首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The level of protein phosphorylation is dependent on the relative activities of both protein kinases and protein phosphatases. By comparison with protein kinases, however, there have been considerably fewer studies on the functions of serine/threonine protein phosphatases. This is partly due to a lack of specific protein phosphatase inhibitors that can be used as probes. In the present study we characterize the inhibitory effects of microcystin-LR, a hepatotoxic cyclic peptide associated with most strains of the blue-green algae Microcystis aeruginosa found in the Northern hemisphere, that proves to be a potent inhibitor of type 1 (IC50 = 1.7 nM) and type 2A (IC50 = 0.04 nM) protein phosphatases. Microcystin-LR inhibited the activity of both type 1 and type 2A phosphatases greater than 10-fold more potently than okadaic acid under the same conditions. Type 2A protein phosphatases in dilute mammalian cell extracts were found to be completely inhibited by 0.5 nM microcystin-LR while type 1 protein phosphatases were only slightly affected at this concentration. Thus, microcystin-LR may prove to be a useful probe for the study and identification cellular processes which are mediated by protein phosphatases.  相似文献   

2.
The structural gene for a putative PPP family protein-serine/threonine phosphatase from the microcystin-producing cyanobacterium Microcystis aeruginosa PCC 7820, pp1-cyano1, was cloned. The sequence of the predicted gene product, PP1-cyano1, was 98% identical to that of the predicted product of an open reading frame, pp1-cyano2, from a cyanobacterium that does not produce microcystins, M. aeruginosa UTEX 2063. By contrast, PP1-cyano1 displayed less than 20% identity with other PPP family protein phosphatases from eukaryotic, archaeal, or other bacterial organisms. PP1-cyano1 and PP1-cyano2 were expressed in Escherichia coli and purified to homogeneity. Both enzymes exhibited divalent metal dependent phosphohydrolase activity in vitro toward phosphoserine- and phosphotyrosine-containing proteins and 3-phosphohistidine- and phospholysine-containing amino acid homopolymers. This multifunctional potential also was apparent in samples of PP1-cyano1 and PP1-cyano2 isolated from M. aeruginosa. Catalytic activity was insensitive to okadaic acid or the cyanobacterially produced cyclic heptapeptide, microcystin-LR, both potent inhibitors of mammalian PP1 and PP2A. PP1-cyano1 and PP1-cyano2 displayed diadenosine tetraphosphatase activity in vitro. Diadenosine tetraphosphatases share conserved sequence features with PPP family protein phosphatases. The diadenosine tetraphosphatase activity of PP1-cyano1 and PP1-cyano2 confirms that these enzymes share a common catalytic mechanism.  相似文献   

3.
Chelerythrine is a potent and specific inhibitor of protein kinase C   总被引:56,自引:0,他引:56  
The benzophenanthridine alkaloid chelerythrine is a potent, selective antagonist of the Ca++/phospholopid-dependent protein kinase (Protein kinase C: PKC) from the rat brain. Half-maximal inhibition of the kinase occurs at 0.66 microM. Chelerythrine interacted with the catalytic domain of PKC, was a competitive inhibitor with respect to the phosphate acceptor (histone IIIS) (Ki = 0.7 microM) and a non-competitive inhibitor with respect to ATP. This effect was further evidenced by the fact that chelerythrine inhibited native PKC and its catalytic fragment identically and did not affect [3H]- phorbol 12,13 dibutyrate binding to PKC. Chelerythrine selectively inhibited PKC compared to tyrosine protein kinase, cAMP-dependent protein kinase and calcium/calmodulin-dependent protein kinase. The potent antitumoral activity of celerythrine measured in vitro might be due at least in part to inhibition of PKC and thus suggests that PKC may be a model for rational design of antitumor drugs.  相似文献   

4.
Extracts of Brassica napus (oilseed rape) seeds contain type 1 and type 2A protein phosphatases whose properties are indistinguishable from the corresponding enzymes in mammalian tissues. The type 1 activity dephosphorylated the beta-subunit of phosphorylase kinase selectively and was inhibited by the same concentrations of okadaic acid [IC50 (concentration causing 50% inhibition) approximately 10 nM], mammalian inhibitor 1 (IC50 = 0.6 nM) and mammalian inhibitor 2 (IC50 = 2.0 nM) as the rabbit muscle type 1 phosphatase. The plant type 2A activity dephosphorylated the alpha-subunit of phosphorylase kinase preferentially, was exquisitely sensitive to okadaic acid (IC50 approximately 0.1 nM), and was unaffected by inhibitors 1 and 2. As in mammalian tissues, a substantial proportion of plant type 1 phosphatase activity (40%) was particulate, whereas plant type 2A phosphatase was cytosolic. The specific activities of the plant type 1 and type 2A phosphatases were as high as in mammalian tissue extracts, but no type 2B or type 2C phosphatase activity was detected. The results demonstrate that the improved procedure for identifying and quantifying protein phosphatases in animal cells is applicable to higher plants, and suggests that okadaic acid may provide a new method for identifying plant enzymes that are regulated by reversible phosphorylation.  相似文献   

5.
Chemically modified lipopolysaccharides of Salmonella abortus-equi were tested for mitogenicity on mouse spleen cells as well as antagonism of the mitogenicity of intact lipopolysaccharide (LPS). All the lipopolysaccharide preparations deacylated by different alkaline treatments suffered a drastic loss of mitogenicity. The mitogenic activity of lipid A was also lost when succinic residues were introduced on hydroxyl groups. Partially deacylated alkaline-treated preparations (but not completely deacylated preparations) inhibited the activation of splenic B-cells by LPS. They were found to be toxic to spleen cells, however, and to suppress not only the mitogenicity of LPS but that of concanavalin A as well. This inhibitory action was not exhibited when all of the fatty acid was eliminated. Succinylated lipid A, on the other hand, was not toxic to the cells and inhibited the B-cell mitogenicity of lipopolysaccharide (but not the T-cell mitogenicity of concanavalin A). Chemical analysis revealed that about 4.6 mol of succinic acid had been introduced into lipid A by succinylation, and that the fatty acid and phosphate composition was unchanged by this treatment. Macrophages do not seem to participate in this inhibition. Inhibition was observed when succinylated lipid A was added either at the same time or after lipid A mitogen, but optimal inhibition was expressed when it was added to the culture 3 h before LPS. Inhibition was not affected by washing the cells before adding LPS. Inhibition increased as the ratio of suppressor to mitogen increased, suggesting that the succinylated lipid A competes with intact LPS.  相似文献   

6.
The anthraquinone dye reactive blue 2 was found to be a potent inhibitor of a protein kinase isolated and purified from thylakoids. This enzyme was also inhibited in situ, with corresponding inhibition of ATP-dependent quenching of the chlorophyll fluorescence. The mode of inhibition was noncompetitive, with a Ki of 8 microM for the membrane-bound kinase, and 6 microM for the purified kinase. The inhibitor did not modify the substrate preference of the endogenous kinase and could be removed from the membrane by washing. Unlike reactive blue 2, the enzyme did not partition into detergent micelles and is therefore presumably not a hydrophobic, intrinsic membrane protein.  相似文献   

7.
The Pin2/TRF1-interacting protein PinX1 is a potent telomerase inhibitor.   总被引:38,自引:0,他引:38  
X Z Zhou  K P Lu 《Cell》2001,107(3):347-359
Telomerase activity is critical for normal and transformed human cells to escape from crisis and is implicated in oncogenesis. Here we describe a novel Pin2/TRF1 binding protein, PinX1 that inhibits telomerase activity and affects tumorigenicity. PinX1 and its small TID domain bind the telomerase catalytic subunit hTERT and potently inhibit its activity. Overexpression of PinX1 or its TID domain inhibits telomerase activity, shortens telomeres, and induces crisis, whereas depletion of endogenous PinX1 increases telomerase activity and elongates telomeres. Depletion of PinX1 also increases tumorigenicity in nude mice, consistent with its chromosome localization at 8p23, a region with frequent loss of heterozygosity in a number of human cancers. Thus, PinX1 is a potent telomerase inhibitor and a putative tumor suppressor.  相似文献   

8.
Effects of five kinds of dopamine agonists on the activity of type 2A protein phosphatase in rat brain were studied. Apomorphine and SKF-38393 reduced the enzyme activity considerably and their effects were further enhanced in the presence of 10 microM Mn2+. Also, 6,7-ADTN slightly inhibited the activity. The present results suggest that type 2A protein phosphatase in the brain is possibly involved in dopamine mediated protein phosphorylation functions.  相似文献   

9.
Two DNA fragments, AP-1 and AP-2, encoding amino acid sequences closely related to Ser/Thr protein phosphatases were amplified from Arabidopsis thaliana genomic DNA. Fragment AP-1 was used to screen. A. thaliana cDNA libraries and several positive clones were isolated. Clones EP8a and EP14a were sequenced and found to encode almost identical proteins (97% identity). Both proteins are 306 amino acids in length and are very similar (79–80% identity) to the mammalian isotypes of the catalytic subunit of protein phosphatase 2A. Therefore, they have been designated PP2A-1 and PP2A-2. A third cDNA clone, EP7, was isolated and sequenced. The polypeptide encoded (308 amino acids, lacking the initial Met codon) is 80% identical with human phosphatases 2A and was named PP2A-3. The PP2A-3 protein is extremely similar (95% identity) to the predicted protein from a cDNA clone previously found in Brassica napus. Southern blot analysis of genomic DNA using AP-1 and AP-2 probes, as well as probes derived from clones EP7, EP8a and EP14a strongly indicates that at least 6 genes closely related to type 2A phosphatases are present in the genome of A. thaliana. Northern blot analysis using the same set of probes demonstrates that, at the seedling stage, the mRNA levels for PP2A-1, PP2A-3 and the gene containing the AP-1 sequence are much higher than those of PP2A-2 and AP-2. These results demonstrate that a multiplicity of type 2A phosphatases might be differentially expressed in higher plants.  相似文献   

10.
Using in vitro protein tyrosine phosphatase (PTPase) assays, we found that sodium stibogluconate, a drug used in treatment of leishmaniasis, is a potent inhibitor of PTPases Src homology PTPase1 (SHP-1), SHP-2, and PTP1B but not the dual-specificity phosphatase mitogen-activated protein kinase phosphatase 1. Sodium stibogluconate inhibited 99% of SHP-1 activity at 10 micrograms/ml, a therapeutic concentration of the drug for leishmaniasis. Similar degrees of inhibition of SHP-2 and PTP1B required 100 micrograms/ml sodium stibogluconate, demonstrating differential sensitivities of PTPases to the inhibitor. The drug appeared to target the SHP-1 domain because it showed similar in vitro inhibition of SHP-1 and a mutant protein containing the SHP-1 PTPase domain alone. Moreover, it forms a stable complex with the PTPase: in vitro inhibition of SHP-1 by the drug was not removed by a washing process effective in relieving the inhibition of SHP-1 by the reversible inhibitor suramin. The inhibition of cellular PTPases by the drug was suggested by its rapid induction of tyrosine phosphorylation of cellular proteins in Baf3 cells and its augmentation of IL-3-induced Janus family kinase 2/Stat5 tyrosine phosphorylation and proliferation of Baf3 cells. The augmentation of the opposite effects of GM-CSF and IFN-alpha on TF-1 cell growth by the drug indicated its broad activities in the signaling of various cytokines. These data represent the first evidence that sodium stibogluconate inhibits PTPases and augments cytokine responses. Our results provide novel insights into the pharmacological effects of the drug and suggest potential new therapeutic applications.  相似文献   

11.
A series of aminoresorcinols and related compounds were tested for rat intestinal alpha-glucosidase inhibition and these results suggested that the 2-aminoresorcinol moiety of 6-amino-5,7-dihydroxyflavone (2) is important to exert the intestinal alpha-glucosidase inhibitory activity and 2-aminoresorcinol (4), itself, is a potent alpha-glucosidase inhibitor and inhibited sucrose-hydrolyzing activity of rat intestinal alpha-glucosidase uncompetitively.  相似文献   

12.

Background

Hepatitis C virus (HCV) circulates in an infected individual as a heterogeneous mixture of closely related viruses called quasispecies. The E1/E2 region of the HCV genome is hypervariable (HVR1) and is targeted by the humoral immune system. Hepatitis C virions are found in two forms: antibody associated or antibody free. The objective of this study was to investigate if separation of Hepatitis C virions into antibody enriched and antibody depleted fractions segregates quasispecies populations into distinctive swarms.

Results

A HCV genotype 4a specimen was fractionated into IgG-depleted and IgG-enriched fractions by use of Albumin/IgG depletion spin column. Clonal analysis of these two fractions was performed and then compared to an unfractionated sample. Following sequence analysis it was evident that the antibody depleted fraction was significantly more heterogeneous than the antibody enriched fraction, revealing a unique quasispecies profile. An in-frame 3 nt insertion was observed in 26% of clones in the unfractionated population and in 64% of clones in the IgG-depleted fraction. In addition, an in-frame 3 nt indel event was observed in 10% of clones in the unfractionated population and in 9% of clones in the IgG-depleted fraction. Neither of these latter events, which are rare occurrences in genotype 4a, was identified in the IgG-enriched fraction.

Conclusion

In conclusion, the homogeneity of the IgG-enriched species is postulated to represent a sequence that was strongly recognised by the humoral immune system at the time the sample was obtained. The heterogeneous nature of the IgG-depleted fraction is discussed in the context of humoral escape.  相似文献   

13.
We report that protein phosphorylation is involved in the control of starch metabolism in Arabidopsis leaves at night. sex4 (starch excess 4) mutants, which have strongly reduced rates of starch metabolism, lack a protein predicted to be a dual specificity protein phosphatase. We have shown that this protein is chloroplastic and can bind to glucans and have presented evidence that it acts to regulate the initial steps of starch degradation at the granule surface. Remarkably, the most closely related protein to SEX4 outside the plant kingdom is laforin, a glucan-binding protein phosphatase required for the metabolism of the mammalian storage carbohydrate glycogen and implicated in a severe form of epilepsy (Lafora disease) in humans.  相似文献   

14.
Blue light activates a specific protein kinase in higher plants   总被引:5,自引:2,他引:3       下载免费PDF全文
Blue light mediates the phosphorylation of a membrane protein in seedlings from several plant species. When crude microsomal membrane proteins from dark-grown pea (Pisum sativum L.), sunflower (Helianthus annuus L.), zucchini (Cucurbita pepo L.), Arabidopsis (Arabidopsis thaliana L.), or tomato (Lycopersicon esculentum L.) stem segments, or from maize (Zea mays L.), barley (Hordeum vulgare L.), oat (Avena sativa L.), wheat (Triticum aestivum L.), or sorghum (Sorghum bicolor L.) coleoptiles are illuminated and incubated in vitro with [γ-32P]ATP, a protein of apparent molecular mass from 114 to 130 kD is rapidly phosphorylated. Hence, this system is probably ubiquitous in higher plants. Solubilized maize membranes exposed to blue light and added to unirradiated solubilized maize membranes show a higher level of phosphorylation of the light-affected protein than irradiated membrane proteins alone, suggesting that an unirradiated substrate is phosphorylated by a light-activated kinase. This finding is further demonstrated with membrane proteins from two different species, where the phosphorylated proteins are of different sizes and, hence, unambiguously distinguishable on gel electrophoresis. When solubilized membrane proteins from one species are irradiated and added to unirradiated membrane proteins from another species, the unirradiated protein becomes phosphorylated. These experiments indicate that the irradiated fraction can store the light signal for subsequent phosphorylation in the dark. They also support the hypothesis that light activates a specific kinase and that the systems share a close functional homology among different higher plants.  相似文献   

15.
A purified preparation of antifungal protein (AFP) from Aspergillus giganteus exhibited potent antifungal activity against the phytopathogenic fungi Magnaporthe grisea and Fusarium moniliforme, as well as the oomycete pathogen Phytophthora infestans. Under conditions of total inhibition of fungal growth, no toxicity of AFP toward rice protoplasts was observed. Additionally, application of AFP on rice plants completely inhibited M. grisea growth. These results are discussed in relation to the potential of the afp gene to enhance crop protection against fungal pathogens in transgenic plants.  相似文献   

16.
Consideration of the computer-optimised dimensions of anthraflavic acid indicates that it is essentially a planar molecule with a large area/depth ratio, that would preferentially interact with the polycyclic aromatic hydrocarbon-induced family of cytochrome P-450 proteins (cytochromes P-448). Anthraflavic acid was a potent inhibitor of the O-deethylations of ethoxycoumarin and ethoxyresorufin, both catalysed primarily by cytochromes P-448, in Arochlor-1254-induced hepatic microsomes. Similarly anthraflavic acid markedly inhibited the mutagenicity of 2-amino-6-methyldipyrido[1,2-a:3',2'-d]imidazole (Glu-P-I) in the Ames test. In contrast, it has no effect on the dealkylation of pentoxyresorufin, a reaction catalysed primarily by the phenobarbital-induced cytochromes P-450, and NADPH-dependent reduction of cytochrome c. It is concluded that anthraflavic acid is a potent and specific inhibitor of cytochrome P-448 activity.  相似文献   

17.
In the present study, we report that phosphatidic acid (PA) functions as a novel, potent, and selective inhibitor of protein phosphatase 1 (PP1). The catalytic subunit of PP1alpha was inhibited by PA dose-dependently in a noncompetitive manner with a K(i) value of 80 nM. The inhibition by PA was specific to PP1 as PA failed to inhibit protein phosphatase 2A (PP2A) or PP2B. Furthermore, PA was the most effective and potent inhibitor of PP1 compared with other phospholipids. Because we recently showed that ceramides activated PP1, we next examined the effects of PA on ceramide stimulation of PP1. PA inhibited both basal and ceramide-stimulated PP1 activities, and ceramide showed potent and stereoselective activation of PP1 in the presence of PA. Next, the effects of PA on ceramide-induced responses were examined. Molt-4 cells took up PA dose- and time-dependently such that by 1 and 3 h, uptake of PA was 0.37 and 0. 65% of total PA added, respectively. PA at 30 microM and calyculin A at 10 nM (an inhibitor of PP1 and PP2A at low concentrations), but not okadaic acid at 10 nM (a PP2A inhibitor at low concentrations) prevented poly(ADP-ribose) polymerase proteolysis induced by C(6)-ceramide. Moreover, the combination of PA with okadaic acid prevented retinoblastoma gene product dephosphorylation induced by C(6)-ceramide. These data suggest that PA functions as a specific regulator of PP1 and may reverse or counteract those effects of ceramide that are mediated by PP1, such as apoptosis and retinoblastoma gene product dephosphorylation.  相似文献   

18.
A 16-kDa protein was isolated from Helianthus annuus flowers by its ability to inhibit the germination of fungal spores. This protein, SAP16, displays an associated activity of trypsin inhibitor and was further purified to apparent homogeneity by affinity chromatography on trypsin-agarose. SAP16 causes the complete inhibition of Sclerotinia sclerotiorum ascospores germination at a concentration of 5 μg·mL–1 (0.31 μM) and a clear reduction of mycelial growth at lower concentrations, indicating a strong antifungal potency against this natural pathogen of sunflower. Our data suggest that the antifungal ability of SAP16 would not be the result of the inhibition of a fungal protease. This study contributes to the characterization of the emerging family of antifungal proteins with an associated activity of trypsin inhibition and emphasizes their role in plant resistance against fungal attack.  相似文献   

19.
Nogo-A limits axon regeneration and functional recovery after central nervous system injury in adult mammals. Three regions of Nogo-A (Nogo-A-24, Nogo-66, and Nogo-C39) interact with the neuronal Nogo-66 receptor 1 (NgR1). Nogo-66 also interacts with a structurally unrelated cell surface receptor, paired immunoglobulin-like receptor (PirB). We show here that the other two NgR1-interacting domains, Nogo-A-24 and Nogo-C39, also bind to PirB with high affinity. A purified 22-kDa protein containing all three NgR1- and PirB-interacting domains (Nogo-22) is a substantially more potent growth cone-collapsing molecule than Nogo-66 for chick dorsal root ganglion neurons and mature cortical neurons. Moreover, Nogo-22 inhibits axon regeneration of mature cortical neurons in vitro more potently than does Nogo-66. Although all three NgR1-interacting domains of Nogo-A also interact with PirB, expression of PirB in mature cortical cultures is nearly undetectable. Consistent with a relatively minor role for PirB in mature cortical neurons, Nogo-22 inhibition of axon regeneration is abolished by genetic deletion of NgR1. Thus, NgR1 is the predominant receptor for Nogo-22 in regenerating cortical neurons.  相似文献   

20.
A potent inhibitor of ethylene action in plants   总被引:5,自引:0,他引:5       下载免费PDF全文
Beyer EM 《Plant physiology》1976,58(3):268-271
Ag(I), applied foliarly as AgNO(3), effectively blocked the ability of exogenously applied ethylene to elicit the classical "triple" response in intact etiolated peas (Pisum sativumcv. Alaska); stimulate leaf, flower, and fruit abscission in cotton (Gossypium hirsutumcv. Stoneville 213); and induce senescence of orchids (Hybrid white Cattleya, Louise Georgeianna). This property of Ag(I) surpasses that of the well known ethylene antagonist, CO(2), and its persistence, specificity, and lack of phytotoxicity at effective concentrations should prove useful in defining further the role of ethylene in plant growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号