首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Epidermal growth factor (EGF) receptor plays a pivotal role in a variety of cellular functions, such as proliferation, differentiation, and migration. To monitor the EGF receptor (EGFR) activity in living cells, we developed a probe for EGFR activity based on the principle of fluorescence resonance energy transfer (FRET). Previously, we developed a probe designated as Picchu (Phosphorylation indicator of the CrkII chimeric unit), which detects the tyrosine phosphorylation of the CrkII adaptor protein. We used a pair of synthetic amphipathic helixes, WinZipA2 and WinZipB1, to bind Picchu non-covalently to the carboxyl-terminus of the EGFR. Using this modified probe named Picchu-Z, the activity of EGFR was followed in EGF-stimulated Cos7 cells. We found that a high level of tyrosine phosphorylation of Picchu-Z probe remained after endocytosis until the point when the EGFR was translocated to the perinuclear region. These findings are in agreement with the previously reported "signaling endosome" model. Furthermore, by pulse stimulation with EGF and by acute ablation of EGFR activity with AG1478, it was suggested that the phosphorylation of Picchu-Z probe, and probably the phosphorylation of EGFR also, underwent a rapid equilibrium (tau(1/2) < 2 min) between the phosphorylated and dephosphorylated states in the presence of EGF.  相似文献   

2.
A-kinase anchoring proteins tether cAMP-dependent protein kinase (PKA) to specific subcellular locations. The purpose of this study was to use fluorescence resonance energy transfer to monitor binding events in living cells between the type II regulatory subunit of PKA (RII) and the RII-binding domain of the human thyroid RII anchoring protein (Ht31), a peptide containing the PKA-binding domain of an A-kinase anchoring protein. RII was linked to enhanced yellow fluorescent protein (EYFP), Ht31 was linked to enhanced cyan fluorescent protein (ECFP), and these constructs were coexpressed in Chinese hamster ovary cells. Upon excitation of the donor fluorophore, Ht31.ECFP, an increase in emission of the acceptor fluorophore, RII.EYFP, and a decrease in emission from Ht31.ECFP were observed. The emission ratio (acceptor/donor) was increased 2-fold (p < 0.05) in cells expressing Ht31.ECFP and RII.EYFP compared with cells expressing Ht31P.ECFP, the inactive form of Ht31, and RII.EYFP. These results provide the first in vivo demonstration of RII/Ht31 interaction in living cells and confirm previous in vitro findings of RII/Ht31 binding. Using surface plasmon resonance, we also showed that the green fluorescent protein tags did not significantly alter the binding of Ht31 to RII. Thus, fluorescence resonance energy transfer can be used to directly monitor protein-protein interactions of the PKA signaling pathway in living cells.  相似文献   

3.
Epidermal growth factor (EGF) binding to its receptor causes rapid phosphorylation of the clathrin heavy chain at tyrosine 1477, which lies in a domain controlling clathrin assembly. EGF-mediated clathrin phosphorylation is followed by clathrin redistribution to the cell periphery and is the product of downstream activation of SRC kinase by EGF receptor (EGFR) signaling. In cells lacking SRC kinase, or cells treated with a specific SRC family kinase inhibitor, EGF stimulation of clathrin phosphorylation and redistribution does not occur, and EGF endocytosis is delayed. These observations demonstrate a role for SRC kinase in modification and recruitment of clathrin during ligand-induced EGFR endocytosis and thereby define a novel effector mechanism for regulation of endocytosis by receptor signaling.  相似文献   

4.
Binding of epidermal growth factor (EGF) to its receptor (EGFR) augments the tyrosine kinase activity of the receptor and autophosphorylation. Exposure of some tissues and cells to EGF also stimulates adenylyl cyclase activity and results in an increase in cyclic AMP (cAMP) levels. Because cAMP activates the cAMP-dependent protein kinase A (PKA), we investigated the effect of PKA on the EGFR. The purified catalytic subunit of PKA (PKAc) stoichiometrically phosphorylated the purified full-length wild type (WT) and kinase negative (K721M) forms of the EGFR. PKAc phosphorylated both WT-EGFR as well as a mutant truncated form of EGFR (Delta1022-1186) exclusively on serine residues. Moreover, PKAc also phosphorylated the cytosolic domain of the EGFR (EGFRKD). Phosphorylation of the purified WT as well as EGFRDelta1022-1186 and EGFRKD was accompanied by decreased autophosphorylation and diminished tyrosine kinase activity. Pretreatment of REF-52 cells with the nonhydrolyzable cAMP analog, 8-(4-chlorophenylthio)-cAMP, decreased EGF-induced tyrosine phosphorylation of cellular proteins as well as activation of the WT-EGFR. Similar effects were also observed in B82L cells transfected to express the Delta1022-1186 form of EGFR. Furthermore, activation of PKAc in intact cells resulted in serine phosphorylation of the EGFR. The decreased phosphorylation of cellular proteins and diminished activation of the EGFR in cells treated with the cAMP analog was not the result of altered binding of EGF to its receptors or changes in receptor internalization. Therefore, we conclude that PKA phosphorylates the EGFR on Ser residues and decreases its tyrosine kinase activity and signal transduction both in vitro and in vivo.  相似文献   

5.
Phospholipase C-gamma (PLC-gamma) and GTPase activating protein (GAP) are substrates of EGF, PDGF and other growth factor receptors. Since either PLC-gamma or GAP also bind to the activated receptors it was suggested that their SH2 domains are mediating this association. We attempted to delineate the specific region of the EGF receptor that is responsible for the binding, utilizing EGF receptor mutants, PLC-gamma, and a bacterially expressed TRP E fusion protein containing the SH2 domains of GAP. As previously shown, tyrosine autophosphorylation of the wild-type receptor wsa crucial in mediating the association and in agreement, a kinase negative EGF receptor could bind PLC-gamma or TRP E GAP SH2, but only when cross tyrosine phosphorylated by an active EGF receptor kinase. The importance of autophosphorylation for association was confirmed by demonstrating that a carboxy-terminal deletion of the EGFR missing four autophosphorylation sites bound these proteins poorly. To study the role of EGF receptor autophosphorylation further, a 203 amino acid EGF receptor fragment was generated with cyanogen bromide that contained all known tyrosine autophosphorylation sites. This fragment bound both TRP E GAP SH2 and PLC-gamma but only when tyrosine phosphorylated. This data localizes a major binding site for SH2 domain containing proteins to the carboxy-terminus of the EGF receptor and points to the importance of tyrosine phosphorylation in mediating this association.  相似文献   

6.
Epidermal growth factor (EGF) receptor protein has been purified in a single high-yield step by immunoaffinity chromatography of extracts of A431 cells. A monoclonal antibody directed against the EGF binding site of the receptor was immobilized to Sepharose 4B as a specific immune absorbent and competitive elution with EGF was used to obtain purified EGF receptor protein with tyrosine kinase activity. The stoichiometry of EGF binding was determined by comparing 125I-EGF binding to A431 cells with the mass of EGF receptor protein in those cells as measured by immunoaffinity chromatography, radioimmunoassay, and immune precipitation. Each measurement indicated one EGF binding site/EGF receptor protein molecule. Study of the kinetics of autophosphorylation revealed rapid incorporation of 1 mol of phosphate/mol of enzyme followed by slower incorporation of additional phosphate groups. The autophosphorylation reaction has a Km for ATP (0.2 microM) which is about 10-fold lower than that for phosphorylation of exogenous substrates. The kinetically preferred autophosphorylation is an intramolecular reaction.  相似文献   

7.
The epidermal growth factor receptor (EGFR) kinase catalyzes phosphorylation of tyrosines in its C terminus and in other cellular targets upon epidermal growth factor (EGF) stimulation. Here, by using peptides derived from EGFR autophosphorylation sites and cellular substrates, we tested the hypothesis that ligand may function to regulate EGFR kinase specificity by modulating the binding affinity of peptide sequences to the active site. Measurement of the steady-state kinetic parameters, K(m) and k(cat), revealed that EGF did not affect the binding of EGFR peptides but increased the binding affinity for peptides corresponding to the major EGFR-mediated phosphorylation sites of the adaptor proteins Gab1 (Tyr-627) and Shc (Tyr-317), and for peptides containing the previously identified optimal EGFR kinase substrate sequence EEEEYFELV (3-7-fold). Conversely, EGF stimulation increased k(cat) approximately 5-fold for all peptides. Thus, ligand changed the relative preference of the EGFR kinase for substrates as evidenced by EGF increases of approximately 5-fold in the specificity constants (k(cat)/K(m)) for EGFR peptides, whereas approximately 15-40-fold increases were observed for other peptides, such as Gab1 Tyr-627. Furthermore, we demonstrate that EGF (i) increased the binding affinity of EGFR to Gab1 Tyr-627 and Shc Tyr-317 sites in purified GST fusion proteins approximately 4-6-fold, and (ii) EGF significantly enhanced the phosphorylation of these sites, relative to EGFR autophosphorylation, in cell lysates containing the full-length Gab1 and Shc proteins. Analysis of peptides containing amino acid substitutions indicated that residues C-terminal to the target tyrosine were critical for EGF-stimulated increases in substrate binding and regulation of kinase specificity. To our knowledge, this represents the first demonstration that ligand can alter specificity of a receptor kinase toward physiologically relevant targets.  相似文献   

8.
The biological activity of epidermal growth factor (EGF) is mediated through the intrinsic tyrosine kinase activity of the EGF receptor (EGFR). In numerous cell types, binding of EGF to the EGFR stimulates the tyrosine kinase activity of the receptor eventually leading to cell proliferation. In tumor-derived cell lines, which overexpress the EGFR, however, growth inhibition is often seen in response to EGF. The mechanism for growth inhibition is unclear. To study the relationship between growth inhibition and EGFR kinase activity, we have used a cell line (PC-10) derived from a human squamous cell carcinoma that overexpresses EGFR. When exposed to 25 ng/ml EGF at low cell densities (1,300 cells/cm2), PC-10 cells exhibit cell death. In contrast, if EGF is added to high density cultures, no EGF mediated cell death is seen. When PC-10 cells were maintained at confluency in the presence of 25 ng/ml EGF for a period of 1 month, they were subsequently found competent to proliferate at low density in the presence of EGF. We designate these cells APC-10. The APC-10 cells exhibited a unique response to EGF, and no concentration of EGF tested could produce cell death. By 125I-EGF binding analysis and [35S]methionine labeling of EGFR, it was found that the total number of EGFR on the cell surface of APC-10 was not decreased relative to PC-10. No difference between PC-10 and APC-10 was seen in EGF binding affinity to the EGFR. Significantly, EGF stimulated autophosphorylation of the EGFR of APC-10 was 8–10-fold lower than that of PC-10. This reduced kinase activity was also seen in vitro in membrane preparations for EGFR autophosphorylation as well as phosphorylation of an exogenously added substrate. No difference between PC-10 and APC-10 in the overall pattern of EGFR phosphorylation in the presence or absence of EGF was detectable. However, the serine and threonine phosphorylation of the EGFR of APC-10 cells was consistently 2–3-fold lower than that seen in PC-10 cells. These results suggest a novel mechanism for EGFR overexpressing cells to survive EGF exposure, one that involves an attenuation of the tyrosine kinase activity of the EGFR in the absence of a change in receptor levels or receptor affinity. © 1994 Wiley-Liss, Inc.  相似文献   

9.
Phenobarbitone (PB) treatment of mice causes a decrease in the growth factor responsiveness of hepatocytes. Here, epidermal growth factor receptor (EGFR) expression and receptor autophosphorylation was determined in hepatocytes isolated from control and PB-treated mice. There was a decrease in the level of EGFR expression in hepatocytes isolated from mice following PB administration when compared to controls. EGF caused an approximate 20-fold increase of the 170 kD phosphotyrosine band in control hepatocytes, which was inhibited by the EGFR specific tyrosine kinase inhibitor 4, 5-dianilinopthalamide. Following PB treatment, the degree of basal receptor phosphorylation (in the absence of EGF) was significantly greater and therefore the fold rise in EGFR phosphorylation in isolated hepatocytes was lower than in controls. However, the overall extent of EGF-induced receptor phosphorylation was not diminished in hepatocytes isolated from PB-treated mice. Therefore the reduction in responsiveness to growth factors seen in hepatocytes ex vivo or the cessation of proliferation observed in vivo following PB administration is unlikely to be attributed to a decrease in ligand binding and subsequent receptor autophosphorylation.  相似文献   

10.
Ligand-induced dimerization of growth factor receptors is crucial for stimulation of their intrinsic protein tyrosine kinase activity promoting receptor autophosphorylation by an intermolecular mechanism. Moreover, the suppressive and negative dominant action of defective epidermal growth factor receptor (EGFR) was shown to be caused by formation of inactive heterodimers with normal EGFR leading to diminished biological signaling. In this report we explore the structural requirements and functional significance of heterodimerization between EGFR and HER2. HER2 (also called c-erbB-2 or neu) is a member of the EGFR family whose natural ligand is still unknown. We show that in response to EGF, wild type EGFR and various EGFR mutants were able to undergo heterodimerization with HER2. Addition of EGF to transfected cells co-expressing HER2 with a kinase negative point mutant of EGFR (K721A) stimulated heterodimer formation, tyrosine phosphorylation of K721A and HER2, and tyrosine phosphorylation of one of their known substrates, phospholipase C gamma. However, the binding of EGF to transfected cells co-expressing HER2 together with another EGFR mutant CD533 (a deletion mutant lacking most of the cytoplasmic domain of EGFR) caused heterodimerization and inhibition of tyrosine kinase activity. It appears therefore that EGF-induced heterodimerization of EGFR and HER2 can promote either stimulatory or inhibitory influences on kinase activity. We propose that the nature of receptor interactions on the cell surface can either activate or inhibit the initiation of growth factor-controlled cellular signaling.  相似文献   

11.
Stimulation of isolated hepatocytes with epidermal growth factor (EGF) causes rapid tyrosine phosphorylation of the EGF receptor (EGFR) and adapter/target proteins, which was monitored with 1 and 2 s resolution at 37, 20, and 4 degrees C. The temporal responses detected for multiple signaling proteins involve both transient and sustained phosphorylation patterns, which change dramatically at low temperatures. To account quantitatively for complex responses, we employed a mechanistic kinetic model of the EGFR pathway, formulated in molecular terms as cascades of protein interactions and phosphorylation and dephosphorylation reactions. Assuming differential temperature dependencies for different reaction groups, such as SH2 and PTB domain-mediated interactions, the EGFR kinase, and the phosphatases, good quantitative agreement was obtained between computer-simulated and measured responses. The kinetic model demonstrates that, for each protein-protein interaction, the dissociation rate constant, k(off), strongly decreases at low temperatures, whereas this decline may or may not be accompanied by a large decrease in the k(on) value. Temperature-induced changes in the maximal activities of the reactions catalyzed by the EGFR kinase were moderate, compared to such changes in the V(max) of the phosphatases. However, strong changes in both the V(max) and K(m) for phosphatases resulted in moderate changes in the V(max)/K(m) ratio, comparable to the corresponding changes in EGFR kinase activity, with a single exception for the receptor phosphatase at 4 degrees C. The model suggests a significant decrease in the rates of the EGF receptor dimerization and its dephosphorylation at 4 degrees C, which can be related to the phase transition in the membrane lipids. A combination of high-resolution experimental monitoring and molecular level kinetic modeling made it possible to quantitatively account for the temperature dependence of the integrative signaling responses.  相似文献   

12.
Gao Z  Yang J  Huang Y  Yu Y 《Mutation research》2005,570(2):175-184
Many environmental factors, such as ultraviolet (UV) and arsenic, can induce the clustering of cell surface receptors, including epidermal growth factor receptor (EGFR). This is accompanied by the phosphorylation of the receptors and the activation of ensuing cellular signal transduction pathways, which are implicated in the various cellular responses caused by the exposure to these factors. In this study, we have shown that N-methyl-N′-nitro-N-nitrosoguanidine (MNNG), an alkylating agent, also induced the clustering of EGFR in human amnion FL cells, which was similar in morphology to that of epidermal growth factor treatment. However, MNNG treatment did not activate Ras, the downstream mediator in EGFR signaling pathway, as compared to EGF treatment. The autophosphorylation of tyrosine residues Y1068 and Y1173 at the intracellular domain of EGFR, which is related to Ras activation under EGF treatment, was also not observed by MNNG exposure. Interestingly, although MNNG did not affect the binding of EGF to EGFR, MNNG can interfere with EGF function. For instance, pre-incubating FL cells with MNNG inhibited the autophosphorylation of EGFR by EGF treatment, as well as the activation of Ras. In addition, the phosphorylation of Y845 on EGFR by EGF, which is mediated through c-Src or related kinases but not autophosphorylation, was also affected by MNNG. Therefore, MNNG may influence the tyrosine kinase activity as well as the phosphorylation of EGFR through its interaction with EGFR.  相似文献   

13.
Epidermal growth factor (EGF) induces paxillin tyrosine dephosphorylation and Src activation, but the signaling pathways that mediate these responses were largely undefined. We found that Gab1, a docking protein for the SHP2 protein-tyrosine phosphatase in EGF-stimulated cells, was associated with paxillin. SHP2 dephosphorylated paxillin and caused dissociation of Csk, a negative regulator of Src, from paxillin but had no effect on paxillin-Src association. A lower level of Src Tyr-530 phosphorylation was detected in paxillin-associated Src in EGF-stimulated cells. Expression of an SHP2 binding defective mutant of Gab1 (Gab1FF) or a catalytically inactive mutant of SHP2 (SHP2DN) prevented paxillin tyrosine dephosphorylation and Src activation induced by EGF. Importantly, Gab1FF blocked paxillin-SHP2 complex formation, Src Tyr-530 dephosphorylation, Erk activation, and cell migration induced by EGF. Inhibition of Src tyrosine kinase activity abrogated EGF-stimulated Erk activation and cell migration. Together, these results reveal that Gab1 recruits SHP2 to dephosphorylate paxillin, leading to dissociation of Csk from the paxillin-Src complex and Src activation and that Src is an SHP2 effector involved in EGF-stimulated Erk activation and cell migration.  相似文献   

14.
Epidermal growth factor receptor (EGFR) was functionally reconstituted into liposome membrane. Triton X-100 was removed by Bio-beads SM-2. More than 80% of the reconstituted EGFR possessed right-side-out orientation with the EGF binding side facing the medium. The tyrosine kinase assay of the EGFR was carried out in the presence of the antibiotic alamethicin. The reconstituted EGFR tyrosine kinase was well activated by EGF. The influence of lipid composition on tyrosine kinase activity was investigated. Introduction of cholesterol into the dioleoylphophatidylcholine (DOPC) liposome membrane resulted in the decrease of tyrosine kinase activity. The tyrosine kinase activity of EGFR in distearylphosphatidylcholine liposome was much lower than that of EGFR-DOPC proteoliposome. Results indicated the importance of membrane fluidity on the apparent tyrosine kinase activity of reconstituted EGFR.  相似文献   

15.
Glucosylceramide-based glycosphingolipids have been previously demonstrated to regulate negatively the formation of inositol 1,4,5-trisphosphate by phospholipase C-gamma1. In the present study, the depletion of endogenous glucosylceramide by D-t-EtDO-P4 in cultured ECV304 cells induced autophosphorylation of Src kinase at tyrosine residue 418 within the catalytic loop and dephosphorylation of Src kinase at tyrosine residues 529 within the carboxyl-terminal regulatory region. Phosphotransferase activities of Src kinase were also induced in the glucosylceramide-depleted cells. c-Src kinase activity and phosphorylations at Src Tyr-418 and epidermal growth factor (EGF) receptor Tyr-1068 were significantly enhanced by bradykinin in response to 100 nm D-t-EtDO-P4 compared with control cells. The phosphorylation and dephosphorylation on Tyr-418 and Tyr-529 residues of c-Src were reversed by treatment of 4-amino-5-(4-chlorophenyl)-7-t-butyl(pyrazolo)[3,4-d]pyrimidine (PP2), an inhibitor of Src kinase, in control cells. Glucosylceramide-depleted cells resisted treatment with PP2, and both phosphorylation of Tyr-418 and dephosphorylation of Tyr-529 induced by depletion of glucosylceramide were maintained. Compared with untreated cells, tyrosine phosphorylation of phospholipase C-gamma1 was enhanced by EGF stimulation in glucosylceramide-depleted cells, associated with enhanced tyrosine phosphorylation of the EGF receptor at Tyr-1068 and Tyr-1086 stimulated by EGF. The Src inhibitor, PP2, significantly blocked EGF-induced tyrosine phosphorylation of phospholipase C-gamma1 in control cells, whereas in glucosylceramide-depleted cells, suppression of Src kinase activity by PP2 toward EGF-induced tyrosine phosphorylation of phospholipase C-gamma1 was less significant. Thus the activation of Src kinase by depletion of glucosylceramide-based glycosphingolipids in cultured ECV304 cells is a critical up-stream event in the activation of phospholipase C-gamma1.  相似文献   

16.
The epidermal growth factor receptor (EGFR) is a multisited and multifunctional transmembrane glycoprotein with intrinsic tyrosine kinase activity. Upon ligand binding, the monomeric receptor undergoes dimerization resulting in kinase activation. The consequences of kinase stimulation are the phosphorylation of its own tyrosine residues (autophosphorylation) followed by association with and activation of signal transducers. Deregulation of signaling resulting from aberrant expression of the EGFR has been implicated in a number of neoplasms including breast, brain, and skin tumors. A mutant epidermal growth factor (EGF) receptor missing 267 amino acids from the exoplasmic domain is common in human glioblastomas. The truncated receptor (EGFRvIII/DeltaEGFR) lacks EGF binding activity; however, the kinase is constitutively active, and cells expressing the receptor are tumorigenic. Our studies revealed that the high kinase activity of the DeltaEGFR is due to self-dimerization, and contrary to earlier reports, the kinase activity per molecule of the dimeric DeltaEGFR is comparable to that of the EGF-stimulated wild-type receptor. Furthermore, the phosphorylation patterns of both receptors are similar as determined by interaction with a conformation-specific antibody and by phosphopeptide analysis. This eliminates the possibility that the defective down-regulation of the DeltaEGFR is due to its altered phosphorylation pattern as has been suggested previously. Interestingly, the receptor-receptor self-association is highly dependent on a conformation induced by N-linked glycosylation. We have identified four potential sites that might participate in self-dimerization; these sites are located in a domain that plays an important role in EGFR functioning.  相似文献   

17.
The effect of autophosphorylation and protein kinase C-catalyzed phosphorylation on the tyrosine-protein kinase activity and ligand binding affinity of the epidermal growth factor (EGF) receptor has been studied. Kinetic parameters for the phosphorylation by the receptor kinase of synthetic peptide substrates having sequences related to the 3 in vitro receptor autophosphorylation sites (tyrosine residues 1173 (P1), 1148 (P2), and 1068 (P3)) were measured. The Km of peptide P1 (residues 1164-1176) was significantly lower than that for peptides P2 (residues 1141-1151) or P3 (residues 1059-1072). The tyrosine residue 1173 was also the most rapidly autophosphorylated in purified receptor preparations, consistent with previous observations for the receptor in intact cells (Downward, J., Parker, P., and Waterfield, M. D. (1984) Nature 311, 483-485). Variation in the extent of receptor autophosphorylation from 0.1 to 2.8 mol of phosphate/mol of receptor did not influence kinase activity or EGF binding affinity either for purified receptor or receptor in membrane preparations. Phosphorylation of the EGF receptor by protein kinase C was shown to cause a 3-fold decrease in the affinity of purified EGF receptor for EGF and to reduce the receptor kinase activity. In membrane preparations, phosphorylation of the EGF receptor by protein kinase C resulted in conversion of high affinity EGF binding sites to a low affinity state. This suggests that activation of protein kinase C by certain growth promoting agents and tumor promoters is directly responsible for modulation of the affinity of the EGF receptor for its ligand EGF. The regulation of the EGF receptor function by protein kinase C is discussed.  相似文献   

18.
We have previously reported that antibodies to phosphotyrosine recognize the phosphorylated forms of platelet-derived growth factor (PDGF) and epidermal growth factor (EGF) receptors (Zippel et al., Biochim. Biophys. Acta 881:54-61, 1986, and Sturani et al., Biochem. Biophys. Res. Commun. 137:343-350, 1986). In this report, the time course of receptor phosphorylation is investigated. In normal human fibroblasts, ligand-induced phosphorylation of PDGF and EGF receptors is followed by rapid dephosphorylation. However, in A431 cells the tyrosine-phosphorylated form of EGF receptor persists for many hours after EGF stimulation, allowing a detailed analysis of the conditions affecting receptor phosphorylation and dephosphorylation. In A431 cells, the number of receptor molecules phosphorylated on tyrosine was quantitated and found to be about 10% of total EGF receptors. The phosphorylated receptor molecules are localized on the cell surface, and they are rapidly dephosphorylated upon removal of EGF from binding sites by a short acid wash of intact cells and upon a mild treatment with trypsin. ATP depletion also results in rapid dephosphorylation, indicating that continuous phosphorylation-dephosphorylation reactions occur in the ligand-receptor complex at steady state. Phorbol 12-myristate 13-acetate added shortly before EGF reduces the rate and the final extent of receptor phosphorylation. Moreover, it also reduces the amount of phosphorylated receptors if it is added after EGF. Down-regulation of protein kinase C by chronic treatment with phorbol dibutyrate increases the receptor phosphorylation induced by EGF, suggesting a homologous feedback regulation of EGF receptor functions.  相似文献   

19.
Fluorescence resonance energy transfer between epidermal growth factor (EGF) molecules, labeled with fluorescent reporter groups, was used as a monitor for EGF receptor-receptor interactions in plasma membranes isolated from human epidermoid A431 cells. Epidermal growth factor molecules labeled at the amino terminus with fluorescein isothiocyanate served as donor molecules in these energy transfer measurements, while EGF molecules labeled with eosin isothiocyanate at the amino terminus served as the energy acceptors. Both of these derivatives were shown to be active in binding to membrane receptors and in the activation of the endogenous receptor/tyrosine kinase activity. We found that membranes in the absence of added metal ion activators showed relatively little energy transfer (approximately 10% donor quenching) between the labeled growth factors. However, divalent metal ion activators of the EGF receptor/tyrosine kinase caused a significant increase in the extent of energy transfer between the labeled EGF molecules. Specifically, in the presence of 20 mM MgCl2, the extent of quenching of the donor fluorescence increased to 25% (from 10% in the absence of metal), while in the presence of 4 mM MnCl2, the extent of energy transfer was increased still further to 40-50%. The addition of an excess of EDTA resulted in the reversal of the observed energy transfer to basal levels. The increased energy transfer in the presence of these divalent cations correlated well with the ability of these metals to stimulate the EGF receptor/tyrosine kinase activity. However, the extent of receptor-receptor interactions measured by energy transfer was independent of receptor autophosphorylation. Overall, these results suggest that conditions under which the EGF receptor is primed to be active as a tyrosine kinase, within a lipid milieu, result in an increased aggregation of the receptor.  相似文献   

20.
Epidermal growth factor (EGF) regulates cell proliferation and differentiation by binding to the EGF receptor (EGFR) extracellular region, comprising domains I-IV, with the resultant dimerization of the receptor tyrosine kinase. In this study, the crystal structure of a 2:2 complex of human EGF and the EGFR extracellular region has been determined at 3.3 A resolution. EGFR domains I-III are arranged in a C shape, and EGF is docked between domains I and III. The 1:1 EGF*EGFR complex dimerizes through a direct receptor*receptor interaction, in which a protruding beta-hairpin arm of each domain II holds the body of the other. The unique "receptor-mediated dimerization" was verified by EGFR mutagenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号