首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
通过传统微生物培养方法,对处于灌浆期的杂交水稻亲本"深08S"、"和620S"及"16A007"种子内生细菌群落结构多样性进行研究。实验表明,处于灌浆期的杂交水稻亲本种子仍然存在内生细菌群落结构的多样性。"深08S"种子内生细菌含6个OTU,第一优势菌属为Pantoea,丰度为52.04%,第二和第三优势菌属分别为Pseudomonas和Rhizobium;"和620S"种子内生细菌含10个OTU,第一优势菌属为Pantoea,丰度为69.02%,第二优势菌属为Pseudomonas,并列第三优势菌属为Rhizobium和Sphingomonas;"16A007"种子内生细菌含11个OTU,第一优势菌属为Pseudomonas,丰度为45.12%,第二优势菌属和第三优势菌属分别为Pantoea和Sphingomonas。由研究结果可见,具有遗传相关性的水稻种子"深08S"和"和620S"内生细菌的第一和第二优势菌属相同,同时,三种水稻亲本种子优势菌属都有Pantoea和Pseudomonas,表明水稻种子基因型对其内生细菌结构多样性具有一定的影响。  相似文献   

2.
The seeds of plants are carriers of a variety of beneficial bacteria and pathogens. Using the non-culture methods of building 16S rDNA libraries, we investigated the endophytic bacterial communities of seeds of four hybrid maize offspring and their respective parents. The results of this study show that the hybrid offspring Yuyu 23, Zhengdan958, Jingdan 28 and Jingyu 11 had 3, 33, 38 and 2 OTUs of bacteria, respectively. The parents Ye 478, Chang 7-2, Zheng 58, Jing 24 and Jing 89 had 12, 36, 6, 12 and 2 OTUs, respectively. In the hybrid Yuyu 23, the dominant bacterium Pantoea (73.38?%) was detected in its female parent Ye 478, and the second dominant bacterium of Sphingomonas (26.62?%) was detected in both its female (Ye 478) and male (Chang 7-2) parent. In the hybrid Zhengdan 958, the first dominant bacterium Stenotrophomonas (41.67?%) was detected in both the female (Zheng 58) and male (Chang 7-2) parent. The second dominant bacterium Acinetobacter (9.26?%) was also the second dominant bacterium of its male parent. In the hybrid Jingdan 28, the second dominant bacterium Pseudomonas (12.78?%) was also the second dominant bacterium of its female parent, and its third dominant bacterium Sphingomonas (9.90?%) was the second dominant bacterium of its male parent and detected in its female parent. In the hybrid Jingyu 11, the first dominant bacterium Leclercia (73.85?%) was the third dominant bacterium of its male parent, and the second dominant bacterium Enterobacter (26.15?%) was detected in its male parent. As far as we know, this was the first research reported in China on the diversity of the endophytic bacterial communities of the seeds of various maize hybrids with different genotypes.  相似文献   

3.
The spermosphere, an important habitat to the plant micro-ecosystem, has a unique significance to seed microbial ecology, but has been poorly researched. In this study, the mature seeds of reciprocal cross maize (Zea mays L., Nongda108) were collected to investigate the diversity and population succession dynamics of indigenous spermosphere bacteria at 12, 24 and 36 h into seed germination using 16S rDNA library construction. In the spermosphere of Nongda108A (Huang C × 178), the dominant bacteria genera identified were Pseudomonas and Burkholderia. The proportion of Pseudomonas increased from 59.60 to 75.00% then 82.61%; while Burkholderia decreased from 39.39 to 25.00% then 15.22% at 12, 24 and 36 h, respectively. Bacillus, Paenibacillus and Stenotrophomonas were the dominant genera in Nongda108B. The proportion of Paenibacillus after 12, 24 and 36 h into germination decreased from 68.00 to 46.15 to 13.27%, respectively. The proportion of non-Paenibacillus genera increased from 32.00 (Stenotrophomonas) to 53.85 (Bacillus) to 77.55% (Burkholderia) from 12 h to 24 h to 36 h, respectively. Some dominant bacteria genera identified from maize spermosphere have been identified as common PGPR.  相似文献   

4.
赵帅  周娜  赵振勇  张科  田长彦 《微生物学报》2016,56(6):1000-1008
【目的】探讨盐角草根部内生细菌群落多样性特征,揭示内生细菌群落结构在宿主关键发育期动态变化规律。【方法】通过罗氏454高通量测序获得内生细菌16S r RNA片段,然后进行生物信息分析。【结果】共获得20363条16S r RNA基因序列。各样品中可操作分类单元(operational taxonomic units,OTUs)在552–941之间。根部内生细菌群落主要包括4个门,其中Proteobacteri门占主导地位,其余依次是Firmicutes,Actinobacteria,Bacteroidetes。在Proteobacteria门中,Gammaproteobacteria是第一大纲,其后是Betaproteobacteria纲。宿主5个发育时期共同拥有7个细菌属,包括Azomonas,Serratia,Pantoea,Serpens,Pseudomonas,Halomonas,Kushneria。整体上看,Gammaproteobacteria纲在宿主5个发育时期呈现增长趋势。优势菌属在5个发育期存在差异,分别为Delftia,Kushneria,Serratia,Pantoea,Erwinia。所有文库总共含2108个特异OTUs,共同拥有5个相同OTUs。花期OTUs数量最多,结种期内生细菌多样性降低。在宿主的5个发育时期中,土壤p H、月均温和土壤盐含量这3个环境因子组成的集合对其内生细菌群落变化具有显著影响。【结论】盐角草内生细菌群落多样性丰富,宿主发育期决定了内生细菌群落结构。  相似文献   

5.
杨娜  杨波 《生态学报》2011,31(5):1203-1212
为了研究褐斑病与蕙兰根部内生细菌群落结构和多样性的关联,从野生蕙兰健株和褐斑病株根部分离出内生细菌112株,采用核糖体DNA扩增片段限制性酶切分析(ARDRA),研究了健株和病株内生细菌多样性与群落结构。将内生细菌纯培养物扩增近全长的16S rDNA,并用ARDRA (Amplified Ribosomal DNA Restriction Analysis) 对所分离的菌株进行分型,根据酶切图谱的差异,将健株中的内生细菌分成8个ARDRA型,病株分成13个ARDRA型。并选取代表性菌株进行16S rDNA序列测定。结果表明,健株分离出内生细菌6个属,优势菌群为Bacillus;病株分离出11个属,优势菌群为 MitsuariaFlavobacterium。通过回接兰花植物和初步拮抗实验发现,从病株分离出的H5号菌株 (Flavobacterium resistens)使兰花产生病症,而健株中的B02 (Bacillus cereus) 和B22号菌株 (Burkholderia stabilis) 对菌株H5有拮抗作用。  相似文献   

6.
Diversity and composition of lepidopteran microbiotas are poorly investigated, especially across the different developmental stages. To improve this knowledge, we characterize the microbiota among different developmental stages of the Indian meal moth, Plodia interpunctella, which is considered one of the major pest of commodities world-wide. Using culture-independent approach based on Illumina 16S rRNA gene sequencing we characterized the microbiota of four developmental stages: eggs, first-, and last-instar larvae, and adult. A total of 1022 bacterial OTUs were obtained, showing a quite diversified microbiota associated to all the analyzed stages. The microbiotas associated with P. interpunctella resulted almost constant throughout the developmental stages, with approximately 77% of bacterial OTUs belonging to the phylum of Proteobacteria. The dominant bacterial genus is represented by Burkholderia (?64%), followed by Propionibacterium, Delftia, Pseudomonas, and Stenotrophomonas. A core bacterial community, composed of 139 OTUs, was detected in all the developmental stages, among which 112 OTUs were assigned to the genus Burkholderia. A phylogenetic reconstruction, based on the 16S rRNA, revealed that our Burkholderia OTUs clustered with Burkholderia cepacia complex, in the same group of those isolated from the hemipterans Gossyparia spuria and Acanthococcus aceris. The functional profiling, predicted on the base of the bacterial 16S rRNA, indicates differences in the metabolic pathways related to metabolism of amino acids between preimaginal and adult stages. We can hypothesize that bacteria may support the insect host during preimaginal stages.  相似文献   

7.
Plants harbors complex and variable microbial communities. Endophytic bacteria play an important function and potential role more effectively in developing sustainable systems of crop production. To examine how endophytic bacteria in sugar beet (Beta vulgaris L.) vary across both host growth period and location, PCR-based Illumina was applied to revealed the diversity and stability of endophytic bacteria in sugar beet on the north slope of Tianshan mountain, China. A total of 60.84 M effective sequences of 16S rRNA gene V3 region were obtained from sugar beet samples. These sequences revealed huge amount of operational taxonomic units (OTUs) in sugar beet, that is, 19–121 OTUs in a beet sample, at 3 % cutoff level and sequencing depth of 30,000 sequences. We identified 13 classes from the resulting 449,585 sequences. Alphaproteobacteria were the dominant class in all sugar beets, followed by Acidobacteria, Gemmatimonadetes and Actinobacteria. A marked difference in the diversity of endophytic bacteria in sugar beet for different growth periods was evident. The greatest number of OTUs was detected during rossette formation (109 OTUs) and tuber growth (146 OTUs). Endophytic bacteria diversity was reduced during seedling growth (66 OTUs) and sucrose accumulation (95 OTUs). Forty-three OTUs were common to all four periods. There were more tags of Alphaproteobacteria and Gammaproteobacteria in Shihezi than in Changji. The dynamics of endophytic bacteria communities were influenced by plant genotype and plant growth stage. To the best of our knowledge, this study is the first application of PCR-based Illumina pyrosequencing to characterize and compare multiple sugar beet samples.  相似文献   

8.
There is increasing interest in the use of plant probiotics as environmental-friendly and healthy biofertilizers. The study aimed at selecting for novel probiotic candidates of soybean (Glycine max). The bacteriome and mycobiome of soybean sprouts and seeds were analyzed by Illumina-based sequencing. Seeds contained more diverse bacteria than those in sprouts. The seeds contained similar fungal diversity with sprouts. Total 15 bacterial OTUs and 4 fungal OTUs were detected in seeds and sprouts simultaneously, suggesting that the sprouts contained bacterial and fungal taxa transmitted from seeds. The Halothiobacillus was the most dominant bacterial genus observed and coexisted in seeds and sprouts. The OTUs belonged to Ascomycota were the most dominant fungal taxa observed in seeds and sprouts. Halothiobacillus was firstly identified as endophytic probiotics of soybean. The results suggested that sprouts might contain diverse plant probiotics of mature plants and Illumina-based sequencing can be used to screen for probiotic candidates.  相似文献   

9.
Candidatus Phytoplasma mali’, the causal agent of apple proliferation (AP) disease, is a quarantine pathogen controlled by chemical treatments against insect vectors and eradication of diseased plants. In accordance with the European Community guidelines, novel strategies should be developed for sustainable management of plant diseases by using resistance inducers (e.g. endophytes). A basic point for the success of this approach is the study of endophytic bacteria associated with plants. In the present work, endophytic bacteria living in healthy and ‘Ca. Phytoplasma mali’-infected apple trees were described by cultivation-dependent and independent methods. 16S rDNA sequence analysis showed the presence of the groups Proteobacteria, Acidobacteria, Bacteroidetes, Actinobacteria, Chlamydiae, and Firmicutes. In detail, library analyses underscored 24 and 17 operational taxonomic units (OTUs) in healthy and infected roots, respectively, with a dominance of Betaproteobacteria. Moreover, differences in OTUs number and in CFU/g suggested that phytoplasmas could modify the composition of endophytic bacterial communities associated with infected plants. Intriguingly, the combination of culturing methods and cloning analysis allowed the identification of endophytic bacteria (e.g. Bacillus, Pseudomonas, and Burkholderia) that have been reported as biocontrol agents. Future research will investigate the capability of these bacteria to control ‘Ca. Phytoplasma mali’ in order to develop sustainable approaches for managing AP.  相似文献   

10.

Background and Aims

The role and linkage of endophytic bacteria to resistance of peanut seeds to biotic stress is poorly understood. The aims of the present study were to survey the experimental (axenic) and control (conventional) peanut plants for the predominant endophytic bacteria, and to characterize isolates with activity against selected A. flavus strains.

Methods

Young axenic plants were grown from presumably bacteria-free embryos in the lab, and then they were grown in a field. Endophytic bacterial species were identified by the analysis of DNA sequences of their 16S-ribosomal RNA gene. DNA extracted from soil was also analyzed for predominant bacteria.

Results

Mature seeds from the experimental and control plants contained several species of nonpathogenic endophytic bacteria. Among the eight bacterial species isolated from seeds, and DNA sequences detected in soil, Bacillus thuringiensis was dominant. All B. amyloliquefaciens isolates, the second abundant species in seeds demonstrated activity against A. flavus. This effect was not observed with any other bacterial isolates. There was no significant difference in number and relative occurrence of the two major bacterial species between the experimental and conventionally grown control seeds.

Conclusion

Endophytic bacterial colonization derives from local soil and not from the seed source, and the peanut plant accommodates only selected species of bacteria from diverse soil populations. Some bacterial isolates showed antibiosis against A. flavus.  相似文献   

11.
Bacteria were isolated from the rhizosphere and from inside the roots and stems of sugarcane plants grown in the field in Brazil. Endophytic bacteria were found in both the roots and the stems of sugarcane plants, with a significantly higher density in the roots. Many of the cultivated endophytic bacteria were shown to produce the plant growth hormone indoleacetic acid, and this trait was more frequently found among bacteria from the stem. 16S rRNA gene sequence analysis revealed that the selected isolates of the endophytic bacterial community of sugarcane belong to the genera of Burkholderia, Pantoea, Pseudomonas, and Microbacterium. Bacterial isolates belonging to the genus Burkholderia were the most predominant among the endophytic bacteria. Many of the Burkholderia isolates produced the antifungal metabolite pyrrolnitrin, and all were able to grow at 37°C. Phylogenetic analyses of the 16S rRNA gene and recA gene sequences indicated that the endophytic Burkholderia isolates from sugarcane are closely related to clinical isolates of the Burkholderia cepacia complex and clustered with B. cenocepacia (gv. III) isolates from cystic fibrosis patients. These results suggest that isolates of the B. cepacia complex are an integral part of the endophytic bacterial community of sugarcane in Brazil and reinforce the hypothesis that plant-associated environments may act as a niche for putative opportunistic human pathogenic bacteria.  相似文献   

12.
Microbial plant endophytes are receiving ever-increasing attention as a result of compelling evidence regarding functional interaction with the host plant. Microbial communities in plants were recently reported to be influenced by numerous environmental and anthropogenic factors, including soil and pest management. In this study we used automated ribosomal intergenic spacer analysis (ARISA) fingerprinting and pyrosequencing of 16S rDNA to assess the effect of organic production and integrated pest management (IPM) on bacterial endophytic communities in two widespread grapevines cultivars (Merlot and Chardonnay). High levels of the dominant Ralstonia, Burkholderia and Pseudomonas genera were detected in all the samples We found differences in the composition of endophytic communities in grapevines cultivated using organic production and IPM. Operational taxonomic units (OTUs) assigned to the Mesorhizobium, Caulobacter and Staphylococcus genera were relatively more abundant in plants from organic vineyards, while Ralstonia, Burkholderia and Stenotrophomonas were more abundant in grapevines from IPM vineyards. Minor differences in bacterial endophytic communities were also found in the grapevines of the two cultivars.  相似文献   

13.
烟草种子内生细菌群落结构与多样性   总被引:4,自引:0,他引:4  
【目的】为了解烟草种子内生细菌的群落结构和多样性。【方法】分别对3个品种(K326、云烟85、云烟87)烟草种子内生细菌的16S rRNA基因V3–V4区进行扩增,采用Illumina MiSeq测序技术对扩增片段进行高通量测序,并对3个品种烟草种子内生细菌群落结构和多样性进行分析。【结果】3个品种种子共获得的V3–V4区高质量序列片段128558条,Shannon指数计算为2.03–3.73,K326和云烟85内生菌多样性指数高于云烟87。3品种烟草种子内生细菌的优势门均为变形菌门Proteobacteria、放线菌门Actinobacteria、厚壁菌门Firmicute和拟杆菌门Bacteroidete。3个品种烟草种子内生细菌共有菌属共有27个,K326和云烟85的最优势菌属为假单胞菌属(Pseudomonas),云烟87的最优势菌属为大肠杆菌志贺菌属(Escherichia-shigella)。16S功能预测显示各种子中产生了丰度较高的蛋白质、核苷酸、糖类、辅酶及代谢产物合成的有益功能信息。【结论】烟草种子内生细菌多样性丰富,不同品种种子细菌群落组成基本相似,其丰度存在一定差异性。种子中存在的潜在有益细菌包括假单胞菌、类芽孢杆菌、根瘤菌、马赛菌、藤黄单胞菌、萨勒河菌、Lelliottia菌等,具有大量代谢相关的有益功能。研究结果为今后烟草种子内生菌的功能研究和利用以及种子病害生物防控提供参考信息。  相似文献   

14.
为研究北柴胡种子内生菌的群落结构与多样性.采用Illumina Miseq高通量测序技术,分别对山西(BC_1)、黑龙江(BC_2)、河北(BC_3)和内蒙古(BC_4)的四个产地(4份)北柴胡种子的16S RNA V3-V4区和ITS1区扩增片段进行测序,并对内生细菌和内生真菌群落结构和多样性进行分析.结果表明,BC...  相似文献   

15.
A plant–bacterium association between the giant cardon cactus Pachycereus pringlei and endophytic bacteria help seedlings establish and grow on barren rock. This cactus, together with other desert plants, is responsible for weathering ancient lava flows in the Baja California Peninsula of Mexico. When cardon seeds are inoculated with endophytic bacteria, the seedlings grow in pulverized rock for at least a year without fertilization and without showing distress. The bacteria–plant association released significant amounts of necessary nutrients from the substrate. When endophytic bacteria were eliminated from the seeds by antibiotics, development of seedlings stopped. In complementary experiments of sterile seeds inoculated with the same endophytic bacteria, plant growth was restored. This study and the previous one show that, under extreme environmental conditions, a symbiotic relationship is present between endophytic bacteria and their cactus host.  相似文献   

16.
【背景】土壤盐渍化已经成为日益严重的世界性问题,盐渍化不仅影响作物的产量,还会影响土壤的理化性质,抑制种子的萌发,阻碍植物正常生长,以及种子对水分和养分的吸收,进而影响作物的产量。【目的】玉米在盐渍土壤上生长受限,探究在中、高盐浓度下田菁种子内生菌与田菁胶混合浸种对玉米发芽的影响,为促进盐渍土玉米生长提供技术支持。【方法】利用LB液体培养基测定田菁种子内生菌贝莱斯芽孢杆菌ZH60的耐盐性;分别利用1%浓度田菁胶、OD600为0.8的ZH60菌悬液及两者混合液对玉米浸种3 h,自然风干后分别置于0、100和200 mmol/L NaCl的0.8%琼脂培养基上培养,测定玉米种子发芽势、发芽率、根长及芽长。将两叶一心期的玉米幼苗移至装有蛭石的花盆中培养,用荧光标记的内生菌ZH60灌根,分别于1、5、11、17、25 d取玉米根系研磨,利用平板菌落计数法测定内生菌在玉米根部的定殖量;利用激光共聚焦显微镜观察第28天ZH60在玉米根部的定殖情况。【结果】菌株ZH60耐11%的NaCl盐浓度,在中、高盐浓度下混合浸种的发芽势较对照组分别提高了28%、22%、30%;芽长提高了158%、163%、1...  相似文献   

17.
从蔓草虫豆(Atylosia scarabaeoides)、余甘子(Phyllanthus emblica)和黄花稔(Sida acuta)等5种云南元江干热河谷植物的525个组织块中,共分离得到内生真菌371株,内生真菌的分离频率在0.61~0.92之间,且所有植物叶内生真菌的分离频率都明显高于茎(P<0.05)。经形态学鉴定,内生真菌分属于拟茎点霉属(Phomopsis sp.)、离蠕孢属(Bipolaris sp.)和交链孢属(Alternaria sp.)等32个分类单元。拟茎点霉属为干热河谷植物优势内生真菌属,从所有被调查植物的茎叶中都分离得到该属真菌,且相对分离频率高达12.90%~50.54%。内生真菌群落组成的多样性和相似性分析结果表明,云南元江干热河谷植物内生真菌多样性偏低、宿主专一性较小。  相似文献   

18.
张爱梅  郭保民  韩雪英  李曦冉 《生态学报》2020,40(15):5247-5257
植物内生菌广泛分布于植物的各种组织及器官中,对植物的生长表现出各种作用,而植物种子中的内生菌对植物的作用也越来越受到人们的关注。以榆中县和秦安县两种不同生境的中国沙棘种子为材料,分析中国沙棘种子内生细菌多样性,以期探究生境对种子内生菌多样性的影响,并为进一步研究种子内生菌与沙棘的相互作用提供依据。研究利用纯培养方法和高通量测序方法分别进行中国沙棘种子内生细菌多样性分析。对纯培养分离得到的内生细菌,利用16S rRNA基因序列分析法结合形态学特征进行内生细菌的鉴定;对高通量测序得到的数据进行基于OTUs(Operational Taxonomic units,可操作分类单元)的物种注释分析。通过纯培养方法从榆中县中国沙棘种子中分离得到4株内生细菌,分属于芽孢杆菌属(Bacillus)、葡萄球菌属(Staphylococcus)和假单胞菌属(Pseudomonas);秦安县中国沙棘种子中分离得到5株内生细菌,分属于芽孢杆菌属(Bacillus)、葡萄球菌属(Staphylococcus)和不动杆菌属(Acinetobacter)。采用高通量测序方法检测到榆中县中国沙棘种子内生细菌分属于7个...  相似文献   

19.
对番茄内生细菌数量动态及其对青枯病的生物防治研究结果表明:番茄内生细菌可来源于种子内部。番茄不同生育期,内生细菌数量最多在成株期,其中抗病品种根、茎分别为24.3×104CFU/g鲜重和22.9×104CFU/g鲜重,感病品种根、茎分别为9.8×104CFU/g鲜重和13.4×104CFU/g鲜重。抗病品种中具有拮抗青枯菌的内生细菌菌株为17个,感病品种中7个。部分内生细菌具促进番茄种子萌发和防治番茄青枯病的作用,其中5R和3R内生菌株的防病效果分别达91.7%和81.3%。  相似文献   

20.
The best-known interaction between bacteria and plants is the Rhizobium-legume symbiosis, but other bacteria–plant interactions exist, such as between Burkholderia and Rubiaceae (coffee family). A number of bacterial endophytes in Rubiaceae are closely related to the soil bacterium Burkholderia caledonica. This intriguing observation is explored by investigating isolates from different geographic regions (Western Europe vs. sub-Saharan Africa) and from different niches (free-living bacteria in soil vs. endophytic bacteria in host plants). The multilocus sequence analysis shows five clades, of which clade 1 with two basal isolates deviates from the rest and is therefore not considered further. All other isolates belong to the species B. caledonica, but two genetically different groups are identified. Group A holds only European isolates and group B holds isolates from Africa, with the exception of one European isolate. Although the European and African isolates are considered one species, some degree of genetic differentiation is evident. Endophytic isolates of B. caledonica are found in certain members of African Rubiaceae, but only in group B. Within this group, the endophytes cannot be distinguished from the soil isolates, which indicates a possible exchange of bacteria between soil and host plant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号