. Tyrosine hydroxylase activity, measured on cultures sister to those mentioned above, was low in all cultures and decreased somewhat in SCGs cultured alone. TH activity in the pineal-SCG cocultures, however, increased slightly. Some tyrosine hydroxylating activity developed in pineals cultured alone, however, and may have been responsible for the small increase in tyrosine hydroxylase activity noted in the pineal-SCG cocultures. The implications of these results for a determination of the role that target organ plays in the development of the transmitter properties of sympathetic neurons are discussed.  相似文献   

15.
Summary The autonomic nervous and possible adrenergic humoral control of blood pressure and heart rate during hypoxia was investigated in Atlantic cod. The oxygen tension in the water was reduced to 4.0–5.3 kPa (i.e.. PwO2=30–40 mmHg), and the fish responded with an immediate increase in ventral and dorsal aortic blood pressure (P va P da), as well as a slowly developing bradycardia. The plasma concentrations of circulating catecholamines increased during hypoxia with a peak in the plasma level of noradrenaline occurring before the peak for adrenaline. Bretylium was used as a chemical tool to differentiate between neuronal and humoral adrenergic control of blood pressure and heart rate (f H) during hypoxia. The increase in P va and P da in response to hypoxia was strongly reduced in bretylium-treated cod, which suggests that adrenergic nerves are responsible for hypoxic hypertension. In addition, a small contribution by circulating catecholamines to the adrenergic tonus affecting P va during hypoxia was suggested by the decrease in P va induced by injection of the -adrenoceptor antagonist phentolamine. The cholinergic and the adrenergic tonus affecting heart rate were estimated by injections of atropine and the -adrenoceptor antagonist sotalol. The experiments demonstrate an increased cholicholinergic as well as adrenergic tonus on the heart during hypoxia.  相似文献   

16.
Autonomic ganglia are the complex functional systems within which the information coming through the preganglionic "input" is transformed and transferred to the postganglionic "output". The scientific papers of last years devoted to the investigation of the classical cholinergic and adrenergic and nowadays intensively investigated the so-called "noncholinergic-nonadrenergic" mediatory systems in autonomic ganglia are analysed in this review. The main classical and putative neurotransmitters, complex functional transmitter interactions and their role in the adaptive ganglionic transmission regulation in vivo are considered. The questions of modulatory processes in autonomic ganglia realizing with the help of regulatory peptides are under special consideration.  相似文献   

17.
Matrix metalloproteinases (MMPs) have been proposed to participate in postmortem degradation of fish muscle connective tissues during storage. In the extracellular matrix (ECM) of mammals, a group of specific tissue inhibitors of metalloproteinases (TIMPs) contributes in regulating the MMPs present. However, little information exists on the presence of TIMPs in fish. In this paper, the presence of TIMPs in the muscle of Atlantic cod (Gadus morhua) was investigated using gelatin affinity chromatography, real-time reverse zymography (RTRZ) and mass spectrometry (MS). Using RTRZ inhibitory action against cod muscle, proteinases binding to gelatin were detected in the muscle. The inhibitor had similar molecular weight (21 kDa) as a human recombinant TIMP-2 used as a reference sample. Because isoforms of TIMP-2 homologues with similar molecular weight have been suggested in fish, a two-dimensional RTRZ (2D RTRZ) method was designed. The new method showed the existence of only one form with inhibitory action against cod muscle proteinases. Finally, de novo sequencing of two peptides derived from the cod muscle inhibitor showed high homology to TIMP-2s both from human and other teleosts.  相似文献   

18.
Environmental cues play an important role in determining the transmitter phenotype of developing sympathetic neurons. Several factors have been described which can induce cholinergic function in cultured sympathetic neurons. We have compared certain biological and immunological properties of three of them, cholinergic differentiation factor (CDF), membrane-associated neurotransmitter-stimulating factor (MANS), and ciliary neurotrophic factor (CNTF), to determine whether they are different. As previously reported, all three increased acetylcholine synthesis in cultured sympathetic neurons. In addition, MANS as well as CNTF and CDF decreased catecholamine synthesis. CNTF and MANS, but not CDF, promoted the survival of embryonic chick ciliary neurons. Affinity-purified antibodies raised against a synthetic peptide corresponding to the N-terminal sequence of CDF immunoprecipitated CDF, but not MANS or CNTF. These results indicate that although CDF, MANS, and CNTF have similar effects on transmitter synthesis by cultured sympathetic neurons, CDF lacks the ciliary neurotrophic activity of MANS and CNTF. Further, CDF possesses an N-terminal epitope which is absent from both MANS and CNTF. Thus, CDF is distinct from MANS and CNTF, and at least two factors exist which can alter the transmitter phenotype of sympathetic neurons in vitro.  相似文献   

19.
Adrenergic neural degeneration was seen to increase with age. This is thought to contribute to the decreased cardiac content of the transmitter. Pharmacologically, it was found with the use of tyramine that virtually all of the norepinephrine (NE) pool is available for release, and that there is no difference in the amount of NE released in relation to age. Cardiac responsiveness to adrenergic agonists decreases with age. Our results suggest that this is caused in great measure by increased activity of the prejunctional, neuronal uptake mechanism in the older animal.  相似文献   

20.
The first neurons that differentiate in the embryonic foregut of mammals transiently express catecholamine biosynthetic enzymes and accumulate catecholamine. Since this transmitter is found predominantly in cells of the sympatho-adrenal (SA) lineage, it has been suggested that enteric and sympathetic neurons may derive from the same progenitor. Enteric neurons would then lose the catecholamine phenotype during further development, as the two lineages diverge. We have further investigated this possibility using the SA1 monoclonal antibody that binds selectively to SA progenitor cells in the embryonic rat. We find that SA1 binds to the tyrosine hydroxylase+, neurofilament+, and SCG10+ cells of the Embryonic Day 14.5 (E14.5) rat foregut. We also find that a marker for later neuronal differentiation in the SA lineage, B2, also appears in the myenteric plexus concomitant with the loss of SA1 staining. Thus, at least some enteric neuronal precursors may exhibit the SA1----B2 antigenic switch previously observed in developing sympathetic neurons at E14.5. SA1 staining in the foregut partially overlaps with staining for neuropeptide Y, vasoactive intestinal polypeptide, and serotonin. These results support the hypothesis that enteric and sympathetic neurons derive from a common progenitor and that as the markers for the SA lineage are down-regulated, the many types of enteric neurons begin to differentiate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号