共查询到20条相似文献,搜索用时 0 毫秒
1.
Acute lung injury edema fluid decreases net fluid transport across human alveolar epithelial type II cells 总被引:2,自引:0,他引:2
Lee JW Fang X Dolganov G Fremont RD Bastarache JA Ware LB Matthay MA 《The Journal of biological chemistry》2007,282(33):24109-24119
Most patients with acute lung injury (ALI) have reduced alveolar fluid clearance that has been associated with higher mortality. Several mechanisms may contribute to the decrease in alveolar fluid clearance. In this study, we tested the hypothesis that pulmonary edema fluid from patients with ALI might reduce the expression of ion transport genes responsible for vectorial fluid transport in primary cultures of human alveolar epithelial type II cells. Following exposure to ALI pulmonary edema fluid, the gene copy number for the major sodium and chloride transport genes decreased. By Western blot analyses, protein levels of alphaENaC, alpha1Na,K-ATPase, and cystic fibrosis transmembrane conductance regulator decreased as well. In contrast, the gene copy number for several inflammatory cytokines increased markedly. Functional studies demonstrated that net vectorial fluid transport was reduced for human alveolar type II cells exposed to ALI pulmonary edema fluid compared with plasma (0.02 +/- 0.05 versus 1.31 +/- 0.56 microl/cm2/h, p < 0.02). An inhibitor of p38 MAPK phosphorylation (SB202190) partially reversed the effects of the edema fluid on net fluid transport as well as gene and protein expression of the main ion transporters. In summary, alveolar edema fluid from patients with ALI induced a significant reduction in sodium and chloride transport genes and proteins in human alveolar epithelial type II cells, effects that were associated with a decrease in net vectorial fluid transport across human alveolar type II cell monolayers. 相似文献
2.
Roflumilast-N-oxide induces surfactant protein expression in human alveolar epithelial cells type II
K Höhne SJ Schließmann A Kirschbaum T Plönes J Müller-Quernheim H Tenor G Zissel 《PloS one》2012,7(7):e38369
Surfactant proteins (SPs) are important lipoprotein complex components, expressed in alveolar epithelial cells type II (AEC-II), and playing an essential role in maintenance of alveolar integrity and host defence. Because expressions of SPs are regulated by cyclic adenosine monophosphate (cAMP), we hypothesized that phosphodiesterase (PDE) inhibitors, influence SP expression and release. Analysis of PDE activity of our AEC-II preparations revealed that PDE4 is the major cAMP hydrolysing PDE in human adult AEC-II. Thus, freshly isolated human AEC-II were stimulated with two different concentrations of the PDE4 inhibitor roflumilast-N-oxide (3 nM and 1 μM) to investigate the effect on SP expression. SP mRNA levels disclosed a large inter-individual variation. Therefore, the experiments were grouped by the basal SP expression in low and high expressing donors. AEC-II stimulated with Roflumilast-N-oxide showed a minor increase in SP-A1, SP-C and SP-D mRNA mainly in low expressing preparations. To overcome the effects of different basal levels of intracellular cAMP, cyclooxygenase was blocked by indomethacin and cAMP production was reconstituted by prostaglandin E2 (PGE2). Under these conditions SP-A1, SP-A2, SP-B and SP-D are increased by roflumilast-N-oxide in low expressing preparations. Roflumilast-N-oxide fosters the expression of SPs in human AEC-II via increase of intracellular cAMP levels potentially contributing to improved alveolar host defence and enhanced resolution of inflammation. 相似文献
3.
Bhaskaran M Chen H Chen Z Liu L 《Biochemical and biophysical research communications》2005,333(4):1348-1352
Hemoglobin is the main oxygen carrying heme protein in erythrocytes. In an effort to study the differential gene expression of alveolar epithelial type I and type II cells using DNA microarray technique, we found that the mRNAs of hemoglobin alpha- and beta-chains were expressed in type II cells, but not in type I cells. The microarray data were confirmed by RT-PCR. The mRNA expression of both chains decreased when type II cells trans-differentiated into type I-like cells. Immunocyto/histochemistry revealed that hemoglobin protein was specifically localized in type II cells of a lung cell mixture and rat lung tissue. The endogenous synthesis of hemoglobin in alveolar epithelial cells suggests that hemoglobin may have unidentified functions other than oxygen transport in the lung. 相似文献
4.
《Biochimica et Biophysica Acta (BBA)/Lipids and Lipid Metabolism》1979,572(3):502-509
Prostaglandin production was studied in fetal and adult type II alveolar epithelial cells. Two culture systems were employed, fetal rat lung organotypic cultures consisting of fetal type II cells and monolayer cultures of adult lung type II cells. Dexamethasone, thyroxine, prolactin and insulin, hormones which influence lung development, each reduced the production of prostaglandin E and Fα by the organotypic cultures. The fetal cultures produced relatively large quantities of prostaglandin E and Fα and smaller quantities of 6-keto-prosta-glandin F1α and thromboxane B2. However, prostaglandin E2 production was predominant. In contrast, the adult type II cells in monolayer culture produced predominantly prostacyclin (6-keto-prostaglandin F1a) along with smaller quantities of prostaglandin E2 and F2α. The type II cells were relatively unresponsive to prostaglandins. Exogenously added prostaglandin E2 had no effect on cell growth, and only a minimal effect on cyclic AMP levels in the monolayer cultures. 相似文献
5.
Class II molecules on rat alveolar type II epithelial cells 总被引:2,自引:0,他引:2
Class II (Ia) molecules of the major histocompatibility complex are important in the presentation of antigen to T cells and in the regulation of the immune response. Recent studies have suggested that many epithelial cell types can express class II molecules. We examined rat alveolar type II epithelial cells, a cell which can synthesize and secrete pulmonary surface-active material, for the expression of class II antigens. Using an indirect immunofluorescent technique with a mouse anti-rat class II monoclonal antibody (OX-4), the majority of type II cells isolated from pathogen-free Sprague-Dawley rats expressed Ia antigens as determined by fluorescent microscopy and cell sorter analysis. In culture, the Ia expression was lost from type II cells. The addition of recombinant interferon-gamma to cultures of type II cells induced the expression of class II antigens. These findings suggest that class II antigen expression on type II cells may have relevance to immune responses occurring in the lung. 相似文献
6.
Jacob N. Finkelstein William M. Maniscalco Donald L. Shapiro 《Biochimica et Biophysica Acta (BBA)/Molecular Cell Research》1983,762(3):398-404
The biochemical characteristics of type II alveolar epithelial cells dissociated from adult rabbit lung by instillation of low concentrations of an elastase trypsin mixture are reported. Cells studied immediately (within 4 h) after isolation were found to incorporate the radioactively labelled precursors [U-14C]glucose, [methyl-3H]choline and [3H]palmitate into cellular phosphatidylcholine at rates 2–10-fold higher than previously reported for cells not subject to short-term cell culture. Secretion of phosphatidylcholine was stimulated by beta-adrenergic agonists. Measurement of specific activities of enzymes of phospholipid biosynthesis in subcellular fractions of isolated lung cells showed a significant enrichment of acyl coenzyme A-lysophosphatidylcholine acyltransferase, an enzyme believed to be involved in pulmonary surfactant phosphatidylcholine remodeling, in the endoplasmic reticulum of type II cells. These observations support the utility of freshly isolated type II cells as a model system for the study of the functions of the alveolar epithelium. 相似文献
7.
Brown S. E.; Kim K. J.; Goodman B. E.; Wells J. R.; Crandall E. D. 《Journal of applied physiology》1985,59(5):1616-1622
Type II alveolar epithelial cell monolayers have been shown to actively transport sodium (Na+). Coupling to amino acid uptake could be an important mechanism for Na+ entry into these cells. This study demonstrates the presence of such a coupled cotransport mechanism in the plasma membrane of isolated type II cells by use of the nonmetabolizable amino acid analogue alpha-methylaminoisobutyric acid (MeAIB). Transport of MeAIB in 137 mM Na+ is saturable, with the uptake constant (Vmax) equaling 13.9 pmol X mg prot-1 X s-1 and the Michaelis-Menten constant (Km) equaling 0.13 mM. In the presence of Na+, MeAIB is accumulated against a concentration gradient. MeAIB uptake in the absence of Na+ is linear with MeAIB concentration, as expected for simple diffusion. The Hill coefficient for Na+-MeAIB cotransport is 1.11, suggesting a 1:1 stoichiometry. Proline inhibits Na+-MeAIB cotransport, with Ki equaling 0.5 mM. These findings suggest that Na+-amino acid cotransport may be an important pathway for Na+ (and/or amino acid) uptake into type II alveolar epithelial cells. 相似文献
8.
Prostaglandin production was studied in fetal and adult type II alveolar epithelial cells. Two culture systems were employed, fetal rat lung organotypic cultures consisting of fetal type II cells and monolayer cultures of adult lung type II cells. Dexamethasone, thyroxine, prolactin and insulin, hormones which influence lung development, each reduced the production of prostaglandin E and F alpha by the organotypic cultures. The fetal cultures produced relatively large quantities of prostaglandin E and F alpha and smaller quantities of 6-keto-prostaglandin F1 alpha and thromboxane B2. However, prostaglandin E2 production was predominant. In contrast, the adult type II cells in monolayer culture produced predominantly prostacyclin (6-keto-prostaglandin F1 alpha) along with smaller quantities of prostaglandin E2 and F2 alpha. The type II cells were relatively unresponsive to prostaglandins. Exogenously added prostaglandin E, had no effect on cell growth, and only a minimal effect on cyclic AMP levels in the monolayer cultures. 相似文献
9.
Véronique Corbière Violette Dirix Sarah Norrenberg Mattéo Cappello Myriam Remmelink Fran?oise Mascart 《Respiratory research》2011,12(1):15
Background
Type II alveolar epithelial cells (AECII) are well known for their role in the innate immune system. More recently, it was proposed that they could play a role in the antigen presentation to T lymphocytes but contradictory results have been published both concerning their surface expressed molecules and the T lymphocyte responses in mixed lymphocyte cultures. The use of either AECII cell line or fresh cells could explain the observed discrepancies. Thus, this study aimed at defining the most relevant model of accessory antigen presenting cells by carefully comparing the two models for their expression of surface molecules necessary for efficient antigen presentation.Methods
We have compared by flow cytometry the surface expression of the major markers involved in the immunological synapse on the A549 cell line, the most popular model of type II alveolar epithelial cells, and freshly isolated cells. HLA-DR, CD80, CD86, ICOS-L, CD54, CD58 surface expression were studied in resting conditions as well as after IFN-γ/TNF-α treatment, two inflammatory cytokines, known to modulate some of these markers.Results
The major difference found between the two cells types was the very low surface expression of HLA-DR on the A549 cell line compared to its constitutive expression on freshly isolated AECII. The surface expression of co-stimulatory molecules from the B7 family was very low for the CD86 (B7-2) and ICOS-L (B7-H2) and absent for CD80 (B7-1) on both freshly isolated cells and A549 cell line. Neither IFN-γ nor TNF-α could increase the expression of these classical co-stimulatory molecules. However CD54 (ICAM-1) and CD58 (LFA-3) adhesion molecules, known to be implicated in B7 independent co-stimulatory signals, were well expressed on the two cell types.Conclusions
Constitutive expression of MHC class I and II molecules as well as alternative co-stimulatory molecules by freshly isolated AECII render these cells a good model to study antigen presentation. 相似文献10.
Caroline Fraslon GaËlle Rolland Jacques R. Bourbon Michel Rieutort Cécile Valenza 《In vitro cellular & developmental biology. Animal》1991,27(11):843-852
Summary A serum-free culture medium (defined medium = DM) was elaborated by adding to Eagle’s minimum essential medium (MEM), non-essential
amino acids, transferrin, putrescine, tripeptide glycyl-histidyl-lysine, somatostatin, sodium selenite, ethanolamine, phosphoethanolamine,
sodium pyruvate, and metal trace elements. This medium was tested for its ability to support sustained surfactant biosynthesis
in fetal alveolar epithelial type II cells. For up to 8 days, ultrastructure was maintained with persistance of lamellar inclusion
bodies. Thymidine incorporation into DNA was enhanced about 50% in DM as compared with MEM, whereas it was enhanced 300% in
10% fetal bovine serum. With DM, the incorporation of tritiated choline into phosphatidylcholine (PC) of isolated surfactant
material was about twice that with MEM. Deletion experiments evidenced the prominent role of pyruvate, transferrin, and selenium
in the stimulation of surfactant PC biosynthesis. The addition of biotin to DM enhanced surfactant PC biosynthesis slightly
and nonsurfactant PC biosynthesis markedly. The presence of nucleosides seemed unfavorable to the synthesis of surfactant
PC. Type II cells responded to the addition of epidermal growth factor and insulinlike growth factor-I both by increased thymidine
incorporation into DNA and choline incorporation into PC. It is concluded that DM represents a useful tool for cultivating
type II cells without loss of their specialized properties and for studying the regulation of cell proliferation and surfactant
biosynthesis in a controlled environment. 相似文献
11.
Sunil VR Connor AJ Guo Y Laskin JD Laskin DL 《American journal of physiology. Lung cellular and molecular physiology》2002,282(4):L872-L880
Lung injury induced by acute endotoxemia is associated with increased generation of inflammatory mediators such as nitric oxide and eicosanoids, which have been implicated in the pathophysiological process. Although production of these mediators by alveolar macrophages (AM) has been characterized, the response of type II cells is unknown and was assessed in the present studies. Acute endotoxemia caused a rapid (within 1 h) and prolonged (up to 48 h) induction of nitric oxide synthase-2 (NOS-2) in type II cells but a delayed response in AM (12-24 h). In both cell types, this was associated with increased nitric oxide production. Although type II cells, and to a lesser extent AM, constitutively expressed cyclooxygenase-2, acute endotoxemia did not alter this activity. Endotoxin administration had no effect on mitogen-activated protein kinase or protein kinase B-alpha (PKB-alpha) expression. However, increases in phosphoinositide 3-kinase and phospho-PKB-alpha were observed in type II cells. The finding that this was delayed for 12-24 h suggests that these proteins do not play a significant role in the regulation of NOS-2 in this model. After endotoxin administration to rats, a rapid (within 1-2 h) activation of nuclear factor-kappaB was observed. This response was transient in type II cells but was sustained in AM. Interferon regulatory factor-1 (IRF-1) was also activated rapidly in type II cells. In contrast, IRF-1 activation was delayed in AM. These data demonstrate that type II cells, like AM, are highly responsive during acute endotoxemia and may contribute to pulmonary inflammation. 相似文献
12.
Postle AD Gonzales LW Bernhard W Clark GT Godinez MH Godinez RI Ballard PL 《Journal of lipid research》2006,47(6):1322-1331
Maturation of fetal alveolar type II epithelial cells in utero is characterized by specific changes to lung surfactant phospholipids. Here, we quantified the effects of hormonal differentiation in vitro on the molecular specificity of cellular and secreted phospholipids from human fetal type II epithelial cells using electrospray ionization mass spectrometry. Differentiation, assessed by morphology and changes in gene expression, was accompanied by restricted and specific modifications to cell phospholipids, principally enrichments of shorter chain species of phosphatidylcholine (PC) and phosphatidylinositol, that were not observed in fetal lung fibroblasts. Treatment of differentiated epithelial cells with secretagogues stimulated the secretion of functional surfactant-containing surfactant proteins B and C (SP-B and SP-C). Secreted material was further enriched in this same set of phospholipid species but was characterized by increased contents of short-chain monounsaturated and disaturated species other than dipalmitoyl PC (PC16:0/16:0), principally palmitoylmyristoyl PC (PC16:0/14:0) and palmitoylpalmitoleoyl PC (PC16:0/16:1). Mixtures of these PC molecular species, phosphatidylglycerol, and SP-B and SP-C were functionally active and rapidly generated low surface tension on compression in a pulsating bubble surfactometer. These results suggest that hormonally differentiated human fetal type II cells do not select the molecular composition of surfactant phospholipid on the basis of saturation but, more likely, on the basis of acyl chain length. 相似文献
13.
Fang X Song Y Zemans R Hirsch J Matthay MA 《American journal of physiology. Lung cellular and molecular physiology》2004,287(1):L104-L110
Previous studies have used fluid-instilled lungs to measure net alveolar fluid transport in intact animal and human lungs. However, intact lung studies have two limitations: the contribution of different distal lung epithelial cells cannot be studied separately, and the surface area for fluid absorption can only be approximated. Therefore, we developed a method to measure net vectorial fluid transport in cultured rat alveolar type II cells using an air-liquid interface. The cells were seeded on 0.4-microm microporous inserts in a Transwell system. At 96 h, the transmembrane electrical resistance reached a peak level (1,530 +/- 115 Omega.cm(2)) with morphological evidence of tight junctions. We measured net fluid transport by placing 150 microl of culture medium containing 0.5 microCi of (131)I-albumin on the apical side of the polarized cells. Protein permeability across the cell monolayer, as measured by labeled albumin, was 1.17 +/- 0.34% over 24 h. The change in concentration of (131)I-albumin in the apical fluid was used to determine the net fluid transported across the monolayer over 12 and 24 h. The net basal fluid transport was 0.84 microl.cm(-2).h(-1). cAMP stimulation with forskolin and IBMX increased fluid transport by 96%. Amiloride inhibited both the basal and stimulated fluid transport. Ouabain inhibited basal fluid transport by 93%. The cultured cells retained alveolar type II-like features based on morphologic studies, including ultrastructural imaging. In conclusion, this novel in vitro system can be used to measure net vectorial fluid transport across cultured, polarized alveolar epithelial cells. 相似文献
14.
Inorganic phosphate, amino acids and sugars are of obvious importance in lung metabolism. We investigated sodium-coupled transports with these organic and inorganic substrates in type II alveolar epithelial cells from adult rat after one day in culture. Alveolar type II cells actively transported inorganic phosphate and alanine, a neutral amino acid, by sodium-dependent processes. Cellular uptakes of phosphate and alanine were decreased by about 80% by external sodium substitution, inhibited by ouabain (30 and 41%, respectively) and displayed saturable kinetics. Two sodium-phosphate cotransport systems were characterized: a high-affinity one (apparent Km = 18 microM) with a Vmax of 13.5 nmol/mg protein per 10 min and a low-affinity one (apparent Km = 126 microM) with a Vmax of 22.5 nmol/mg protein per 10 min. Alanine transport had an apparent Km of 87.9 microM and a Vmax of 43.5 nmol/mg protein per 10 min. By contrast, cultured alveolar type II cells did not express sodium-dependent hexose transport. Increasing time in culture decreased Vmax values of the two phosphate transport systems on day 4 while sodium-dependent alanine uptake was unchanged. This study demonstrated the existence of sodium-dependent phosphate and amino acid transports in alveolar type II cells similar to those documented in other epithelial cell types. These sodium-coupled transports provide a potent mechanism for phosphate and amino acid absorption and are likely to play a role in substrate availability for cellular metabolism and in regulating the composition of the alveolar subphase. The decrease in phosphate uptake with time in culture is parallel to decrease in surfactant synthesis reported in cultured alveolar type II cells, suggesting that phosphate availability for surfactant synthesis may be accomplished by a sodium-dependent phosphate uptake. 相似文献
15.
Summary Subcellular structures of type II alveolar epithelial cells in the rat lung were analyzed at six evenly spaced times over 24 h (light period: 06.00 h–18.00 h), using a morphometric technique. The cell volumes were maximal at 16.00 h and minimal at 08.00 h. The volume and surface densities of rough endoplasmic reticulum and mitochondria were low during the light period, and high during the dark period. Morphometric parameters of multivesicular bodies did not significantly fluctuate over 24 h, but they increased from 04.00 h to 08.00 h. The volume densities of lamellar bodies increased from 16.00 h to 20.00 h, and decreased from 00.00 h to 08.00 h. The change in numerical densities of lamellar bodies was inversely correlated to that in the volume densities. As shown by electron microscopy, small lamellar bodies predominated at 08.00 h, larger lamellar bodies increasing at 16.00h. Composite bodies often appeared at 08.00 h and 12.00 h. Type II cells thus appear to fluctuate, showing three phases over 24 h: formation, accumulation and secretion of lamellar bodies. In particular, it is noteworthy that the accumulation stage occurs during the resting phase of the rat, whereas the secretion stage occurs during its body-active phase. 相似文献
16.
17.
Jiang H Wang XF Fang L Tang C Zhu Y Wang X 《Biochemical and biophysical research communications》2005,337(4):1084-1091
Homocysteine (Hcy) has recently been recognized as an integral component of several disorders. However, the association between hyperhomocysteinemia (HHcy) and pulmonary disease is not well understood. The combination of two-dimensional electrophoresis and tandem mass spectrometry detected and identified proteins that are differentially expressed in human type II alveolar epithelial cells (A549 cells) treated by Hcy. We found that aldose reductase (AR) showed more abundant expression in the cells. Further, Hcy (100-500microM) could induce a time- and dose-dependent upregulation of AR protein levels. Immunohistochemical staining of cross-sections from HHcy mice lungs also revealed increased expression of AR protein. Intracellular levels of reactive oxygen species (ROS) were remarkably elevated in A549 cells treated with Hcy. Pretreatment of A549 cells with catalase and SOD significantly suppressed the Hcy-induced AR expression, which suggests the involvement of ROS in this process. The major signaling pathway mediating the upregulation of AR was demonstrated to be the Ras/Raf/ERK1/2 pathway. In addition, Hcy might reduce surfactant protein B (SP-B) expression in the cells, which could be significantly attenuated by Alrestatin, an AR inhibitor, indicating a damaging role of Hcy-induced AR elevation in the lung. These results show a novel and unanticipated link between HHcy and AR upregulation that may be a risk factor in pulmonary disease of patients with HHcy. 相似文献
18.
Incubation of isolated rat alveolar epithelial type II cells with secretagogues (calcium ionophore, ATP or terbutaline) resulted in rapid proteolysis of lung spectrin and appearance of multiple proteolytic products which showed immunoreactivity with an antibody against human erythrocyte spectrin. These proteolytic products were similar to those generated from erythrocyte spectrin or cultured lung tumor cells (A549 cells) incubated with purified calpain. Furthermore, incubation of alveolar type II cells with a calpain-specific inhibitor modulated the secretagogue-induced proteolysis of lung spectrin. Thus, stimulation of secretion appeared to activate endogenous calpain in type II cells, suggesting that calpain-mediated proteolysis of a submembranous cytoskeletal protein could play an important role in the secretory process. 相似文献
19.
We developed a new method for isolating viable type II cells from fractionated and unfractionated lung cell suspensions by flow cytometry using acridine orange (AO). Fischer-344 rat lungs were dispersed into single-cell suspensions by a technique that yields a high number of cells (4-5 X 10(8) cells/lung, congruent to 85% viable), congruent to 11% of which are type II cells. Elutriated fractions from the lung cell preparation and parent, unfractionated cell suspensions were incubated with 1.0-0.02 micrograms/ml AO and analyzed by flow cytometry. Parameters analyzed included axial light loss (ALL) and red fluorescence (RF). Based on their unique RF, attributable to AO staining of type II cell lamellar bodies, and their ALL characteristics, type II pneumocytes were sorted from elutriated fractions to greater than 95% purity. Using the same approach, type II pneumocytes were sorted from unfractionated lung cell suspensions at greater than or equal to 85% purity. The viabilities of the type II alveolar epithelial cells isolated by this method range from 85% to 95%, and the ultrastructural features of the sorted cells were unaltered by AO labeling or sorting. 相似文献
20.
Borok Z Liebler JM Lubman RL Foster MJ Zhou B Li X Zabski SM Kim KJ Crandall ED 《American journal of physiology. Lung cellular and molecular physiology》2002,282(4):L599-L608
Despite a presumptive role for type I (AT1) cells in alveolar epithelial transport, specific Na transporters have not previously been localized to these cells. To evaluate expression of Na transporters in AT1 cells, double labeling immunofluorescence microscopy was utilized in whole lung and in cytocentrifuged preparations of partially purified alveolar epithelial cells (AEC). Expression of Na pump subunit isoforms and the alpha-subunit of the rat (r) epithelial Na channel (alpha-ENaC) was evaluated in isolated AT1 cells identified by their immunoreactivity with AT1 cell-specific antibody markers (VIIIB2 and/or anti-aquaporin-5) and lack of reactivity with antibodies specific for AT2 cells (anti-surfactant protein A) or leukocytes (anti-leukocyte common antigen). Expression of the Na pump alpha(1)-subunit in AEC was assessed in situ. Na pump subunit isoform and alpha-rENaC expression was also evaluated by RT-PCR in highly purified (approximately 95%) AT1 cell preparations. Labeling of isolated AT1 cells with anti-alpha(1) and anti-beta(1) Na pump subunit and anti-alpha-rENaC antibodies was detected, while reactivity with anti-alpha(2) Na pump subunit antibody was absent. AT1 cells in situ were reactive with anti-alpha(1) Na pump subunit antibody. Na pump alpha(1)- and beta(1)- (but not alpha(2)-) subunits and alpha-rENaC were detected in highly purified AT1 cells by RT-PCR. These data demonstrate that AT1 cells express Na pump and Na channel proteins, supporting a role for AT1 cells in active transalveolar epithelial Na transport. 相似文献