首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The fatty acid compositions of stationary-phase cultures of Arizona arizonae, Citrobacter freundii, Providencia alcalifaciens, Providencia stuartii, and Providencia sp. were studied. The major fatty acids of A. arizonae, C. freundii, and Providencia were 16:0, 16:1, 17:cyclopropane, and 19:cyclopropane. The fatty acid compositions of the two strains of A. arizonae examined were similar to each other, but the three strains of C. freundii differed from one another in their fatty acid compositions. In both A. arizonae and C. freundii, the relative quantities of saturated, unsaturated, and cyclopropane fatty acids were similar to those which have been found in stationary-phase cultures of other members of the Enterobacteriaceae. The three strains of Providencia also differed from one another in their fatty acid compositions. In all three strains, the total quantity of unsaturated fatty acids was larger and that of the cyclopropane fatty acids was smaller than those found in stationary-phase cultures of other enteric bacteria.  相似文献   

2.
The processes that govern the regulated transport of long-chain fatty acids across the plasma membrane are quite distinct compared to counterparts involved in the transport of hydrophilic solutes such as sugars and amino acids. These differences stem from the unique physical and chemical properties of long-chain fatty acids. To date, several distinct classes of proteins have been shown to participate in the transport of exogenous long-chain fatty acids across the membrane. More recent work is consistent with the hypothesis that in addition to the role played by proteins in this process, there is a diffusional component which must also be considered. Central to the development of this hypothesis are the appropriate experimental systems, which can be manipulated using the tools of molecular genetics. Escherichia coli and Saccharomyces cerevisiae are ideally suited as model systems to study this process in that both (i) exhibit saturable long-chain fatty acid transport at low ligand concentrations, (ii) have specific membrane-bound and membrane-associated proteins that are components of the transport apparatus, and (iii) can be easily manipulated using the tools of molecular genetics. In both systems, central players in the process of fatty acid transport are fatty acid transport proteins (FadL or Fat1p) and fatty acyl coenzyme A (CoA) synthetase (FACS; fatty acid CoA ligase [AMP forming] [EC 6.2.1.3]). FACS appears to function in concert with FadL (bacteria) or Fat1p (yeast) in the conversion of the free fatty acid to CoA thioesters concomitant with transport, thereby rendering this process unidirectional. This process of trapping transported fatty acids represents one fundamental mechanism operational in the transport of exogenous fatty acids.  相似文献   

3.
The fatty acid compositions of three psychrophilic species of Bacillus were determined by gas--liquid chromatography. The proportions of straight-chain fatty acids, branched-chain fatty acids, and unsaturated fatty acids were found to be 13.3, 86.7, and 26.1% of the total cellular fatty acids for Bacillus globispores, 36.6, 63.4, and 25.1% for Bacillus insolitus, and 6.9, 93.1, and 18.4% for Bacillus psychrophilus, respectively. In all three organisms the de novo fatty acid synthetase specificity towards acyl-CoA primers was butyryl-CoA greater than propionyl-CoA much greater than acetyl-CoA. This shows that B. insolitus, which has an unusually large proportion of straight-chain fatty acids for Bacillus, does not possess a different de novo fatty acid synthetase than the other two organisms. Therefore, the greater proportion of straight-chain fatty acids in B. insolitus may be explained by a large supply of straight-chain primer.  相似文献   

4.
Branched-chain fatty acids of the iso and anteiso series occur in many bacteria as the major acyl constituents of membrane lipids. In addition, omega-cyclohexyl and omega-cycloheptyl fatty acids are present in several bacterial species. These two types of fatty acids are synthesized by the repeated condensation of malonyl coenzyme A with one of the branched-chain and cyclic primers by the same enzyme system. The pathway of de novo branched-chain fatty acid synthesis differs only in initial steps of synthesis from that of the common straight-chain fatty acid (palmitic acid) present in most organisms. The cell membranes composed largely of iso-, anteiso-, and omega-alicyclic acids support growth of bacteria, which inhabit normal as well as extreme environments. The occurrence of these types of fatty acids as major cellular fatty acids is an important criterion used to aid identification and classification of bacteria.  相似文献   

5.
Uptake of Tween-fatty acid esters and incorporation of the fatty acids into lipids by soybean (Glycine max [L.] Merr.) suspension cultures was investigated, together with subsequent turnover of the incorporated fatty acids and associated changes in endogenous fatty acid synthesis. Tween uptake was saturable, and fatty acids were rapidly transferred from Tweens to all acylated lipids. Patterns of incorporation into glycerolipids were similar in cells treated with Tweens carrying [1-14C]-fatty acids and in cells treated with [1-14C]acetate, indicating that exogenous fatty acids were used for glycerolipid synthesis essentially as if they had been made by the cell. In Tween-treated cells neutral lipids (which include Tweens) initially accounted for the majority of lipid radioactivity. Radioactivity was then rapidly transferred to glycerolipids. A transient pool of free fatty acids accounting for up to 10% of lipid radioactivity was observed. This was consistent with the hypothesis that fatty acids are transferred from Tweens to lipids by deacylation of the Tweens, creating a pool of free fatty acids which are then used for lipid synthesis. Sterols were only slightly labeled in cells treated with Tweens, but accounted for nearly 50% of lipid radioactivity in cells treated with acetate. This suggested very little degradation and reutilization of the radioactive fatty acids in cells treated with Tweens. In cells treated with either [1-14C]acetate or Tween-[1-14C]-18:1, 70% of the initial fatty acid radioactivity remained in fatty acids after a 100 hour chase. By contrast, fatty acids not normally present disappeared more rapidly, suggesting differential treatment of such fatty acids compared with those normally present. Cells which had incorporated large amounts of exogenous fatty acids altered fatty acid synthesis in three distinct ways: (a) amounts of [1-14C]acetate incorporated into fatty acids were reduced; (b) cells incorporating exogenous unsaturated fatty acids increased the proportion of [1-14C]acetate partitioned into saturated fatty acids, while the converse was true of cells which had incorporated exogenous saturated fatty acids; (c) desaturation of 18:1 to 18:2 and 18:3 was reduced in cells which had incorporated unsaturated fatty acids. These results suggest that Tween-fatty acid esters will be useful for supplying fatty acids to cells for a variety of studies related to fatty acid or membrane metabolism.  相似文献   

6.
Human keratinocytes in culture were labelled with 14C-dihomo-gamma-linolenic acid, 14C-arachidonic acid or 14C-eicosapentaenoic acid. All three eicosanoid precursor fatty acids were effectively incorporated into the cells. In phospholipids most of the radioactivity was recovered, in neutral lipids a substantial amount, and as free unesterified fatty acids only a minor amount. The most of the radioactivity was found in phosphatidylethanolamine which was also the major phospholipid as measured by phosphorous assay. The incorporation of dihomo-gamma-linolenic acid and arachidonic acid into lipid subfractions was essentially similar. Eicosapentaenoic acid was, however, much less effectively incorporated into phosphatidylinositol + phosphatidylserine and, correspondingly, more effectively into triacylglycerols as compared to the two other precursor fatty acids. Once incorporated, the distribution of all three precursor fatty acids was relatively stable, and only minor amounts of fatty acids were released into the culture medium during short term culture (two days). Our study demonstrates that eicosanoid precursor fatty acids are avidly taken up by human keratinocytes and esterified into membrane lipids. The clinical implication of this finding is that dietary manipulations might be employed to cause changes in the fatty acid composition of keratinocytes.  相似文献   

7.
The fatty acid composition of thymus cells, liver, blood plasma, muscle tissue, and tumor focus has been studied in mice with solid Ehrlich carcinoma. The tumor growth in the mice was associated with an increase in the total content of monounsaturated fatty acids in all organs and tissues studied and with a decrease in the total amount of polyunsaturated fatty acids in all tissues except blood plasma. The tumor tissue was characterized by increased levels of monounsaturated fatty acids in comparison with their levels in organs and tissues of intact animals. In the thymus of tumor-bearing mice, the contents of myristic and palmitic saturated fatty acids, which are associated with activation of the T-cell immunity, were increased. The most expressed and considerable changes in the fatty acid composition during tumor growth were observed in the muscle tissue of the animals. A possible role of changes in the fatty acid composition in the investigated organs and tissues of tumor-bearing mice in the organism’s response to tumor growth is discussed.  相似文献   

8.
The timing and kinetics of fatty acid synthesis are delineated for Bacillus thuringiensis spore germination and outgrowth by analyzing [U-14C]acetate and [2-3H]glycerol incorporation into chloroform-methanol-extractable and trichloroacetic acid-precipitable lipids. In addition to measurement of pulsed and continuous labeling of fatty acids, monitoring the incorporation of radioactive phenylalanine, thymidine, and uridine from the onset of germination through first cell division provides a profile of biochemical activities related to membrane differentiation and cellular development. Upon germination, ribonucleic acid synthesis is initiated, immediately followed by rapid and extensive fatty acid synthesis that in turn precedes protein, deoxyribonucleic acid and triglyceride synthesis. Significantly, formation of fatty acids from acetate exhibits further developmental periodicity in which a large transient increase in fatty acid synthetic activity coincides with the approach of cell division. Radiorespirometric analyses indicates only slight oxidative decarboxylation of acetate and corroborates the extreme involvement of acetate in specific fatty acid biosynthetic reactions throughout cellular modification. These findings graphically demonstrate an intimate association of fatty acid metabolism with commitment to spore outgrowth and subsequent cell division.  相似文献   

9.
The synthesis of long chain fatty acids from acetate by a de novo pathway and by direct elongation of endogenous fatty acids has been demonstrated in homogenates of 4-day-old housefly larvae. The distribution of the synthesized fatty acids among the main classes of lipid has been studied. Addition of coenzyme-A to the medium inhibited the de novo synthesis pathway and made elongation the main synthetic route by which the radioactive acetate was incorporated into fatty acids. Direct elongation of palmitoleic to vaccenic acid has been demonstrated to occur in the homogenates. No consistent differences could be observed in the amount and distribution of the radioactivity incorporated into the fatty acids of homogenates prepared from larvae reared on a choline-deprived or a choline-sufficient diet. Addition of phosphatidylcholine to such homogenates also produced no changes in the labelling patterns. It was concluded that the changes seen, in vivo, in the fatty acids of the phospholipids, which accompany alteration of the amount of lipid-choline in the larvae, were unlikely to be due to any direct effect of the phosphatidylcholine on the enzymes involved in fatty acid synthesis.  相似文献   

10.
Visual function, fatty acids and dyslexia   总被引:1,自引:0,他引:1  
There is mounting evidence that developmental dyslexia is a neurodevelopmental disorder which involves abnormalities of fatty acid metabolism, particularly with respect to certain long-chain highly unsaturated fatty acids (HUFAs). Psychophysical evidence also strongly suggests that dyslexics may have visual deficits as well as phonological problems. Specifically, these visual deficits appear to be related to the magnocellular pathway, which is specialized for processing fast, rapidly-changing information about the visual scene. It remains unclear how these two aspects of dyslexia - fatty acid processing and visual magnocellular function - could be related. We propose some hypotheses - necessarily speculative, given the paucity of biochemical research in this field to date - which address this question.  相似文献   

11.
Cardiolipin preparations from Streptococcus B, Listeria welshimeri, Staphylococcus aureus, and a glucosyl and lysyl derivative of cardiolipin were analysed for fatty acid composition and fatty acid combinations. Three different fatty acid patterns are described and up to 17 molecular species were identified in Streptococcus B lipids by high resolution FAB MS. The physicochemical properties of these lipids were characterised in the sodium salt form by monofilm experiments and X-ray powder diffraction. All lipids formed stable monofilms. The minimal space requirement of unsubstituted cardiolipin was dictated by the fatty acid pattern. Substitution with L-lysine led to a decrease of the molecular area, substitution with D-glucopyranosyl to an increase. On self assembly at 100% relative humidity, all preparations adopted lamellar structures. They showed a high degree of order, in spite of the heterogeneous fatty acid compositions and numerous fatty acid combinations. The repeat distances in lamellar fluid phase varied between 4.99 and 5. 52 nm, the bilayer thickness between 3.70 and 4.46 nm. Surprising were the low values of sorbed water per molecule of the glucosyl and lysyl derivatives which were 58 and 60%, compared with those of the respective cardiolipin. When Na(+) was replaced as counterion by Ba(2+), the bilayer structure was retained, but the lipids were in the lamellar gel phase and the fatty acids were tilted between 32 and 53 degrees away from the bilayer normal. Wide angle X-ray diffraction studies and electron density profiles are also reported. Particular properties of glucosyl cardiolipin are discussed.  相似文献   

12.
Weanling male rats were fed diets containing 5, 10, or 20% (by weight) fat. Diets were made isocaloric by decreasing the amount of starch as the diet fat level increased. At each fat level, three oil mixtures were fed which contained 13, 32, or 79% saturated fatty acids. The polyunsaturate level was 11% of total fatty acids in all mixtures. After 12 weeks, animals eating the high fat diets had gained significantly less weight and had eaten less feed. These animals also had significantly lighter livers and more liver lipids. The level and type of fat in the diet affected the amount (mg/g) of several phospholipids in the liver and heart. The fatty acid patterns (total saturates, n - 3, n - 6 fatty acids) of the major phospholipids were generally constant, the monounsaturated fatty acids being the major exception.  相似文献   

13.
The Wnt signaling pathway consists of various downstream target proteins that have substantial roles in mammalian cell proliferation, differentiation, and development. Its aberrant activity can lead to uncontrolled proliferation and tumorigenesis. The posttranslational connection of fatty acyl chains to Wnt proteins provides the unique capacity for regulation of Wnt activity. In spite of the past belief that Wnt molecules are subject to dual acylation, it has been shown that these proteins have only one acylation site and undergo monounsaturated fatty acylation. The Wnt monounsaturated fatty acyl chain is more than just a hydrophobic coating and appears to be critical for Wnt signaling, transport, and receptor activation. Here, we provide an overview of recent findings in Wnt monounsaturated fatty acylation and the mechanism by which this lipid moiety regulates Wnt activity from the site of production to its receptor interactions.  相似文献   

14.
There is much data on the effects of dietary n-3 fatty acids on tissue fatty acid compositions, but comparable comprehensive data on their oxygenated metabolites (oxylipins) is limited. The effects of providing female and male rats with diets high in α-linolenic acid (ALA), EPA or DHA for 6 weeks on oxylipins and fatty acids in kidney, liver and serum were therefore examined. The oxylipin profile generally reflected fatty acids, but it also revealed unique effects of individual n-3 fatty acids that were not apparent from fatty acid data alone. Dietary ALA increased renal and serum DHA oxylipins even though DHA itself did not increase, while dietary EPA did not increase DHA oxylipins in kidney or liver, suggesting that high EPA may inhibit this conversion. Oxylipin data generally corroborated fatty acid data that indicated that DHA can be retroconverted to EPA and that further retroconversion to ALA is limited. Dietary n-3 fatty acids decreased n-6 fatty acids and their oxylipins (except linoleic acid and its oxylipins), in order of effectiveness of DHA > EPA > ALA, with some exceptions: several arachidonic acid oxylipins modified at carbon 15 were not lower in all three sites, and EPA had a greater effect on 12-hydroxy-eicosatetraenoic acid and its metabolites in the liver. Oxylipins were predominantly higher in males, which was not reflective of fatty acids. Tissue-specific oxylipin profiles, therefore, provide further information on individual dietary n-3 fatty acid and sex effects that may help explain their unique physiological effects and have implications for dietary recommendations.  相似文献   

15.
The fatty acid composition of the fruit oils or seed oils of Pittosporaceae (eight genera, 10 species), Araliaceae (two species), Simarubaceae (three species), and of one umbelliferous and one rutaceous species were determined by gas chromatography, argentation TLC and ozonolysis. In the Pittosporaceae, in which the major C18 fatty acid of all species was either oleic acid (18:1, 9c) or linoleic acid (18:2, 9c, 12c), large amounts of C20 and C22 fatty acids seem to occur regularly. Petroselinic (18:1, 6c) and tariric (18:1, 6a) acids were absent. However, petroselinic acid was the major fatty acid in the Araliaceae and Umbelliferae. In these two families only small amounts of C20 and C22 acids were detected and tariric acid was absent. The Rutales contained relatively high amounts of trans-octadecenoic acids (18:1, 9t). Tariric acid was the major fatty acid in the two species of Picramnia (Simarubraceae), which also contained small amounts of petroselinic acid. The major fatty acids in Ailanthus glandulosa (Simarubaceae) and Phellodendron amurense (Rutaceae) were linoleic or linolenic acid (18:3, 9c, 12c, 15c); these species contained neither tariric nor petroselinic acid and the levels of C20 and C22 fatty acids were low. The appearance of schizogenous resin canals and polyacetylenes and the absence of iridoids and petroselinic acid allows the Pittosporaceae to be separated from the Rutales and Araliales and to be placed in an independent order, the Pittosporales. Arguments for a rather close relationship of the Pittosporales to the Araliales and Cornales (including the Escalloniaceae) are presented.  相似文献   

16.
Mammalian phosphatidylinositol (PI) has a unique fatty acid composition in that 1-stearoyl-2-arachidonoyl species is predominant. This fatty acid composition is formed through fatty acid remodeling by sequential deacylation and reacylation. We recently identified three Caenorhabditis elegans acyltransferases (ACL-8, ACL-9, and ACL-10) that incorporate stearic acid into the sn-1 position of PI. Mammalian LYCAT, which is the closest homolog of ACL-8, ACL-9, and ACL-10, was originally identified as a lysocardiolipin acyltransferase by an in vitro assay and was subsequently reported to possess acyltransferase activity toward various anionic lysophospholipids. However, the in vivo role of mammalian LYCAT in phospholipid fatty acid metabolism has not been well elucidated. In this study, we generated LYCAT-deficient mice and demonstrated that LYCAT determined the fatty acid composition of PI in vivo. LYCAT-deficient mice were outwardly healthy and fertile. In the mice, stearoyl-CoA acyltransferase activity toward the sn-1 position of PI was reduced, and the fatty acid composition of PI, but not those of other major phospholipids, was altered. Furthermore, expression of mouse LYCAT rescued the phenotype of C. elegans acl-8 acl-9 acl-10 triple mutants. Our data indicate that LYCAT is a determinant of PI molecular species and its function is conserved in C. elegans and mammals.  相似文献   

17.
Essential fatty acids, lipid peroxidation and apoptosis   总被引:6,自引:0,他引:6  
Essential fatty acids (EFAs) and their metabolites, especially gamma-linolenic acid, arachidonic acid, eicosapentaenoic acid and decosahexaenoic acid are known to induce apoptotic death of tumour cells. But the exact mechanism by which these fatty acids are able to induce apoptosis is not clear. Recent studies suggest that these fatty acids are able to induce apoptosis in cells over expressing cytochrome P450 following depletion of cellular glutathione and inhibition of carnitine palmitoyl transferase I (CPTI) activity. On the other hand, BCL-2 prevented apoptosis induced by these long-chain fatty acids, where as n-3 fatty acids suppressed ras expression leading to suppression of development of overt neoplasia. Phosphorylation of BCL-2 inhibits its ability to interfere with apoptosis and enhances lipid peroxidation leading to the occurrence of apoptosis. Tumour cells treated with long-chain fatty acids show increase in lipid peroxidation process, depletion of antioxidants and phosphorylation of proteins. Based on these results, it is suggested that long-chain fatty acids induce apoptosis by enhancing lipid peroxidation, suppressing BCL-2 expression possibly by phosphorylation and augmentation of P450 activity. Thus, these long-chain fatty acids may, infact act at the level of gene/oncogene expression in producing their cytotoxic action on tumour cells.  相似文献   

18.
Fatty acids are essential for life because they are essential components of cellular membranes. Lower animals can synthesize all four classes of fatty acids from non-lipid sources, but both omega-6 and omega-3 cannot be synthesized de novo by ‘higher’ animals and are therefore essential components of their diet. The relationship between normal variation in diet fatty acid composition and membrane fatty acid composition is little investigated. Studies in the rat show that, with respect to the general classes of fatty acids (saturated, monounsaturated and polyunsaturated) membrane fatty acid composition is homeostatically regulated despite diet variation. This is not the case for fatty acid composition of storage lipids, which responds to diet variation. Polyunsaturated fatty acids are important determinants of physical and chemical properties of membranes. They are the substrates for lipid peroxidation and it is possible to calculate a peroxidation index (PI) for a particular membrane composition. Membrane PI appears to be homeostatically regulated with respect to diet PI. Membrane fatty acid composition varies among species and membrane PI is inversely correlated to longevity in mammals, birds, bivalve molluscs, honeybees and the nematode Caenorhabditis elegans.  相似文献   

19.
《Phytochemistry》1987,26(5):1441-1445
Seed, kernel or fruit oils of the Cornaceae (nine species). Hydrangea, Hamamelis, Ilex (Aquifoliaceae) and the Styracaceae (two species) were analysed for fatty acid composition. Special attention was paid to the occurrence of petroselinic acid (18: 1Δ6c). In the species investigated. C18 acids were always present in greater quantities than C16 fatty acids; C20 and C22 acids were only minor components. The Cornaceae show differing fatty acid patterns which correlate well with anatomical, morphological and other chemical data. In Cornus, Curtisia, Mastixia and Corokia linoleic acid predominates, whereas linoleic and linolenic acid form the major components in Davidia and Nyssa. 18 : 1Δ6c, an aralioid type, occurs in large amounts in Aucuba and Griselinia. Hamamelis, Hydrangea and Ilex show a common fatty acid pattern with linoleic acid as the dominant component in all cases. Classification currently based on morphological and anatomical differences between the two species of Styracaceae which were investigated here should include their different fatty acid compositions: in Halesia linoleic acid predominates over oleic acid, whereas in Styrax equal amounts of these two acids are found.  相似文献   

20.
The innate immune system of the brain is principally composed of microglial cells and astrocytes, which, once activated, protect neurons against insults (infectious agents, lesions, etc.). Activated glial cells produce inflammatory cytokines that act specifically through receptors expressed by the brain. The functional consequences of brain cytokine action (also called neuroinflammation) are alterations in cognition, mood and behaviour, a hallmark of altered well-being. In addition, proinflammatory cytokines play a key role in depression and neurodegenerative diseases linked to aging. Polyunsaturated fatty acids (PUFA) are essential nutrients and essential components of neuronal and glial cell membranes. PUFA from the diet regulate both prostaglandin and proinflammatory cytokine production. n-3 fatty acids are anti-inflammatory while n-6 fatty acids are precursors of prostaglandins. Inappropriate amounts of dietary n-6 and n-3 fatty acids could lead to neuroinflammation because of their abundance in the brain and reduced well-being. Depending on which PUFA are present in the diet, neuroinflammation will, therefore, be kept at a minimum or exacerbated. This could explain the protective role of n-3 fatty acids in neurodegenerative diseases linked to aging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号