首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The adenovirus origin of DNA replication contains three functionally distinct sequence domains (A, B, and C) that are essential for initiation of DNA synthesis. Previous studies have shown that domain B contains the recognition site for nuclear factor I (NF-I), a cellular protein that is required for optimal initiation. In the studies reported here, we used highly purified NF-I, prepared by DNA recognition site affinity chromatography (P. J. Rosenfeld and T. J. Kelly, Jr., J. Biol. Chem. 261:1398-1408, 1986), to investigate the cellular protein requirements for initiation of viral DNA replication. Our data demonstrate that while NF-I is essential for efficient initiation in vitro, other cellular factors are required as well. A fraction derived from HeLa cell nuclear extract (BR-FT fraction) was shown to contain all the additional cellular proteins required for the complete reconstitution of the initiation reaction. Analysis of this complementing fraction by a gel electrophoresis DNA-binding assay revealed the presence of two site-specific DNA-binding proteins, ORP-A and ORP-C, that recognized sequences in domains A and C, respectively, of the viral origin. Both proteins were purified by DNA recognition site affinity chromatography, and the boundaries of their binding sites were defined by DNase I footprint analysis. Additional characterization of the recognition sequences of ORP-A, NF-I, and ORP-C was accomplished by determining the affinity of the proteins for viral origins containing deletion and base substitution mutations. ORP-C recognized a sequence between nucleotides 41 and 51 of the adenovirus genome, and analysis of mutant origins indicated that efficient initiation of replication is dependent on the presence of a high-affinity ORP-C-binding site. The ORP-A recognition site was localized to the first 12 base pairs of the viral genome within the minimal origin of replication. These data provide evidence that the initiation of adenovirus DNA replication involves multiple protein-DNA interactions at the origin.  相似文献   

2.
3.
Human CCAAT-binding proteins have heterologous subunits   总被引:131,自引:0,他引:131  
  相似文献   

4.
P H Cleat  R T Hay 《The EMBO journal》1989,8(6):1841-1848
The DNA-protein and protein-protein interactions proposed for the stability of nucleoprotein complexes at the origin of replication in prokaryotes are also thought to impart regulatory precision in eukaryotic DNA replication. This type of specificity can be observed, for example, during adenovirus DNA replication where efficient initiation requires that nuclear factor I (NFI) binds to the origin of DNA replication. Addition of purified NFI stimulates the initiation of adenovirus DNA replication in vitro in a reaction that is dependent on the concentration of the adenovirus DNA binding protein (DBP). However, the molecular basis for the synergistic action of NFI and DBP during replication is at present unknown. We report here that DBP increases the affinity of NFI for its binding site in the replication origin. DBP did not, however, increase the affinity of another eukaryotic sequence-specific DNA binding protein, EBP1, for its recognition site. Other single-stranded DNA binding proteins could not substitute for DBP in increasing NFI affinity for its binding site. In addition, DBP was found to alter the binding kinetics of NFI, both by increasing the rate of association and decreasing the rate of dissociation of NFI with the DNA template. The co-operativity between NFI and DBP was also demonstrated on another DNA template, a human NFI site (FIB2), suggesting that this interaction is of general occurrence and not restricted to the adenovirus origin of replication.  相似文献   

5.
A rapid and quantitative nitrocellulose filter-binding assay is described for the detection of nuclear factor I, a HeLa cell sequence-specific DNA-binding protein required for the initiation of adenovirus DNA replication. In this assay, the abundant nonspecific DNA-binding activity present in unfractionated HeLa nuclear extracts was greatly reduced by preincubation of these extracts with a homopolymeric competitor DNA. Subsequently, specific DNA-binding activity was detected as the preferential retention of a labeled 48-base-pair DNA fragment containing a functional nuclear factor I binding site compared with a control DNA fragment to which nuclear factor I did not bind specifically. This specific DNA-binding activity was shown to be both quantitative and time dependent. Furthermore, the conditions of this assay allowed footprinting of nuclear factor I in unfractionated HeLa nuclear extracts and quantitative detection of the protein during purification. Using unfrozen HeLa cells and reagents known to limit endogenous proteolysis, nuclear factor I was purified to near homogeneity from HeLa nuclear extracts by a combination of standard chromatography and specific DNA affinity chromatography. Over a 400-fold purification of nuclear factor I, on the basis of the specific activity of both sequence-specific DNA binding and complementation of adenovirus DNA replication in vitro, was affected by this purification. The most highly purified fraction was greatly enriched for a polypeptide of 160 kilodaltons on silver-stained sodium dodecyl sulfate-polyacrylamide gels. Furthermore, this protein cosedimented with specific DNA-binding activity on glycerol gradients. That this fraction indeed contained nuclear factor I was demonstrated by both DNase I footprinting and its function in the initiation of adenovirus DNA replication. Finally, the stoichiometry of specific DNA binding by nuclear factor I is shown to be most consistent with 2 mol of the 160-kilodalton polypeptide binding per mol of nuclear factor I-binding site.  相似文献   

6.
Nuclear factor I from HeLa cells, a protein with enhancing function in adenovirus DNA replication, and the chicken TGGCA protein are specific DNA-binding proteins that were first detected by independent methods and that appeared to have similar DNA sequence specificity. To test whether they are homologous proteins from different species we have compared (i) their DNA binding properties and (ii) their function in reconstituted adenovirus DNA replication systems. Using deletion and substitution mutants derived from the DNA binding site on the adenovirus 2 inverted terminal repeat, it was found that the two proteins protect the same 24-nucleotide region of both strands against DNase I digestion and that they have identical minimal recognition sequences of 15 bp containing dyad symmetry. Like nuclear factor I, the TGGCA protein enhances the initiation reaction of adenovirus 2 DNA replication in vitro in a DNA recognition site-dependent manner.  相似文献   

7.
An extract from Adenovirus type 4 infected HeLa cells was fractionated by ion-exchange and DNA affinity chromatography. One fraction, which bound tightly to single stranded DNA, contained predominantly a protein of apparent molecular weight 65,000 and three less abundant proteins. Immunological cross-reactivity with adenovirus type 2 proteins confirmed the presence of preterminal protein and indicated that the abundant species was the virus coded DNA binding protein. This fraction contained an aphidicolin resistant DNA polymerase activity and in the presence of a linearised plasmid containing the adenovirus type 4 origin of DNA replication efficient transfer of dCMP onto preterminal protein, indicative of initiation, was observed. Furthermore, addition of all four deoxyribonucleotide triphosphates and an ATP regenerating system resulted in the elongation of initiated molecules to generate plasmid molecules covalently attached to preterminal protein. Adenovirus type 4 DNA binding protein was extensively purified from crude adenovirus-4 infected HeLa extract by immunoaffinity chromatography using a monoclonal antibody raised against adenovirus type 2 DNA binding protein. A low level of initiation of DNA replication was detected in the fraction depleted of DNA binding protein but activity was restored by addition of purified DNA binding protein. DNA binding protein therefore plays an important role in the initiation of Ad4 DNA replication.  相似文献   

8.
9.
10.
11.
T McKenzie  T Hoshino  T Tanaka  N Sueoka 《Plasmid》1986,15(2):93-103
For the study of DNA-membrane interaction and the regulation of replication initiation we have determined the total nucleotide sequence of pUB110. As previously reported, this plasmid replicates in B. subtilis at a copy number of 30-50 per cell, with a majority of plasmids (60-80%) bound to the membrane (type-I binding). The type-I membrane binding is apparently necessary for pUB110 initiation of replication in vivo, but the membrane binding site is not known. Furthermore, four areas of the plasmid specifically bind to Bacillus subtilis membrane in an in vitro binding reaction (type II binding). These two types of membrane binding of pUB110 are different in that the in vivo binding (type-I) requires one (dnaBI) of the host initiation genes and is high-salt resistant, whereas the in vitro binding (type-II) does not require the dnaBI gene product and is high-salt sensitive. 7-mer double-strand sequence, TCAGCAA/AGTCGTT, or one-base derivatives of this sequence are frequently (17 of 23 of the 7-mer sequences) found in or close to the type-II binding areas. One of them is found at a restriction enzyme recognition site of a binding area that destroys the type-II membrane binding. These sequences may or may not have significance in type-II membrane binding. In addition to the neomycin resistance gene, the sequence data indicate two sizable open reading frames, ORF alpha and ORF beta, and two small ORF, gamma, and delta. All of these reading frames are in the same direction, which coincides with the direction of the replication. The open reading frame alpha (ORF alpha) corresponding to 334 amino acids close to the replication origin may be essential for the initiation of replication of PUB110. The putative protein alpha corresponding to this open reading frame contains a consensus sequence of the DNA binding sites which are found in a number of known DNA-binding proteins. The consensus DNA binding site of protein alpha is flanked by two hydrophobic areas. These two observations suggest that the corresponding protein may have both an affinity to a specific site in pUB110, and an affinity to the membrane.  相似文献   

12.
TGGCA-binding proteins are nuclear proteins with high affinity for double-stranded DNA homologous to the prototype recognition sequence 5'YTGGCANNNTGCCAR 3'. Their ubiquitous tissue distribution in higher vertebrates characterizes them as a class of highly conserved proteins which may exert a basic function. To obtain clues to this function, specific binding sites were mapped on three viral genomes. Recognition sites were identified in the enhancer region of the BK virus, in the LTR of the mouse mammary tumor virus, and in the origin of replication of adenovirus 12. The TGGCA-binding protein from HeLa cells appears to be identical to nuclear factor I described by others, which stimulates initiation of adenovirus DNA replication in vitro. However, data from MMTV, BKV, and from cellular genes suggest that this specific protein-DNA interaction may also be involved in the control of gene activity.  相似文献   

13.
In-vivo studies have demonstrated that adenovirus type 2 and adenovirus type 4 have different DNA sequence requirements for the initiation of DNA replication. To investigate the basis of these differences an in-vitro system has been developed which will faithfully initiate adenovirus type 4 DNA replication. A plasmid containing 140 base-pairs of the right terminus of adenovirus type 4 supported initiation of DNA replication in vitro, provided that the plasmid was linearized in such a way as to locate the viral terminal sequences at the molecular ends of the DNA. Initiation by adenovirus type 4-infected cell extracts was also supported by a plasmid containing the complete adenovirus type 2 inverted terminal repeat (ITR). Deletion analysis of both adenovirus types 2 and 4 ITRs revealed that only the terminal 18 base-pairs of the genomes (perfectly conserved between the 2 viruses) were required for initiation in vitro. Thus, initiation was not enhanced by the presence of either the NFI site, the NFIII site or both sites together. Fractionation of a HeLa cell nuclear extract, by ion-exchange chromatography, identified a nuclear factor that stimulated the initiation reaction four- to fivefold. The stimulatory factor did not correspond to either of the cellular proteins NFI or NFIII which stimulate adenovirus type 2 DNA replication in vitro. Initiation in vitro was also supported by single-stranded DNA templates, albeit at a lower efficiency. Studies with synthetic oligonucleotides indicated a surprising specificity for initiation: whereas the strand used as template during initiation in vivo was active as a template for initiation in vitro, the complementary strand was inactive.  相似文献   

14.
15.
The Epstein-Barr virus (EBV) nuclear antigen EBNA-1 plays an integral role in the maintenance of latency in EBV-infected B lymphocytes. EBNA-1 binds to sequences within the plasmid origin of replication (oriP). It is essential for the replication of the latent episomal form of EBV DNA and may also regulate the expression of the EBNA group of latency gene products. We have used sequence-specific DNA-binding assays to purify EBNA-1 away from nonspecific DNA-binding proteins in a B-lymphocyte cell extract. The availability of this eucaryotic protein has allowed an examination of the interaction of EBNA-1 with its specific DNA-binding sites and an evaluation of possible roles for the different binding loci within the EBV genome. DNA filter binding assays and DNase I footprinting experiments showed that the intact Raji EBNA-1 protein recognized the two binding site loci in oriP and the BamHI-Q locus and no other sites in the EBV genome. Competition filter binding experiments with monomer and multimer region I consensus binding sites indicated that cooperative interactions between binding sites have relatively little impact on EBNA-1 binding to region I. An analysis of the binding parameters of the Raji EBNA-1 to the three naturally occurring binding loci revealed that the affinity of EBNA-1 for the three loci differed. The affinity for the sites in region I of oriP was greater than the affinity for the dyad symmetry sites (region II) of oriP, while the physically distant region III locus showed the lowest affinity. This arrangement may provide a mechanism whereby EBNA-1 can lowest affinity. This arrangement may provide a mechanism whereby EBNA-1 can mediate differing regulatory functions through differential binding to its recognition sequence.  相似文献   

16.
17.
18.
Structure and function of the adenovirus origin of replication   总被引:30,自引:0,他引:30  
Efficient initiation of adenovirus DNA replication requires the presence of specific terminal nucleotide sequences that collectively constitute the viral origin of replication. Using plasmids with deletions or base substitutions in a cloned segment of DNA derived from the terminus of the adenovirus 2 genome, we have demonstrated that the origin contains two functionally distinct regions. The first 18 bp of the viral genome are sufficient to support a limited degree of initiation. However, the presence of a sequence in the region between nucleotides 19 and 67 greatly enhances the efficiency of the initiation reaction. This region contains a specific binding site for a protein present in uninfected cells (KD = 2 X 10(-11) M). The bound protein protects the DNA segment between base pairs 19 and 43 from attack by DNAase I. Studies with deletion mutants indicate that binding of the cellular protein is responsible for the enhancement of initiation.  相似文献   

19.
Two novel Enterococcus faecalis-Escherichia coli shuttle vectors that utilize the promoter and ribosome binding site of bacA on the E. faecalis plasmid pPD1 were constructed. The vectors were named pMGS100 and pMGS101. pMGS100 was designed to overexpress cloned genes in E. coli and E. faecalis and encodes the bacA promoter followed by a cloning site and stop codon. pMGS101 was designed for the overexpression and purification of a cloned protein fused to a Strep-tag consisting of 9 amino acids at the carboxyl terminus. The Strep-tag provides the cloned protein with an affinity to immobilized streptavidin that facilitates protein purification. We cloned a promoterless beta-galactosidase gene from E. coli and cloned the traA gene of the E. faecalis plasmid pAD1 into the vectors to test gene expression and protein purification, respectively. beta-Galactosidase was expressed in E. coli and E. faecalis at levels of 10(3) and 10 Miller units, respectively. By cloning the pAD1 traA into pMGS101, the protein could be purified directly from a crude lysate of E. faecalis or E. coli with an immobilized streptavidin matrix by one-step affinity chromatography. The ability of TraA to bind DNA was demonstrated by the DNA-associated protein tag affinity chromatography method using lysates prepared from both E. coli and E. faecalis that overexpress TraA. The results demonstrated the usefulness of the vectors for the overexpression and cis/trans analysis of regulatory genes, purification and copurification of proteins from E. faecalis, DNA binding analysis, determination of translation initiation site, and other applications that require proteins purified from E. faecalis.  相似文献   

20.
To assess which residues of Oct-1 POU-specific (POUs) are important for DNA recognition and stimulation of adenovirus DNA replication we have mutated 10 residues of the POUs helix-turn-helix motif implicated in DNA contact. Seven of these turned out to have reduced DNA binding affinity. Of these, three alanine substituted proteins were found to have a changed specificity using a binding site selection procedure. Mutation of the first residue in the recognition helix, Gln44, to alanine led to a loss of specificity for the first two bases, TA, of the wild-type recognition site TATGC(A/T)AAT. Instead of the A, a T was selected, suggesting a new contact and a novel specificity. A change in specificity was also observed for the T45A mutant, which could bind to TATAC(A/T)AAT, a site hardly recognized by the wild-type protein. Mutation of residue Arg49 led to a relaxed specificity for three consecutive bases, TGC. This residue, which is critical for high affinity binding, is absent from the structurally homologous lambdoid helix-turn-helix motifs. Employing a reconstituted system all but two mutants could stimulate adenovirus DNA replication upon saturation. Mutation of residues Gln27 and Arg49 impairs the ability of the Oct-1 POU domain protein to enhance replication, with a concomitant loss of DNA contacts. Since the POU domain binds the precursor terminal protein-DNA polymerase complex and guides it to the origin, lack of stimulation may be caused by incorrect targetting of the DNA polymerase due to loss of specificity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号