首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mammary epithelial cells (MEC) of lactating animals ferry large amounts of milk constituents in vesicular structures which have mostly been characterized by morphological approaches (Ollivier-Bousquet, 1998). Recently, we have shown that under conditions of lipid deprivation, perturbed prolactin traffic paralleled changes in the membrane phospholipid composition and in the cytosol versus membrane distribution of annexin VI (Ollivier-Bousquet et al., 1997). To obtain additional information on the membrane events involved in the vesicular transport of the hormone to the apical pole of the cell, we conducted a biochemical study on prolactin-containing vesicles in MEC at two different stages of differentiation. We first showed that MEC of pregnant and lactating rabbits exhibited membrane characteristics of non-polarized and polarized cells respectively, using annexin IV and the alpha-6 subunit of integrin as membrane markers. Incubation of both cell types with biotinylated prolactin for 1 h at 15 degrees C, followed by a 10-min chase at 37 degrees C revealed that prolactin transport was activated upon MEC membrane polarization. This was confirmed by subcellular fractionation of prolactin-containing vesicles on discontinuous density gradients. In non-polarized MEC, (125)I-prolactin was mainly recovered in gradient fractions enriched with endocytotic vesicles either after incubation at 15 degrees C or after a 10-min chase at 37 degrees C. In contrast, in polarized MEC, the hormone switched from endocytotic compartments to a fraction enriched in exocytotic clathrin-coated vesicles during the 10-min chase at 37 degrees C. Association of annexin VI to prolactin carriers was next studied in both non-polarized and polarized cells. Membrane compartments collected at each gradient interface were solubilized under mild conditions by Triton X-100 (TX100) and the distribution of annexin VI in TX100-insoluble and TX100-soluble fractions was analyzed by Western blotting. Upon MEC polarization, the amount of annexin VI recovered in TX100-insoluble fractions changed. Quite interestingly, it increased in a membrane fraction enriched with endocytotic clathrin-coated vesicles, suggesting that annexin VI may act as a sorting signal in prolactin transport.  相似文献   

2.
Characterization of phase coexistence in biologically relevant lipid mixtures is often carried out through confocal microscopy of giant unilamellar lipid vesicles (GUVs), loaded with fluorescent membrane probes. This last analysis is generally limited to the vesicle hemisphere further away from the coverslip, in order to avoid artifacts induced by the interaction with the solid surface, and immobilization of vesicles is in many cases required in order to carry out intensity, lifetime or single-molecule based microscopy. This is generally achieved through the use of membrane tethers adhering to a coverslip surface. Here, we aimed to determine whether GUV immobilization through membrane tethers induces changes in lipid domain distribution within liposomes displaying coexistence of lipid lamellar phases. Confocal imaging and a F?rster resonance energy transfer (FRET) methodology showed that biotinylated phospholipids present significantly different membrane phase partition behavior upon protein binding, depending on the presence or absence of a linker between the lipid headgroup and the biotinyl moiety. Membrane phases enriched in a membrane tether displayed in some cases a dramatically increased affinity for the immobilization surface, effectively driving sorting of lipid domains to the adherent membrane area, and in some cases complete sequestering of a lipid phase to the interaction surface was observed. On the light of these results, we conclude that tethering of lipid membranes to protein surfaces has the potential to drastically reorganize the distribution of lipid domains, and this reorganization is solely dictated by the partition properties of the protein-tether complex.  相似文献   

3.
Membrane vesicles which constitute the sarcotubular system were separated and the fraction enriched in T-tubules purified by a calcium loading procedure. The preparations of unfractioned microsomes and T-tubules have been analyzed for their relative content of enzyme markers and acetylcholinesterase. The amount of this enzyme in the T-tubule fraction was higher than in mixed microsomes but less than two-fold the value of vesicles derived from sarcoplasmic reticulum. Arrhenius plots of membrane-bound and soluble acetylcholinesterase from either mixed microsomes or fractions enriched in T-tubules show an anomalous behaviour as two break points were obtained. The first discontinuity was found at about 17 degrees C for membrane-bound, and 12-14 degrees C for soluble acetylcholinesterase. The second one being at about 25 degrees C for both particulate and detergent-solubilized enzyme. The changes in activity with temperature suggest that lipid-protein, detergent-protein and protein-protein interactions might be involved in the stabilization of the enzyme both in the natural membrane and in the soluble state.  相似文献   

4.
A membrane fraction has been prepared by sucrose density gradient fractionation of purified cortical secretory vesicles from the eggs of the sea urchin Strongylocentrotus purpuratus. The purified cortical vesicle membrane fraction has a phospholipid to protein ratio of 1.76 and exhibits a morphology typical of biological membranes as seen by electron microscopy. The protein composition of the purified membranes was analyzed by SDS-polyacrylamide gel electrophoresis and shown to be distinct from that of eggs, cell surface complex, cortical vesicles, fertilization product, and yolk platelets. Alkaline extraction (pH 11.0) of peripheral membrane proteins increased the phospholipid to protein ratio to 2.55 and removed several polypeptides. Immunoblot analysis of the isolated cortical vesicle membrane fraction revealed low levels of contamination with two major cortical vesicle content proteins. Fractions enriched in egg plasma membranes and yolk platelet membranes also have been isolated and compared with the cortical vesicle membranes by SDS-polyacrylamide gel electrophoresis. The protein compositions of the three membrane fractions were found to contain very little overlap, indicating that the cortical vesicle membrane preparation is relatively free of contamination from these likely noncortical vesicle sources of membrane. Both the plasma membrane and cortical vesicle membrane samples were found by immunoblotting to contain actin.  相似文献   

5.
Membrane and cytoplasmic changes were observed after in vitro fertilization of hamster oocytes by examining freeze-fracture replicas. The density of intramembranous particles on areas of membrane between microvilli increased following fertilization. Although the intramembranous particle density of microvilli is higher than that on the intermicrovillar membrane of unfertilized eggs, it did not change significantly after fertilization. Cytoplasmic changes in the Golgi complex and mitochondria upon fertilization indicate a change in cellular activity. Lipid binding probes were applied to the oocyte membranes in order to study the distribution of specific lipids before and after fertilization. Probes included the B-hydroxy-steroid complexing molecules, filipin and tomatin, and an anionic lipid binding antibiotic, polymyxin B. Both tomatin and filipin complex with steroids in the P and E faces of the plasma membrane (including the polar bodies), cortical granules and vesicles deeper in the cytoplasm, and the Golgi complex, leaving mitochondria, pronuclei, endoplasmic reticulum, and the majority of vesicles unlabeled. Polymyxin B binding is dependent on its application before or after fixation or in association with EGTA. With its application we detected both minor membrane perturbations of wrinkles and particle redistributions and major perturbations of vesicle fusions, the formation of blebs, and the loss of membrane morphology. Neither the distribution nor apparent quantity of these probes changed overall following fertilization, but this impression does not include specific sites of sperm-egg fusion.  相似文献   

6.
Using freeze-fracture electron microscopy, compositional changes were analysed in the surface membrane of Xenopus oocytes during maturation after in vitro progesterone treatment, as well as in eggs before and after fertilization. Investigated stages were as follows: (1) defolliculated full-grown oocytes; (2) defolliculated oocytes after 5 min exposure to 5 micrograms/ml progesterone; (3) ditto at germinal vesicle breakdown (GVBD) after 5 h progesterone treatment; (4) unfertilized eggs at oviposition and (5) zygotes 30 min post-fertilization. Comparing the patterns of intramembranous particle (IMP) density and IMP size during these stages the following changes were found: a transient decrease in IMP density was found after 5 min progesterone treatment; a 48% increase during maturation; a further 17% increase after fertilization. In defolliculated oocytes tight-junction-like structures were found, but no gap junctions. These results are discussed with reference to progesterone action, membrane remodelling, protein synthesis and membrane lipid organization.  相似文献   

7.
A recent study from our laboratory on the sea urchin egg suggested that spectrin was not solely restricted to the plasma membrane, but instead had a more widespread distribution on the surface of a variety of membranous inclusions. (E. M. Bonder et al., 1989, Dev. Biol. 134, 327-341). In this report we extend our initial findings and provide experimental and ultrastructural evidence for the presence of spectrin on three distinct classes of cytoplasmic vesicles. Immunoblot analysis of membrane fractions prepared from egg homogenates establishes that spectrin coisolates with vesicle-enriched fractions, while indirect immunofluorescence microscopy on cryosections of centrifugally stratified eggs demonstrates that spectrin specifically associates with cortical granules, acidic vesicles, and yolk platelets in vivo. Immunogold ultrastructural localization of spectrin on cortices isolated from eggs and early embryos details the striking distribution of spectrin on the cytoplasmic surface of the plasma membrane and the membranes of cortical granules, acidic vesicles, and yolk platelets, while quantitative studies show that relatively equivalent amounts of spectrin are present on the different membrane surfaces both before and after fertilization. These data, in combination with the localization of numerous spectrin crosslinks between actin filaments in surface microvilli, suggest that spectrin plays a pivotal role in structuring the cortical membrane-cytoskeletal complex of the egg and the embryo.  相似文献   

8.
A method is described for isolating preparative quantities of plasma membranes from sea urchin sperm. The final membrane fraction is homogeneous by sucrose density sedimentation and is enriched in adenylate cyclase as well as in the four glycoproteins accessible to radioiodination of intact sperm. The electrophoretic profiles of sperm membranes from three sea urchin species are very similar. The membrane preparation consists primarily of sealed vesicles which release carboxyfluorescein when exposed to detergents or distilled water. Ninety-two percent of the 125I-labeled vesicle material binds to wheat germ lectin columns, suggesting a right-side-out orientation. The isolated sperm membrane vesicles exhibit species specific adhesion to the surfaces of sea urchin eggs; this adhesion is blocked by pretreatment of the vesicles with trypsin or egg jelly. This method will be useful for isolating biologically active sperm membrane components involved in sperm-egg recognition during fertilization.  相似文献   

9.
Membrane bilayers of dipalmitoyl phosphatidylcholine (DPPC) and dipalmitoyl phosphatidylethanolamine (DPPE) adsorbed to a freshly cleaved mica substrate have been imaged by Atomic Force Microscopy (AFM). The membranes were mounted for imaging by two methods: (a) by dialysis of a detergent solution of the lipid in the presence of the substrate material, and (b) by adsorption of lipid vesicles onto the substrate surface from a vesicle suspension. The images were taken in air, and show lipid bilayers adhering to the surface either in isolated patches or in continuous sheets, depending on the deposition conditions. Epifluorescence light-microscopy shows that the lipid is distributed on the substrate surfaces as seen in the AFM images. In some instances, when DPPE was used, whole, unfused vesicles, which were bound to the substrate, could be imaged by the AFM. Such membranes should be capable of acting as natural anchors for imaging membrane proteins by AFM.  相似文献   

10.
11.
A membrane fraction enriched in plasma membrane and tonoplast vesicles was isolated from green leaves of Spinacia oleracea L. and subjected to subfractionation by free-flow electrophoresis. The most electronegative membrane vesicle fraction collected after the free-flow electrophoretic separation was identified as derived from tonoplast, while the least electronegative fraction was identified as derived from plasma membrane. The identification of the fractions was based on membrane morphology, and on the presence or absence of biochemical markers. The plasma membrane fraction was enriched in thick (9–11 nm) membranes which bound N-1-naphthylphthalamic acid (NPA), and reacted with phosphotungstic acid at low pH on thin sections for electron microscopy. The tonoplast fraction was enriched in vesicles with 7–9 nm thick membranes that neither bound NPA nor reacted with phosphotungstic acid at low pH. Both the plasma membrane and the tonoplast fraction were about 90% pure, with a cross-contamination of not more than 2%. Membrane vesicles originating from dictyosomes, endoplasmic reticulum, mitochondria, plastids, or peroxisomes contaminated the plasma membrane and the tonoplast fractions by a few % only. In leaves of photoinduced plants (24 h light period), the plasma membranes were thicker than in control leaves (8 h light, 16 h dark). The plasma membrane fraction obtained from photo-induced leaves by free-flow electrophoresis retained this increase in thickness, showing not only that photoinduction alters plasma membrane structure, but also that this change is stable to isolation.  相似文献   

12.
One aspect of mammalian post-testicular sperm maturation is the progressive change in their plasma membrane lipid composition. These modifications in lipids allow sperm cells to fuse with oocytes during fertilization. A significant share of these sperm lipid changes occurs during their descent through the epididymal tubule. It then continues within the female genital tract during the capacitation process, an essential prerequisite for acrosomic reaction and hence fertilization. This review presents what is known concerning the sperm plasma membrane lipid changes during epididymal maturation in various mammalian models. In the first section, after a brief presentation of the classic eukaryotic cell plasma membrane lipid organization, the emphasis is on the particularities of sperm plasma membrane lipids. The second section presents the different changes occurring in the three major classes of lipids (i.e. phospholipids, sterols and fatty acids) during the sperm’s epididymal descent. The final section briefly describes the mechanisms by which these lipid changes might happen in the epididymal lumen environment. The role played by lipid-rich vesicles secreted by the epididymal epithelium via apocrine secretory processes is highlighted.  相似文献   

13.
Characteristic changes in the patterns of protein phosphorylation occur during meiotic maturation of mouse oocytes from the time subsequent to germinal vesicle breakdown, through metaphase II, and following fertilization. These changes occur during both in vitro or in vivo maturation or fertilization. Three major classes of changes in total phosphoprotein synthesis are observed. In the first class, protein phosphorylations increase from the germinal vesicle stage until just after germinal vesicle breakdown and then decrease during progression to metaphase II and after fertilization. The second class is characterized by decreases in protein phosphorylation during maturation with subsequent increases in phosphorylation of these proteins after fertilization. The third class is characterized by protein phosphorylations that remain relatively constant during maturation but increase after fertilization; phosphotyrosine phosphoproteins comprise the major species. The radiolabeled protein and phosphoprotein composition of isolated germinal vesicles was also examined, and a phosphoprotein of Mr 29,000 is found exclusively associated with the germinal vesicle. Since we have shown previously that 12-O-tetradecanoyl phorbol 13-acetate inhibits fertilization (Y.Endo, R.M. Schultz, and G.S. Kopf, submitted), we examined the effects of this compound on the phosphoprotein patterns of metaphase II eggs. 12-O-Tetradecanoyl phorbol 13-acetate treatment stimulates the phosphorylation of a specific phosphoprotein of Mr 80,000.  相似文献   

14.
Fractions enriched in plasma membranes have been obtained from peripheral nerves enriched 89% in quiescent Schwann cells. Fractions were prepared from the intrafascicular tissue of desheathed distal stumps of cat sciatic nerve 8-10 weeks after transection and suture in the upper thigh. Tissue enriched in Schwann cells was minced, homogenized, and centrifuged to remove nuclei and undispersed tissue. Centrifugation of the resulting supernatant produced a pellet that was osmotically shocked, layered over a discontinuous sucrose gradient, and recentrifuged. Fractions enriched in plasma membrane (PM) markers were pooled, osmotically shocked for 16 h, layered over a second discontinuous sucrose density gradient, and recentrifuged. Membrane fractions (0.6 M:0.85 M and 0.85 M:1.0 M interfaces) contained a homogeneous population of unilamellar vesicles free of myelin. The 0.85 M fraction was enriched in 5'-nucleotidase, 2',3'-cyclic nucleotide 3'-phosphohydrolase. and specific [3H]ouabain binding, 4.8-, 3.0-, and 5.7-fold over the crude homogenate, respectively. These fractions also demonstrated low enzyme activities for succinate dehydrogenase, lactate dehydrogenase, and glucose-6-phosphatase (9, 13, and 15% of control values, respectively). Protein yield of the PM fraction (0.85 M) was approximately 0.6 mg/g of denervated nerve. This preparation should be suitable to characterize the surface properties of Schwann cells free of neuronal regulation.  相似文献   

15.
Cuevas FJ  Jameson DM  Sotomayor CP 《Biochemistry》2006,45(46):13855-13868
Diverse experimental and theoretical evidence suggests that plasma membranes contain cholesterol-induced segregated domains that could play a key role in the modulation of membrane functions, including intrinsic enzyme activity. To gain insight into the role of cholesterol, we reconstituted pig kidney Na+/K+-ATPase into unilamellar vesicles of endogenous lipids mimicking the natural membrane and addressed the question of how modification of the cholesterol content could affect the ATPase activity via changes in the membrane lipid phase and in the protein structure and dynamics. We used steady-state and time-resolved fluorescence spectroscopy with the lipid phase probes DPH and Laurdan and the protein probe fluorescein and also used infrared spectroscopy using attenuated total reflectance. Upon modification of membrane cholesterol content, the ATPase activity did not change monotonically but instead exhibited abrupt changes resulting in two peaks at or close to critical cholesterol mole fractions (25 and 33.3 mol %) predicted by the superlattice or regular distribution model. Fluorescence parameters associated with the membrane probes also showed abrupt changes with peaks, coincident with the cholesterol concentrations associated with the peaks in the enzyme activity, while parameters associated with the protein probes also showed slight but abrupt changes resulting in dips at the same cholesterol concentrations. Notably, the IR amide I band maximum also showed spectral shifts, characterized by a frequency variation pattern with peaks at the same cholesterol concentrations. Overall, these results indicate that the lipid phase had slightly lower hydration, at or near the two critical cholesterol concentrations predicted by the superlattice theory. However, in the protein domains monitored there was a slight but significant hydration increase along with increased peptide backbone flexibility at these cholesterol concentrations. We propose that in the vicinity of the critical mole fractions, where superlattice formation can occur, minute changes in cholesterol concentration produce abrupt changes in the membrane organization, increasing interdomain surfaces. These changes, in turn, induce small changes in the protein's structure and dynamics, therefore acting to fine-tune the enzyme.  相似文献   

16.
Composition of surface proteins and their interactions with cytoskeleton or membrane matrix were compared in tumor B-cell lines of different stages of B-lymphocyte maturation. All studied B-cell lines were found to share a similar set of cell surface proteins, which are tightly associated with the cytoskeleton. The increase in amount of detergent-unextractable cell surface proteins with B-cell maturation suggested that differentiation of B lymphocytes was accompanied by development of specific interactions between surface proteins and elements of the cytoskeleton or membrane matrix. Using a recently developed procedure for lymphocyte plasma membrane fractionation we demonstrate changes in distribution of cell surface proteins in membrane matrix-rich and membrane matrix-poor plasma membrane fractions during B-lymphocyte maturation. Thus, cell surface proteins of the mature B-cell line MOPC-315 were predominantly found in the plasma membrane vesicles of a high buoyant density. These vesicles mostly contained plasma membrane proteins tightly associated with elements of the membrane matrix. In immature B cells (line 70Z3) virtually all surface proteins were detected in both low and high buoyant density membrane vesicles. The tendency to increased associations between surface proteins and cytoskeleton/membrane matrix with maturation of B cells could not be explained by increased amounts of filamentous actin, since no correlation was found between the amount of globular or filamentous actin and the degree of surface protein-cytoskeleton (membrane matrix) interactions.  相似文献   

17.
The thylakoid membranes of isolated Euglena chloroplasts were separated into two fractions (appressed and non-appressed membranes) by aqueous two-phase partitioning (mixture of dextran 500 and polyethylene glycol 4000) following press disruption. The lipid composition of these two fractions differ in many respects during most of the cell cycle of this alga in comparison with the thylakoid characteristics of higher plants or green algae. The monogalactosyldiglyceride to digalactosyldiglyceride ratio changes during the cell cycle and the vesicles originating from appressed and nonappressed thylakoid membranes, respectively, differ in this property at the beginning, but tend to be equal at the end of the cell cycle. The levels of sulfoquinovosyldiglyceride and phosphatidylglycerol are highest in appressed membrane regions at about the 6th hour of the cell cycle but are highest in non-appressed membranes near the end of the cell cycle. The insertion and/or assembly of synthesized LHCII is correlated with a high monogalactosyldiglyceride to digalactosyldiglyceride ratio in appressed membrane regions. The heterogeneity of the lipid composition is discussed in relation to the stage-specific development of structure and function of Euglena chloroplasts.  相似文献   

18.
A previous report (Watkins, M.S., Hitt, A.S. and Bulger, J.E. (1977) Biochem. Biophys. Res. Commun. 79, 640-647) has indicated that the asymmetric forms of Electrophorus acetylcholinesterase bind exclusively to sphingomyelin vesicles through interaction with the collagen-like 'tail' portion of the enzyme. We report here that acetylcholinesterase also binds to phosphatidylcholine vesicles containing saturated fatty acyl chains and to egg phosphatidylcholine vesicles containing cholesterol. This suggests preferential binding of acetylcholinesterase to membranes of lower fluidity. Surface charge of vesicles and density of zwitterionic lipid headgroups do not significantly affect binding of native acetylcholinesterase. The presence of chondroitin sulfate or hyaluronic acid slightly increases the binding of native acetylcholinesterase to sphingomyelin vesicles, while the presence of 1 M NaCl, bovine serum albumin, or tissue fractions enriched in basement membrane diminish binding. The dissociation constant for native acetylcholinesterase and sphingomyelin vesicles is (1.0-1.5) X 10(-7) M, as measured by a flotation binding assay. The globular, 11S form of acetylcholinesterase also binds to lipid vesicles, although not to the same degree as native acetylcholinesterase. This suggests that the collagen tail of the enzyme enhances binding, but is not essential for binding to occur. These results are consistent with the location of acetylcholinesterase on the surface of the postsynaptic plasma membrane in vivo.  相似文献   

19.
The cation-binding characteristics of isolated sarcolemmal vesicles from rat and canine cardiac muscle cells were investigated. To help elucidate the molecular properties involved in these interactions the cation-induced aggregation behavior of rat and canine cardiac sarcolemmal vesicles, sonicated unilamellar vesicles (SUVs) made from sarcolemmal lipid extracts, and SUVs generated from combinations of synthetic lipids similar to those found in the sarcolemmal membrane, as well as mitochondrial and sarcoplasmic reticulum enriched membrane fractions were examined. Our results indicate that cations, such as Ca2+, to indeed bind to the sarcolemmal membrane surface. They also suggest that two (or more) interacting sites are involved in the Ca2+-induced aggregation of the isolated sarcolemmal vesicles, and that sarcolemmal lipid components could be the primary binding sites. The modulating (secondary) sites on the other hand may be protein or carbohydrate in nature, or require specific lipid organizational properties. Finally, the results indicate that the interactions of cations, such as Ca2+, with the sarcolemmal surface are species specific, with the sarcolemmal membranes of both rat and canine preparations having different physico-chemical properties.  相似文献   

20.
A simple and well-defined system of purified phospholipids and human complement proteins was used to study membrane permeability to macromolecules mediated by the membrane attack complex (MAC) of complement. Large unilamellar vesicles (LUVs) of phosphatidylcholine (PC) or phosphatidylserine (PS) containing trapped macromolecules [bovine pancreatic trypsin inhibitor (BPTI), thrombin, glucose-6-phosphate dehydrogenase (G6PD), and larger molecules] were used to monitor permeability. Membrane permeability to macromolecules was measured by thrombin inhibition by an external inhibitor or by separation of released molecules by gel filtration. Membrane-bound intermediates (C5b-8 or C5b-93) were stable for hours, and macromolecular permeability occurred without fragmentation, fusion, or aggregation of the vesicles. Quantitative membrane binding by C5b-7 as well as essentially quantitative release of thrombin was obtained for PS vesicles. MAC binding to PS-LUVs approximated the theoretical Poisson distribution curve for full release of vesicle contents by one complex per vesicle. Reactions with PC-LUVs occurred with some fluid-phase MAC assembly. Therefore, results from experiments with these vesicles were interpreted in a relative manner. However, the values obtained closely corroborated those obtained with PS-LUVs. At low C9/C5b-8 ratios, the size of the lesion was proportional to the C9 content of the MAC. Half-maximum release of BPTI, thrombin, and G6PD, by a single MAC per vesicle, required approximately 3,5, and 7 C9/C5b-8 (mol/mol), respectively. Larger molecules (greater than or equal to 118-A diameter) were not released from the vesicles. Release of G6PD (95.4-A diameter) required 45% of saturating C9. Therefore, it appeared that the last half of the bound C9 molecules did not increase pore size and the pore which released G6PD approached the diameter of the closed circular lesion measured (by others) in electron micrographs (approximately 100 A). The results were consistent with the formation of a stable membrane pore by a single complex per vesicle in which C9 molecules line only one side of the pore at low C9/C5b-8 ratios and maximum pore size is attained by incomplete, noncircular polymers of C9.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号