首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fructose transporter in human spermatozoa and small intestine is GLUT5.   总被引:15,自引:0,他引:15  
We recently reported that the glucose transporter isoform, GLUT5, is expressed on the brush border membrane of human small intestinal enterocytes (Davidson, N. O., Hausman, A. M. L., Ifkovits, C. A., Buse, J. B., Gould, G. W., Burant, C. F., and Bell, G. I. (1992) Am. J. Physiol. 262, C795-C800). To define its role in sugar transport, human GLUT5 was expressed in Xenopus oocytes and its substrate specificity and kinetic properties determined. GLUT5 exhibits selectivity for fructose transport, as determined by inhibition studies, with a Km of 6 mM. In addition, fructose transport by GLUT5 is not inhibited by cytochalasin B, a competitive inhibitor of facilitative glucose transporters. RNA and protein blotting studies showed the presence of high levels of GLUT5 mRNA and protein in human testis and spermatozoa, and immunocytochemical studies localize GLUT5 to the plasma membrane of mature spermatids and spermatozoa. The biochemical properties and tissue distribution of GLUT5 are consistent with a physiological role for this protein as a fructose transporter.  相似文献   

2.
3.
4.
Glucose transporter 8 (GLUT8) contains a cytoplasmic N-terminal dileucine motif and localizes to a thus far unidentified intracellular compartment. Translocation of GLUT8 to the plasma membrane (PM) was found in insulin-treated mouse blastocysts. Using overexpression of GLUT8 in adipocytes and neuronal cells however, insulin treatment or depolarization of the cells did not lead to GLUT8 PM translocation in other studies. In addition, other experiments showing dynamin-dependent endocytosis of GLUT8 suggested that GLUT8 recycles between an endosomal compartment and the PM. To reveal the functional/physiological role of GLUT8, we studied its subcellular localization in 3T3L1, HEK293 and CHO cells. We show that GLUT8 does not co-localize with GLUT4 and does not redistribute to the PM after treatment with insulin, ionophores or okadaic acid in these cell lines. Once endocytosed, GLUT8 does not recycle to the PM. GLUT8 localizes to late endosomes and lysosomes. An interspecies GLUT8 - sequence alignment revealed the presence of a highly conserved late endosomal/lysosomal-targeting motif ([DE]XXXL[LI]). Changing the glutamate to arginine as found in GLUT4 (RRXXXLL) alters GLUT8 endocytosis and retains the transporter at the PM. Furthermore, sorting GLUT8 to late endosomes/lysosomes does not require prior presence of GLUT8 at the PM followed by its endocytosis. In summary, GLUT8 does not reside in a recycling vesicle pool and is distinct from GLUT4. From our data, we postulate a role for GLUT8 in transport of hexoses across intracellular membranes, for example in specific compartments of GLUT8 expression such as the acrosome of mature spermatozoa or secretory granules in neurons. Furthermore, a role for GLUT8 in hexose transport across the lysosomal membrane, a transport mechanism that has long been suggested but unexplained, is discussed.  相似文献   

5.
GLUT8 is a class 3 sugar transport facilitator which is predominantly expressed in testis and also detected in brain, heart, skeletal muscle, adipose tissue, adrenal gland, and liver. Since its physiological function in these tissues is unknown, we generated a Slc2a8 null mouse and characterized its phenotype. Slc2a8 knockout mice appeared healthy and exhibited normal growth, body weight development and glycemic control, indicating that GLUT8 does not play a significant role for maintenance of whole body glucose homeostasis. However, analysis of the offspring distribution of heterozygous mating indicated a lower number of Slc2a8 knockout offspring (30.5:47.3:22.1%, Slc2a8(+/+), Slc2a8(+/-), and Slc2a8(-/-) mice, respectively) resulting in a deviation (p=0.0024) from the expected Mendelian distribution. This difference was associated with lower ATP levels, a reduced mitochondrial membrane potential and a significant reduction of sperm motility of the Slc2a8 knockout in comparison to wild-type spermatozoa. In contrast, number and survival rate of spermatozoa were not altered. These data indicate that GLUT8 plays an important role in the energy metabolism of sperm cells.  相似文献   

6.
A polyclonal antibody was raised against a 16 kDa human sperm protein identified by a monoclonal antibody to human sperm. The antibody showed significant reactivity with mouse spermatozoa as seen by ELISA. Immunohistochemical analysis showed that the antibody reacted with antigens from mouse testis, prostate as well as seminal vesicle. In both mouse and human testis the antibody localized antigens in round as well as elongated spermatids and mature spermatozoa. By SDS-PAGE and Western blot analysis the antibody reacted with a 16 kDa protein in the testis and seminal vesicle, whereas in the prostate it identified two proteins, one at 20 kDa and another at 25 kDa. Immunofluorescent localization by the antibody showed reactivity with acrosomal and/equatorial and midpiece region of human spermatozoa. The antibody showed extensive agglutination both in mouse and human spermatozoa. The results indicate that the antigen may be a conserved antigen. Cross reactivity of the antibody with mouse spermatozoa enabled us to carry out antifertility trials. Passive immunization of female mice with this antibody caused 67% reduction in fertility. It is likely that the antifertility effect could be partly due to agglutinating nature of the antibody which may have caused inhibition of all processes that depend on forward motility such as cervical mucus penetration and possibly preventing sperm egg interaction. Such well characterized and functionally relevant antibodies will enable to identify sperm antigens relevant for fertility. Identification of such antigens may also help in diagnosis of immuno infertility.  相似文献   

7.
8.
9.
GLUT8 is a class 3 sugar transport facilitator which is predominantly expressed in testis and also detected in brain, heart, skeletal muscle, adipose tissue, adrenal gland, and liver. Since its physiological function in these tissues is unknown, we generated a Slc2a8 null mouse and characterized its phenotype. Slc2a8 knockout mice appeared healthy and exhibited normal growth, body weight development and glycemic control, indicating that GLUT8 does not play a significant role for maintenance of whole body glucose homeostasis. However, analysis of the offspring distribution of heterozygous mating indicated a lower number of Slc2a8 knockout offspring (30.5:47.3:22.1%, Slc2a8+/+, Slc2a8+/?, and Slc2a8?/? mice, respectively) resulting in a deviation (p=0.0024) from the expected Mendelian distribution. This difference was associated with lower ATP levels, a reduced mitochondrial membrane potential and a significant reduction of sperm motility of the Slc2a8 knockout in comparison to wild-type spermatozoa. In contrast, number and survival rate of spermatozoa were not altered. These data indicate that GLUT8 plays an important role in the energy metabolism of sperm cells.  相似文献   

10.
Iba1 is a 17-kDa EF-hand protein highly expressed in the cytoplasm of elongating spermatids in testis. Using Iba1 as a bait, we performed yeast Two-hybrid screening and isolated a heat-shock protein Hsp40, DjB1, from cDNA library of mouse testis. To characterize DjB1 that is encoded by Dnajb1 gene, we carried out immunoblot analyses, in situ hybridization, and immunohistochemistry. Immunoblot analyses showed that DjB1was constitutively expressed in mouse testis and that its expression level was not changed by heat shock. Dnajb1 mRNA was exclusively expressed in spermatocytes and round spermatids in mouse testis, and Dnajb1 protein DjB1 was predominantly expressed in the cytoplasm of spermatocytes, round spermatids, and elongating spermatids. In mature mouse spermatozoa, DjB1 was localized in the middle and the end pieces of flagella as well as in association with the head (acrosomal region). Association of DjB1 with the acrosomal region in sperm head was also observed in rat spermatozoa. These data suggested that DjB1, which was constitutively expressed in postmeiotic spermatogenic cells in testis, was integrated into spermatozoa as at least two components, that is, sperm head and tail of rodent spermatozoa.  相似文献   

11.
During spermiogenesis, significant morphological changes occur as round spermatids are remodeled into the fusiform shape of mature spermatozoa. These changes are correlated with a reorganization of microfilaments and microtubules in the head and tail regions of elongating spermatids. There is also altered expression of specialized actin- and tubulin-associated proteins. We report the characterization of a novel, spermatid-specific murine paralog of the actin-bundling protein fascin (FSCN1); this paralog is designated testis fascin or FSCN3. Testis fascin is distantly related to fascins but retains its primary sequence organization. cDNA clones of mouse testis fascin predict a 498 amino acid protein of molecular mass 56 kD that shares 29% identity with mouse fascin. Mapping of murine and human FSCN3 genes shows localization to the 7q31.3 chromosome. Northern analysis indicates that FSCN3 expression is highly specific to testis and that in situ hybridization further restricts expression to elongating spermatids. Antibodies raised against recombinant FSCN3 protein identify a band at 56 kD in testis, epididymis, and epididymal spermatozoa, suggesting that testis fascin persists in mature spermatozoa. In accord with the in situ hybridization results, immunofluorescent microscopy localizes testis fascin protein to areas of the anterior spermatid head that match known distributions of F-actin in the dorsal and ventral subacrosomal spaces. It is possible that testis fascin may function in the terminal elongation of the spermatid head and in microfilament rearrangements that accompany fertilization.  相似文献   

12.
13.
14.
15.
A highly basic, testis-specific, chromosomal protein (MP) can be extracted with acid from testis cells of the mouse, but not from mature spermatozoa. A similar protein (MP') can be isolated from spermatozoa if they are first disrupted with β-mercaptoethanol and urea. The two proteins (MP and MP') are identical as characterized by polyacrylamide gel electrophoresis, Bio-Gel P-10 chromatography, amino-acid analysis and equilibrium ultracentrifugation. They are presumably mouse protamine. Both measurements of the sedimentation velocities of testis cells which synthesize mouse protamine and of the activity of spermatozoa after a pulse label with radioactive arginine show that protamine is synthesized 19 days after the last meiotic S-phase, that is, at an advanced stage of spermiogenesis.  相似文献   

16.
Evidence exists to suggest detrimental effects of heat stress on male fertility. This study was designed to assess the effects of scrotal heat stress on mature and developing sperm in a mouse model. After receiving shock heat treatment (42 degrees C for 30 min), mature spermatozoa were recovered from the epididymis hours (6) or Days (7, 14, 21, 28, 60) later, to determine the variables: number of spermatozoa, sperm viability, motility and progressive motility, sperm DNA integrity as established by the TUNEL method, embryo implantation rate, and sex ratio of the fetuses conceived using the heat-exposed spermatozoa. Our results indicate that transient mild heat treatment does not affect in the same way the different types of male germ cells. Spermatocytes present within the testis at the time of heat stress resulted into a lower concentration of spermatozoa with reduced viability and low motility. Even though, DNA integrity of spermatozoa resulting from spermatocytes was also compromised by heat stress, the higher degree of DNA damage was found among spermatozoa resulting from spermatids present within the testis at the time of heat stress. At last, heat shock effect on spermatozoa present in the epididymis at the time of thermal stress resulted into a sex ratio distortion. These findings point to a higher sensitivity of spermatocytes to heat exposure and also suggest a different response of X and Y chromosome-bearing spermatozoa to heat stress that warrants further investigation.  相似文献   

17.
Dopamine is a recognized modulator in the central nervous system (CNS) and peripheral organ functions. The presence of peripheral dopamine receptors outside the CNS has suggested an intriguing interaction between the nervous system and other functional systems, such as the reproductive system. In the present study we analyzed the expression of D2R receptors in rat testis, rat spermatogenic cells and spermatozoa, in different mammals. The RT-PCR analysis of rat testis mRNA showed specific bands corresponding to the two dopamine receptor D2R (L and S) isoforms previously described in the brain. Using Western blot analysis, we confirmed that the protein is present in rat testis, isolated spermatogenic cells and also in spermatozoa of a range of different mammals, such as rat, mouse, bull, and human. The immunohistochemistry analysis of rat adult testis showed that the receptor was expressed in all germ cells (pre- and post-meiotic phase) of the tubule with staining predominant in spermatogonia. Confocal analysis by indirect immunofluorescence revealed that in non-capacitated spermatozoa of rat, mouse, bull, and human, D2R is mainly localized in the flagellum, and is also observed in the acrosomal region of the sperm head (except in human spermatozoa). Our findings demonstrate that the two D2 receptor isoforms are expressed in rat testis and that the receptor protein is present in different mammalian spermatozoa. The presence of D2R receptors in male germ cells implies new and unsuspected roles for dopamine signaling in testicular and sperm physiology.  相似文献   

18.
The mouse USP8/mUBPy gene codifies a deubiquitinating enzyme expressed preferentially in testis and brain. While the ubiquitin-specific processing proteases (UBPs) are known to be important for the early development in invertebrate organisms, their specific functions remain still unclear in mammals. Using specific antibodies, raised against a recombinant mUBPy protein, we studied mUBPy in mouse testis. The mUBPy is expressed exclusively by the germ cell component and is maintained in epididymal spermatozoa. The enzyme is functionally active, being able to detach ubiquitin moieties from endogenous protein substrates. Protein interaction assays showed that sperm UBPy interacts with MSJ-1, the sperm-specific DnaJ protein evolutionarily conserved for spermiogenesis. Immunocytochemistry revealed that mUBPy shares with MSJ-1 the intracellular localization during spermatid cell differentiation; intriguingly, we show here that the proteasomes also locate in mUBPy/MSJ-1-positive sites, such as the cytoplasmic surface of the developing acrosome and the centrosomal region. These colocalization sites are maintained in epididymal spermatozoa. The demonstration of a protein interaction between a deubiquitinating enzyme and a molecular chaperone and the documentation on the proteasomes in both differentiating and mature mouse male germ cells suggest that members of the chaperone and ubiquitin/proteasome systems could cooperate in the fine control of protein quality to yield functional spermatozoa.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号