首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
F Goglia  M Moreno  A Lanni 《FEBS letters》1999,452(3):115-120
Thyroid hormones exert profound effects on the energy metabolism. An inspection of the early and more recent literature shows that several targets at the cellular level have been identified. Since their effects on the nuclear signalling pathway have already been well-defined and extensively reviewed, this article focuses on the regulation of mitochondrial activity by thyroid hormones. Mitochondria, by virtue of their biochemical functions, are a natural candidate as a direct target for the calorigenic effects of thyroid hormones. To judge from results coming from various laboratories, it is quite conceivable that mitochondrial activities are regulated both directly and indirectly. Not only triiodo-L-thyronine, but also diiodothyronines are active in regulating the energy metabolism. They influence the resting metabolism in rats with 3,5-diiodo-L-thyronine seeming to show a clearer effect.  相似文献   

2.
Age-related changes of content of thyroid hormones in the blood serum and of activities of lysosomal proteinases in organs were studied in the arctic fox Alopex lagopus L. in early postnatal ontogenesis. The existence has been shown of a negative correlation between the age changes in the serum thyroxin content and lysosomal proteinase activities in some organs of these animals. The results obtained indicate predominance of anabolic function of thyroid hormones in arctic fox cubs. The problem of anabolic and catabolic effects of thyroid hormones on protein metabolism is discussed.  相似文献   

3.
Arsenic toxicity is attributed mainly to lipid peroxidation and oxidative stress. We therefore studied the modulatory effects of thyroid hormones on arsenic toxicity in rat on lipid peroxidation and oxidative stress. Thyroid hormones, through a mechanism unknown at present, inhibit arsenic accumulation in liver and kidney. Mobilization of arsenic apparently diminishes lipid peroxidation and improves reduced glutathione status, two biochemical demands of combating arsenic toxicity. Results are discussed in reference to the effect of thyroid hormones on microsomal metabolism of arsenic. Arsenic is less toxic in hyperthyroid than in hypothyroid rats. A physiological antagonism between arsenic and thyroxine is discussed.  相似文献   

4.
In this paper the authors studied the effects of thyroid hormones and their structural analogues on the mitochondrial calcium transport activities. The thyroid hormones, 3,5,3' L-triiodothyronine (LT3) and 3,5,3'5' L-tetraiodothyronine (LT4) at physiological intracellular concentrations between 7.2 and 9 nM, decouple total Ca++ transport, as well as inhibit the passive transport of Ca++, either due to oxidation of pyruvate, malate or succinate or after inhibition with rotenone. The optical isomers 3,5,3' D-triiodothyronine (DT3) and 3,5,3',5' D-tetraiodothyronine (DT4) are less effective at all the used concentrations. Furthermore the structural analogues 3,3',5' L-triiodothyronine (LrT3), 3,5-dicloro, 3',5' L-diiodothyronine (LDiClT2) and 3,5 L-diiodothyronine (LT2) furnished even less effects on the same activities. The effect of the thyroid hormones and of their structural analogues has revealed that the mitochondrial calcium transport may be influenced both by a stereospecific interaction between hormones and protein ligands and by a lipophilic chaotropic action on the mitochondrial membranes lipids. In this context it is interesting to consider that both thyroid hormones and Ca++ transport activity are interacting with the energetic metabolism by means of phosphorylation and substrate oxidation mechanism.  相似文献   

5.
Because of their central role in the regulation of energy-transduction, mitochondria, the major site of oxidative processes within the cell, are considered a likely subcellular target for the action that thyroid hormones exert on energy metabolism. However, the mechanism underlying the regulation of basal metabolic rate (BMR) by thyroid hormones still remains unclear. It has been suggested that these hormones might uncouple substrate oxidation from ATP synthesis, but there are no clear-cut data to support this idea. Two iodothyronines have been identified as effectors of the actions of thyroid hormones on energy metabolism: 3',3,5-triiodo-L-thyronine (T3) and 3,5-diiodo-L-thyronine (T2). Both have significant effects on BMR, but their mechanisms of action are not identical. T3 acts on the nucleus to influence the expression of genes involved in the regulation of cellular metabolism and mitochondria function; 3,5-T2, on the other hand, acts by directly influencing the mitochondrial energy-transduction apparatus. A molecular determinant of the effects of T3 could be uncoupling protein-3 (UCP-3), while the cytochrome-c oxidase complex is a possible target for 3,5-T2. In conclusion, it is likely that iodothyronines regulate energy metabolism by both short-term and long-term mechanisms, and that they act in more than one way in affecting mitochondrial functions.  相似文献   

6.
In this work, activities of hexokinase isoenzymes Type I and Type II were measured in the soluble and particulate fractions from the brain regions (cerebral hemispheres (cerebrum), cerebellum and brain stem) of the thyroidectomized adult rats as well as of the thyroidectomized rats administered with triiodothyronine. Thyroidectomy generally decreased the hexokinase activity associated with particulate and soluble fractions. Hexokinase Type II isoenzyme was more affected than the Type I isoenzyme. Administration of triiodothyronine to the hypothyroid rats abolished the effect of thyroidectomy. Adult brain enzymes have been generally considered not be affected by thyroid hormones. The data obtained in this work are suggestive of an effect of thyroid hormones on hexokinase in the adult brain. Since the effects of thyroidectomy on the energy metabolism of the heart tissue are well known, the heart tissue was also studied for comparison.  相似文献   

7.
Several studies have shown that thyroid hormones are able to influence selected immune responses such as cell mediated immunity, differentiation of B lymphocytes and the activity of NK cells. These hormones can also regulate the metabolism of glucose and glutamine in rat macrophages and their effects seem to occur mainly through the Krebs cycle. Alterations in the hexokinase, citrate synthase, glucose-6-phosphate dehydrogenase and glutaminase activities in lymphocytes from patients with Graves' disease, either untreated or on methimazole (MMI) therapy were investigated. Experiments were also done in vitro to determine the activities of these enzymes in normal lymphocytes cultured for 24 h in the presence of MMI, T3 and T4 using concentrations close to the physiological. Changes in the conversion of [U-14C]-glucose and [U-14C]-glutamine to 14CO2 as caused by the addition of MMI, T3 or T4 to the culture medium were also evaluated. The results indicate that high levels of thyroid hormones might stimulate the metabolism of glucose and glutamine for a short period of time but, if the stimulus is maintained, the utilization of glutamine by lymphocytes is then suppressed. Moreover, MMI does affect lymphocyte metabolism but the significance of this finding for its immunosuppressive effect remains to be examined.  相似文献   

8.
Iglesias P  Díez JJ 《Cytokine》2007,40(2):61-70
Thyroid hormones act on several aspects of metabolic and energy homeostasis influencing body weight, thermogenesis, and lipolysis in adipose tissue. Adipocytokines are biologically active substances produced by adipocyte with different physiological functions. These substances have multiple effects on several tissues acting on the intermediate and energy metabolism. For these reasons, attention has recently been focused on the possible relationship between adipocytokines, thyroid status, and thyroid dysfunction. Leptin, a signal of satiety to the brain and regulator of insulin and glucose metabolism, reflects the amount of fat storage and is considered as a pro-inflammatory adipocytokine. Adiponectin is inversely related to the degree of adiposity, increases insulin sensitivity, and may have antiatherogenic and anti-inflammatory properties. Resistin impairs glucose homeostasis and insulin action in mice but not in humans. Resistin might be considered a pro-inflammatory adipocytokine and participate in obesity-associated inflammation. Several reports indicate that leptin regulates thyroid function at hypothalamic-hypophyseal level and, conversely, thyroid hormones might control leptin metabolism at least in some animals studies. Both adiponectin and thyroid hormones share some physiological actions as reduction of body fat by increasing thermogenesis and lipid oxidation. Resistin also seems to be regulated by thyroid hormones, at least in rats. Thyroid dysfunction does not significantly affect serum leptin concentrations. Serum levels of adiponectin are no influenced by thyroid hypofunction; however, hyperthyroidism is associated with normal or elevated adiponectin levels. Finally, discordant results in resistin levels in thyroid dysfunction have been reported in humans.  相似文献   

9.
Rats were fed selenium-deficient (less than 0.005 mg selenium/kg) or selenium-supplemented diets (0.1 mg selenium/kg, as Na2SeO2) for up to five wks from weaning to assess the effects of developing selenium deficiency on the metabolism of thyroid hormones. Within two wks 3:5,3'-triiodothyronine (T3) production from thyroxine (T4) in liver homogenates from selenium-deficient rats was significantly lower compared with the activity in liver homogenates from selenium-supplemented rats. This decreased activity was probably responsible, in part, for the higher T4 and lower T3 concentrations in plasma from the selenium-deficient rats after 3, 4, and 5 weeks of experiment. Repletion of selenium-deficient rats with single intra-peritoneal injections of 200 micrograms selenium/kg body wt. (as Na2SeO3) 5 days before sampling reversed the effects of the deficiency on thyroid hormone metabolism and significantly increased liver and plasma glutathione peroxidase activities. However a dose of 10 micrograms selenium/kg body wt given to rats of similar low selenium status had no effect on thyroid hormone metabolism or glutathione peroxidase activity but did reverse the increase in hepatic glutathione S-transferase activity characteristic of severe selenium deficiency. Imbalances in thyroid hormone metabolism are an early consequence of selenium deficiency and are probably not related to changes in hepatic xenobiotic metabolizing enzymes associated with severe deficiency.  相似文献   

10.
Activities of hexokinase and glucose-6-phosphate dehydrogenase have been measured in red blood cells from thyroidectomized, triiodothyronine treated and hyperthyroid rats. After thyroidectomy, significant decrease in the activities of hexokinase and glucose-6-phosphate dehydrogenase was observed as compared to controls. The effects were reversed with triiodothyronine administration to the thyroidectomized rats. Hyperthyroidism increased both enzymes. The observations further confirm the hypermetabolic effects of thyroid hormones on the cellular metabolism.  相似文献   

11.
The effect of thyroid hormones on monocyte migration, phagocytic capacity and hydrogen peroxide production by macrophages and the effect of these hormones on glutamine and glucose metabolism was investigated. The experiments were performed on resident, thioglycollate- and BCG-stimulated cells from hypo- and hyperthyroid rats. High plasma levels of thyroid hormones suppressed the migration of monocytes and hydrogen peroxide production, whereas hypothyuroidism did not affect cell migration but rasied the phagocytic capacity and the hydrogen peroxide production. Hyperthyroidism increased the activities of glutaminase and hexokinase and the rates of decarboxylation of [U-14C]-glutamine and [U-14C]-glucose in inflammatory and activated cells. Hypothyroidism stimulated glucose metabolism and had only a slight effect on glutaminolysis. The activity of the TCA cycle was, however, diminished in the presence of high plasma levels of thyroid hormones and enhanced by the hypothyroid state. These findings suggest that the functional changes observed are more likely to be related to the activity of the TCA cycle rather than to glutaminolysis and glycolysis.  相似文献   

12.
Thyroid hormones can increase energy expenditure and stimulate basal thermogenesis by lowering metabolic efficiency. In the present study, we examined the effects of thyroid hormones on basal heat production as well as on several physiological and biochemical measures indicative of thermogenic capacity to test our hypothesis that thyroid hormones stimulate increases in thermogenesis in little buntings. Little buntings that fed on thyroxine (T4)–laced poultry food of 3 and 5 ppm concentrations showed increases in basal metabolic rate (BMR) during the 3-week acclimation. At the end, these buntings had lower body weights, higher levels of contents of mitochondrial protein, state 4 respiration and cytochrome c oxidase activity in liver and muscle, and higher concentrations of serum triiodothyronine (T3) and T4 compared to control buntings. These results support the argument that thyroid hormones play an important role in the regulation of thermogenic ability in buntings by stimulating mitochondrial respiration and enzyme activities associated with aerobic metabolism.  相似文献   

13.
The thyroid hormones are very hydrophobic and those that exhibit biological activity are 3',5',3,5-L-tetraiodothyronine (T4), 3',5,3-L-triiodothyronine (T3), 3',5',3-L-triiodothyronine (rT3) and 3,5',-L-diiothyronine (3,5-T2). At physiological pH, dissociation of the phenolic -OH group of these iodothyronines is an important determinant of their physical chemistry that impacts on their biological effects. When non-ionized these iodothyronines are strongly amphipathic. It is proposed that iodothyronines are normal constituents of biological membranes in vertebrates. In plasma of adult vertebrates, unbound T4 and T3 are regulated in the picomolar range whilst protein-bound T4 and T3 are maintained in the nanomolar range. The function of thyroid-hormone-binding plasma proteins is to ensure an even distrubtion throughout the body. Various iodothyronines are produced by three types of membrane-bound cellular deiodinase enzyme systems in vertebrates. The distribution of deiodinases varies between tissues and each has a distinct developmental profile. Thyroid hormones. (1) the nuclear receptor mode is especially important in the thyroid hormone axis that controls plasma and cellular levels of these hormones. (2) These hormones are strongly associated with membranes in tissues and normally rigidify these membranes. (3) They also affect the acyl composition of membrane bilayers and it is suggested that this is due to the cells responding to thyroid-hormone-induced membrane rigidificataion. Both their immediate effects on the physical state of membranes and the consequent changes in membrane composition result in several other thyroid hormone effects. Effects on metabolism may be due primarily to membrane acyl changes. There are other actions of thyroid hormones involving membrane receptors and influences on cellular interactions with the extracellulara matrix. The effects of thyroid hormones are reviewed and appear to b combinations of these various modes of action. During development, vertebrates show a surge in T4 and other thyroid hormones, as well as distinctive profiles in the appearance of the deiodinase enzymes and nuclear receptors. Evidence from the use of analogues supports multiple modes of action. Re-examination of data from th early 1960s supports a membrane action. Findings from receptor 'knockout' mice supports an important role for receptors in the development of the thyroid axis. These iodothyronines may be better thought of as 'vitamone'-like molecules than traditional hormonal messengers.  相似文献   

14.
Selenium is an essential mineral element with important biological functions for the whole body through incorporation into selenoproteins. This element is highly concentrated in the thyroid gland. Selenoproteins provide antioxidant protection for this tissue against the oxidative stress caused by free radicals and contribute, via iodothyronine deiodinases, to the metabolism of thyroid hormones. It is known that oxidative stress plays a major role in carcinogenesis and that in recent decades there has been an increase in the incidence of thyroid cancer. The anti-carcinogenic action of selenium, although not fully understood, is mainly attributable to selenoproteins antioxidant properties, and to the ability to modulate cell proliferation (cell cycle and apoptosis), energy metabolism, and cellular immune response, significantly altered during tumorigenesis. Researchers have suggested that different forms of selenium supplementation may be beneficial in the prevention and treatment of thyroid cancer; however, the studies have several methodological limitations. This review is a summary of the current knowledge on how selenium and selenoproteins related to thyroid cancer.  相似文献   

15.
While the biochemical literature on free radical metabolism is extensive, there is little information on the endocrine control of tissue oxidative stress, and in the case of thyroid hormones it is mainly limited to liver tissue and to short-term effects on a few selected biochemical parameters. In this investigation, chronic hypothyroidism and hyperthyroidism were successfully induced in mice, and various oxidative-stress-related parameters were studied in skeletal muscle. In vivo and in vitro lipid peroxidation significantly increased in hyperthyroidism and did not change in the hypothyroid state. The fatty acid composition of the major phospholipid classes was affected by thyroid hormones, leading to a significant decrease in total fatty acid unsaturation both in hypothyroid and hyperthyroid muscle in phosphatidylcholine and phosphatidylethanolamine fractions. In cardiolipin, however, the double bond content significantly increased as a function of thyroid status, leading to a 2.7 fold increase in the peroxidizability index from euthyroid to hyperthyroid muscle. Cardiolipin content was also directly and significantly related to thyroid state across the three groups. Glutathione system was not modified by thyroid state. The oxidative damage marker 8-oxo-7,8-dihydro-2'-deoxyguanosine did not change in mitochondrial DNA, and decreased in genomic DNA both in hypothyroid and hyperthyroid muscle. The results indicate that chronic alterations in thyroid status specially affect oxidative damage to lipids in skeletal muscle, with a probably stronger effect on mitochondrial membranes, whereas the cytosolic redox potential and DNA are better protected possibly due to homeostatic compensatory reactions on the long-term.  相似文献   

16.
17.
The effects of mildronate [3(2,2,2-trimethylhydrazinium) propionate dihydrate], γ-butyrobetaine (GBB) and their combination (neomildronate) on the level of thyroid hormones and some intermediates of basal metabolism (free fatty acids, triglycerides, glucose) in serum of laboratory rats with various dysfunctions of thyroid glands including idiopathic hyperfunction and also hypofunction induced by administration of 6-propyl-2-thiouracil (PTU) or L-carnitine administration. Intraperitoneal injections of mildronate (150 mg/kg) during 20 days to male Wistar rats with elevated level of thyroid hormones and basal metabolism normalized thyroxin level and parameters of lipid metabolism in serum. Administration of the compounds studied to rats with hypothyroidism induced by administration of PTU or L-carnitine did not influence natural recovery of the hormonal level. Possible biochemical role of these pharmacological treatments is discussed in terms of in regulation of thyroid gland function.  相似文献   

18.
Bridging the gap between early, sensitive responses to stress at the infra-organismal levels and long-term, ecologically relevant responses at the supra-organismal levels is a challenge. Behavioral ecotoxicology provides an approach that clearly links disturbances at the biochemical level (e.g., altered neurotransmitters and thyroid hormones) to effects at the population level. These effects may be direct, such as impairment of the search for a sexual partner, care of juveniles, and avoidance of predators or pollutants. Indirect effects may be alteration of reproduction success due to impairment of feeding and thus, energy metabolism. The sensitivity of behavioral responses can be useful in ecological risk assessment. A major difficulty is extrapolation of observed responses with test species to other species. Thus it is recommended to use behavioral biomarkers, associated with biochemical and physiological markers (neurotoxicity, hormones, energy metabolism) in carefully selected species. These sentinels must be key-species in the structure and functioning of ecosystems because impairments of their responses used as biomarkers will reveal a risk of cascading deleterious effects at the community and ecosystem levels.  相似文献   

19.
In addition to insulin, glycemic control involves thyroid hormones. However, an excess of thyroid hormone can disturb the blood glucose equilibrium, leading to alterations of carbohydrate metabolism and, eventually, diabetes. Indeed, experimental and clinical hyperthyroidism is often accompanied by abnormal glucose tolerance. A common characteristic of hyperthyroidism and type 2 diabetes is the altered mitochondrial efficiency caused by the enhanced production of reactive oxygen and nitrogen species. It is known that an excess of thyroid hormone leads to increased oxidant production and mitochondrial oxidative damage. It can be hypothesised that these species represent the link between hyperthyroidism and development of insulin resistance and diabetes, even though direct evidence of this relationship is lacking. In this review, we examine the literature concerning the effects of insulin and thyroid hormones on glucose metabolism and discuss alterations of glucose metabolism in hyperthyroid conditions and the cellular and molecular mechanisms that may underline them.  相似文献   

20.
Although glucocorticoid and thyroid hormones are known to act synergistically to stimulate surfactant production, they have opposite effects on other parameters of fetal lung maturation. We recently reported that the developmental increases in de novo fatty acid synthesis and glycogen accumulation in fetal rat lung were accelerated by dexamethasone but prevented by triiodothyronine and that the dexamethasone-induced increases were diminished when the two hormones were administered together. We have now examined the effects of maternal administration of these hormones on activities of enzymes of lung fatty acid synthesis and glycogen metabolism in the rat. There was a developmental increase in fatty-acid synthase activity between 19 and 21 days gestation. This activity was increased by dexamethasone but decreased by triiodothyronine. When the two hormones were administered together the stimulatory effect of dexamethasone was decreased from 56% to 29%. The stimulatory effect on fatty-acid synthase was also observed in fetal lung explants cultured in the presence of dexamethasone. This shows that the effect of the hormone was directly on the fetal lung. Dexamethasone had no effect on liver fatty-acid synthase. There was a developmental decrease in acetyl-CoA carboxylase activity but it was not affected by the hormones. These data show that the developmental and hormone-induced changes in fetal lung de novo fatty acid synthesis are mediated by fatty-acid synthase. Although there were developmental changes in fetal lung 6-phosphofructokinase, glycogen synthase and glycogen phosphorylase activities, these enzymes were not affected by the hormones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号