首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
The Ski complex composed of Ski2p, Ski3p, and Ski8p plays an essential role in the 3' to 5' cytoplasmic mRNA degradation pathway in yeast. Ski2p is a putative RNA helicase, belonging in the DExD/H-box protein families and conserved in eukarya as well as in archaea. The gene product (Ph1280p) from the hyperthermophilic archaeon Pyrococcus horikoshii OT3 shows sequence homology with Ski2p, sharing 22.6% identical amino acids with a central region of Ski2p. In order to gain structural information about the Ski2p-like RNA helicase, we overproduced Ph1280p in Escherichia coli cells, and purified it to apparent homogeneity. Ph1280p exhibits DNA/RNA-dependent ATPase activity with an optimal temperature at approximately 90 degrees C. The crystal structure of Ph1280p has been solved at a resolution of 3.5 A using single-wavelength anomalous dispersion (SAD) and selenomethionyl (Se-Met)-substituted protein. Ph1280p comprises four subdomains; the two N-terminal subdomains (N1 and N2) fold into an RecA-like architecture with the conserved helicase motifs, while the two C-terminal subdomains (C1 and C2) fold into alpha-helical structures containing a winged helix (WH)-fold and helix-hairpin-helix (HhH)-fold, respectively. Although the structure of each of the Ph1280p subdomains can be individually superimposed on the corresponding domains in other helicases, such as the Escherichia coli DNA helicase RecQ, the relative orientation of the helicase and C-terminal subdomains in Ph1280p is significantly different from that of other helicases. This structural feature is implicated in substrate specificity for the Ski2-like helicase and would play a critical role in the 3' to 5' cytoplasmic mRNA degradation in the Ski complex.  相似文献   

5.
Crystal structure of human kynurenine aminotransferase II   总被引:2,自引:0,他引:2  
Human kynurenine aminotransferase II (hKAT-II) efficiently catalyzes the transamination of knunrenine to kynurenic acid (KYNA). KYNA is the only known endogenous antagonist of N-methyl-D-aspartate (NMDA) receptors and is also an antagonist of 7-nicotinic acetylcholine receptors. Abnormal concentrations of brain KYNA have been implicated in the pathogenesis and development of several neurological and psychiatric diseases in humans. Consequently, enzymes involved in the production of brain KYNA have been considered potential regulatory targets. In this article, we report a 2.16 A crystal structure of hKAT-II and a 1.95 A structure of its complex with kynurenine. The protein architecture of hKAT-II reveals that it belongs to the fold-type I pyridoxal 5-phosphate (PLP)-dependent enzymes. In comparison with all subclasses of fold-type I-PLP-dependent enzymes, we propose that hKAT-II represents a novel subclass in the fold-type I enzymes because of the unique folding of its first 65 N-terminal residues. This study provides a molecular basis for future effort in maintaining physiological concentrations of KYNA through molecular and biochemical regulation of hKAT-II.  相似文献   

6.
7.
8.
PH0459, from the hyperthermophilic archaeon Pyrococcus horikoshii OT3, is a probable haloacid dehalogenase with a molecular mass of 26,725 Da. Here, we report the 2.0 A crystal structure of PH0459 (PDB ID: 1X42) determined by the multiwavelength anomalous dispersion method. The core domain has an alpha/beta structure formed by a six-stranded parallel beta-sheet flanked by six alpha-helices and three 3(10)-helices. One disulfide bond, Cys186-Cys212, forms a bridge between an alpha-helix and a 3(10)-helix, although PH0459 seems to be an intracellular protein. The subdomain inserted into the core domain has a four-helix bundle structure. The crystal packing suggests that PH0459 exists as a monomer. A structural homology search revealed that PH0459 resembles the l-2-haloacid dehalogenases l-DEX YL from Pseudomonas sp. YL and DhlB from Xanthobacter autotrophicus GJ10. A comparison of the active sites suggested that PH0459 probably has haloacid dehalogenase activity, but its substrate specificity may be different. In addition, the disulfide bond in PH0459 probably facilitates the structural stabilization of the neighboring region in the monomeric form, although the corresponding regions in l-DEX YL and DhlB may be stabilized by dimerization. Since heat-stable dehalogenases can be used for the detoxification of halogenated aliphatic compounds, PH0459 will be a useful target for biotechnological research.  相似文献   

9.
10.
Miyazono K  Sawano Y  Tanokura M 《Proteins》2005,61(1):196-205
To elucidate the structural basis for the high stability of acylphosphatase (AcP) from Pyrococcus horikoshii OT3, we determined its crystal structure at 1.72 A resolution. P. horikoshii AcP possesses high stability despite its approximately 30% sequence identity with eukaryotic enzymes that have moderate thermostability. The overall fold of P. horikoshii AcP was very similar to the structures of eukaryotic counterparts. The crystal structure of P. horikoshii AcP shows the same fold betaalphabetabetaalphabeta topology and the conserved putative catalytic residues as observed in eukaryotic enzymes. Comparison with the crystal structure of bovine common-type AcP and that of D. melanogaster AcP (AcPDro2) as representative of eukaryotic AcP revealed some significant characteristics in P. horikoshii AcP that likely play important roles in structural stability: (1) shortening of the flexible N-terminal region and long loop; (2) an increased number of ion pairs on the protein surface; (3) stabilization of the loop structure by hydrogen bonds. In P. horikoshii AcP, two ion pair networks were observed one located in the loop structure positioned near the C-terminus, and other on the beta-sheet. The importance of ion pairs for structural stability was confirmed by site-directed mutation and denaturation induced by guanidium chloride.  相似文献   

11.
12.
13.
Kakuta Y  Ishimatsu I  Numata T  Kimura K  Yao M  Tanaka I  Kimura M 《Biochemistry》2005,44(36):12086-12093
Ribonuclease P (RNase P) is a ribonucleoprotein complex involved in the removal of 5' leader sequences from tRNA precursors (pre-tRNA). The human protein Rpp21 is essential for human RNase P activity in tRNA processing in vitro. The crystal structure of Ph1601p from the hyperthermophilic archaeon Pyrococcus horikoshii OT3, the archaeal homologue of Rpp21, was determined using the multiple anomalous dispersion (MAD) method with the aid of anomalous scattering in zinc and selenium at 1.6 A resolution. Ph1601p comprises an N-terminal domain (residues 1-55), a central linker domain (residues 56-79), and a C-terminal domain (residues 80-120), forming an L-shaped structure. The N-terminal domain consists of two long alpha-helices, while the central and C-terminal domains fold in a zinc ribbon domain. The electrostatic potential representation indicates the presence of positively charged clusters along the L arms, suggesting a possible role in RNA binding. A single zinc ion binds the well-ordered binding site that consists of four Cys residues (Cys68, Cys71, Cys97, and Cys100) and appears to stabilize the relative positions of the N- and C-domains. Mutations of Cys68 and Cys71 or Cys97 and Cys100 to Ser destabilize the protein structure, which results in inactivation of the RNase P activity. In addition, site-directed mutagenesis suggests that Lys69 at the central loop and Arg86 and Arg105 at the zinc ribbon domain are strongly involved in the functional activity, while Arg22, Tyr44, Arg65, and Arg84 play a modest role in the activity.  相似文献   

14.
Ribonuclease P (RNase P) is a ribonucleoprotein complex involved in the processing of pre-tRNA. Protein Ph1877p is one of essential components of the hyperthermophilic archaeon Pyrococcus horikoshii OT3 RNase P [Biochem. Biophys. Res. Commun. 306 (2003) 666]. The crystal structure of Ph1877p was determined at 1.8A by X-ray crystallography and refined to a crystallographic R factor of 22.96% (Rfree of 26.77%). Ph1877p forms a TIM barrel structure, consisting of ten alpha-helices and seven beta-strands, and has the closest similarity to the TIM barrel domain of Escherichia coli cytosine deaminase with a root-mean square deviation of 3.0A. The protein Ph1877p forms an oblate ellipsoid, approximate dimensions being 45Ax43Ax39A, and the electrostatic representation indicated the presence of several clusters of positively charged amino acids present on the molecular surface. We made use of site-directed mutagenesis to assess the role of twelve charged amino acids, Lys42, Arg68, Arg87, Arg90, Asp98, Arg107, His114, Lys123, Lys158, Arg176, Asp180, and Lys196 related to the RNase P activity. Individual mutations of Arg90, Arg107, Lys123, Arg176, and Lys196 by Ala resulted in reconstituted particles with reduced enzymatic activities (32-48%) as compared with that reconstituted RNase P by wild-type Ph1877p. The results presented here provide an initial step for definite understanding of how archaeal and eukaryotic RNase Ps mediate substrate recognition and process 5'-leader sequence of pre-tRNA.  相似文献   

15.
16.
17.
The kynurenine pathway has long been regarded as a valuable target for the treatment of several neurological disorders accompanied by unbalanced levels of metabolites along the catabolic cascade, kynurenic acid among them. The irreversible transamination of kynurenine is the sole source of kynurenic acid, and it is catalyzed by different isoforms of the 5'-pyridoxal phosphate-dependent kynurenine aminotransferase (KAT). The KAT-I isozyme has also been reported to possess beta-lyase activity toward several sulfur- and selenium-conjugated molecules, leading to the proposal of a role of the enzyme in carcinogenesis associated with environmental pollutants. We solved the structure of human KAT-I in its 5'-pyridoxal phosphate and pyridoxamine phosphate forms and in complex with the competing substrate l-Phe. The enzyme active site revealed a striking crown of aromatic residues decorating the ligand binding pocket, which we propose as a major molecular determinant for substrate recognition. Ligand-induced conformational changes affecting Tyr(101) and the Trp(18)-bearing alpha-helix H1 appear to play a central role in catalysis. Our data reveal a key structural role of Glu(27), providing a molecular basis for the reported loss of enzymatic activity displayed by the equivalent Glu --> Gly mutation in KAT-I of spontaneously hypertensive rats.  相似文献   

18.
There exists a d-enantiomer of aspartic acid in lactic acid bacteria and several hyperthermophilic archaea, which is biosynthesized from the l-enantiomer by aspartate racemase. Aspartate racemase is a representative pyridoxal 5'-phosphate (PLP)-independent amino acid racemase. The "two-base" catalytic mechanism has been proposed for this type of racemase, in which a pair of cysteine residues are utilized as the conjugated catalytic acid and base. We have determined the three-dimensional structure of aspartate racemase from the hyperthermophilic archaeum Pyrococcus horikoshii OT3 at 1.9 A resolution by X-ray crystallography and refined it to a crystallographic R factor of 19.4% (R(free) of 22.2%). This is the first structure reported for aspartate racemase, indeed for any amino acid racemase from archaea. The crystal structure revealed that this enzyme forms a stable dimeric structure with a strong three-layered inter-subunit interaction, and that its subunit consists of two structurally homologous alpha/beta domains, each containing a four-stranded parallel beta-sheet flanked by six alpha-helices. Two strictly conserved cysteine residues (Cys82 and Cys194), which have been shown biochemically to act as catalytic acid and base, are located on both sides of a cleft between the two domains. The spatial arrangement of these two cysteine residues supports the "two-base" mechanism but disproves the previous hypothesis that the active site of aspartate racemase is located at the dimeric interface. The structure revealed a unique pseudo mirror-symmetry in the spatial arrangement of the residues around the active site, which may explain the molecular recognition mechanism of the mirror-symmetric aspartate enantiomers by the non-mirror-symmetric aspartate racemase.  相似文献   

19.
The crystal structure of the Alba protein (PhoAlba) from a hyperthermophilic archaeon, Pyrococcus horikoshii OT3, was determined at a resolution of 2.8 A. PhoAlba structurally belongs to the alpha/beta proteins and is similar not only to archaeal homologues but also to RNA-binding proteins, including the C-terminal half of initiation factor 3 (IF3-C) from Bacillus stearothermophilus, an Esherichia coli protein implicated in cell division (Yhhp), and an Arabidopsis protein of unknown function. We found by gel shift assay that PhoAlba interacts with both ribonuclease P (RNase P) RNA (PhopRNA) and precursor-tRNA(Tyr) (pre-tRNA(Tyr)) in P. horikoshii. However, the addition of PhoAlba to reconstituted particles composed of PhopRNA and four or five protein subunits had little influence on either the pre-tRNA processing activity or the optimum temperature for the processing activity. These results suggest that PhoAlba contributes little to the catalytic activity of P. horikoshii RNase P.  相似文献   

20.
Genome sequencing of the thermophilic archaeon Pyrococcus horikoshii OT3 revealed a gene which had high sequence similarity to the gene encoding the carboxypeptidase of Sulfolobus solfataricus and also to that encoding the aminoacylase from Bacillus stearothermophilus. The gene from P. horikoshii comprises an open reading frame of 1,164 bp with an ATG initiation codon and a TGA termination codon, encoding a 43,058-Da protein of 387 amino acid residues. However, some of the proposed active-site residues for carboxypeptidase were not found in this gene. The gene was overexpressed in Escherichia coli with the pET vector system, and the expressed enzyme had high hydrolytic activity for both carboxypeptidase and aminoacylase at high temperatures. The enzyme was stable at 90°C, with the highest activity above 95°C. The enzyme contained one bound zinc ion per one molecule that was essential for the activity. The results of site-directed mutagenesis of Glu367, which corresponds to the essential Glu270 in bovine carboxypeptidase A and the essential Glu in other known carboxypeptidases, revealed that Glu367 was not essential for this enzyme. The results of chemical modification of the SH group and site-directed mutagenesis of Cys102 indicated that Cys102 was located at the active site and was related to the activity. From these findings, it was proven that this enzyme is a hyperthermostable, bifunctional, new zinc-dependent metalloenzyme which is structurally similar to carboxypeptidase but whose hydrolytic mechanism is similar to that of aminoacylase. Some characteristics of this enzyme suggested that carboxypeptidase and aminoacylase might have evolved from a common origin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号