首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A strain of Aspergillus niger PPI having prolific xylanolytic potential was isolated and the optimum conditions for maximum xylanase production was studied, resulting in the following: 4% substrate concentration, 10% v/v inoculum size, 72 h of incubation and pH 3.5–4.5 at 28 °C. The production profile of xylanase was examined with various lignocellulosics and maximum yield was achieved with oat. The hemicellulose content of wastes was also determined and oatmeal was found to have maximum hemicellulose content followed by wheat straw, sugarcane bagasse, rice husk and gram residue respectively. The enzyme showed maximum activity at pH 4 and temperature 60 °C. However, maximum stability was achieved at pH 3.5 and temperature 55 °C. Cellulase activity was found altogether absent in the enzyme broth.  相似文献   

2.
The main objective of this study was to optimize a culture media for low scale biomass production of Pleurotus spp. Future applications of this optimization will be implemented for “in situ” rice straw degradation, increase soil nutrients availability, and lower residue and rice culture management costs. Soil samples were taken from different points in six important rice production cities in Colombia. For carbon and nitrogen source selection a factorial 42 design was carried out. The Plackett-Burman design permitted to detect carbon, nitrogen and inducer effects on fungus growth (response variable for all designs). This optimization was carried out by a Box-Behnken design. Finally a re-optimization assay for glucose concentration was performed by means of a One Factor design. Only 4/33 (12 %) isolates showed and important laccase or manganese peroxidase activity compared to Pleurotus ostreatus (HPB/P3). We obtained an increased biomass production in Pleurotus spp. (T1.1.) with glucose, followed by rice husk. Rice straw was considered an inducing agent for lignin degradation. Glucose was a significant component with positive effects, whereas Tween 80 and pH had negative effects. On the contrary, rice husk, yeast extract and CaCl2 were not significant components for increase the biomass production. Final media composition consisted of glucose 25 g L?1, yeast extract 5 g L?1, Tween 80 0.38 % (v/v), Rice husk 10 g L?1, CaCl2 1 g L?1, and pH 4.88 ± 0.2. The Box-Behnken polynomial prediction resulted to be lower than the experimental validation of the model (6.59 vs. 6.91 Log10 CFU ml?1 respectively).  相似文献   

3.
The novel fungus Aspergillus niveus RS2 isolated from rice straw showed relatively high xylanase production after 5 days of fermentation. Of the different xylan-containing agricultural by-products tested, rice husk was the best substrate; however, maximum xylanase production occurred when the organism was cultured on purified xylan. Yeast extract was found to be the best nitrogen source for xylanase production, followed by ammonium sulfate and peptone. The optimum pH for maximum enzyme production was 8 (18.2 U/ml); however, an appreciable level of activity was obtained at pH 7 (10.9 U/ml). Temperature and pH optima for xylanase were 50°C and 7.0, respectively; however the enzyme retained considerably high activity under high temperature (12.1 U/ml at 60°C) and high alkaline conditions (17.2 U/ml at pH 8 and 13.9 U/ml at pH 9). The enzyme was strongly inhibited by Hg2+, while Mn2+ was slight activator. The half-life of the enzyme was 48 min at 50°C. The enzyme was purified by 5.08-fold using carboxymethyl-sephadex chromatography. Zymogram analysis suggested the presence of a single candidate xylanase in the purified preparation. SDS-PAGE revealed a molecular weight of approximately 22.5 kDa. The enzyme had K m and V max values of 2.5 and 26 μmol/mg per minute, respectively.  相似文献   

4.
The goal of the present investigation was to attain the enhanced production of endoxylanase in submerged fermentation using different approaches followed by its utility in improving nutrition of wheat and rice flours along with phytase. Myceliophthora thermophila BJTLRMDU3 produced 51.70 U/mL of xylanase using rice straw as a substrate after optimization with ‘one variable at a time’ approach. After Plackett-Burman design study, sodium nitrate, K2HPO4 and Tween 20 were selected as critical factors and further optimized by response surface methodology. Increased xylanase production (80.15 U/mL) was attained with 2.5 % (w/v) sodium nitrate, 1.25 % (w/v) K2HPO4, and 2 % (v/v) Tween 20 at 40 °C. An overall 1.5-fold increase in xylanase production was achieved after statistical optimization. Applicability of M. thermophila xylanase (200 U/g flour) alone and in combination with phytase (15 U/g flour) from Aspergillus oryzae SBS50 in wheat and rice flours showed enhancement in nutritional qualities of both flours. About 45.67 %, 29.73 %, and 107.91 % increase in reducing sugars, soluble proteins and inorganic phosphate, respectively in wheat flour, while 94.16 %, 134.52 %, and 473.33 % increase in reducing sugars, soluble proteins and inorganic phosphate, respectively in rice flour was achieved at 60 °C and pH 5.0 by synergistic action of xylanase and phytase as compared to control having only xylanase.  相似文献   

5.
Fungi isolated from partially decayed wood log samples showing characteristic diversity for spore colour, colony morphology and arrangement of spores were assessed for cellulolytic enzyme production. Isolates showing a cellulolytic index of ≥2.0 were assayed for filter paper (FP) cellulase and β-glucosidase (BGL) production. Molecular characterization confirmed the identity of the selected cellulolytic isolate as a strain of Aspergillus niger (A. niger HN-2). Addition of 2 % (w/v) urea enhanced FP and BGL activity by about 20 and 60 %, respectively. Validation studies conducted at parameters (29 °C, pH 5.4, moisture content 72 % and 66 h) optimized through response surface methodology in a solid-state static tray fermentation resulted in FP, BGL, cellobiohydrolase I (CBHI), endoglucanase (EG), xylanase activity and protein content of 25.3 FPU/g ds, 750 IU/g ds, 13.2 IU/g ds, 190 IU/g ds, 2890 IU/g ds and 0.9 mg/ml, respectively. In comparison, A. niger N402 which is a model organism for growth and development studies, produced significantly lower FP, BGL, CBHI, EG, xylanase activity and protein content of 10.0 FPU/g ds, 100 IU/g ds, 2.3 IU/g ds, 50 IU/g ds, 500 IU/g ds and 0.75 mg/ml, respectively under the same process conditions as were used for A. niger HN-2. Process optimization led to nearly 1.8- and 2.2-fold increase in FP and BGL activity, respectively showing promise for cellulase production by A. niger HN-2 at a higher scale of operation. Zymogram analysis revealed two isoforms each for EG and cellobiohydrolase and three isoforms for BGL. Crude cellulase complex produced by A. niger HN-2 exhibited thermostability under acidic conditions showing potential for use in biofuel industry.  相似文献   

6.
Rice straw is valuable resource that has been used as substrate for cost effective production of xylanase under solid-state fermentation by a newly isolated white rot fungi, S. commune ARC-11. Out of eleven carbon sources tested, rice straw was found most effective for the induction of xylanase that produced 4288.3?IU/gds of xylanase by S. commune ARC-11. Maximum xylanase production (6721.9?IU/gds) was observed on 8th day of incubation at temperature (30?°C), initial pH (7.0) and initial moisture content (70.0%). The supplementation of ammonium sulphate (0.08% N, as available nitrogen) enhanced the xylanase production up to 8591.4?IU/gds. The xylanase production by S. commune ARC-11 was further improved by the addition of 0.10%, (w/v) of Tween-20 as surfactant. The maximum xylanase activities were found at pH 5.0 and temperature 55?°C with a longer stability (180?min) at temperature 45, 50 and 55?°C. This xylanase preparation was also evaluated for the pre-bleaching of ethanol-soda pulp from Eulaliopsis binata. An enzyme dosage of 10?IU/g of xylanase resulted maximum decrease in kappa number (14.51%) with a maximum improvement 2.9% in ISO brightness compared to control.  相似文献   

7.
A putative endo-1,4-β-d-xylanohydrolase gene xyl11 from Aspergillus niger, encoding a 188-residue xylanase of glycosyl hydrolase family 11, was constitutively expressed in Pichia pastoris. The recombinant Xyl11 exhibited optimal activity at pH 5.0 and 50 °C, and displayed more than 68 % of the maximum activity over the temperature range 35–65 °C and 33 % over the pH range 2.2–7.0. It maintained more than 40 % of the original activity after incubation at 90 °C (pH 5.0) for 10 min and more than 75 % of the original activity after incubation at pH 2.2–11.0 (room temperature) for 2 h. The specific activity, K m and V max of purified Xyl11 were 22,253 U mg?1, 6.57 mg ml?1 and 51,546.4 μmol min?1 mg?1. It could degrade xylan to a series of xylooligosaccharides and no xylose was detected. The recombinant enzyme with high stability and catalytic efficiency could work over wide ranges of pH and temperature and thus has the potential for various industrial applications.  相似文献   

8.
Four strains of Aspergillus (Aspergillus niger CDBB-H-176, A. niger CDBB-H-175, A. niger ATCC 9642, and Aspergillus terreus CDBB-H-194) were used to produce extracellular β-glucosidase. Using an orthogonal experimental design (L9), we optimized the parameters of culture medium to maximize the activity of β-glucosidase. The optimal conditions (same for the four strains) were as follows: temperature, 30°C; pH, 6.0; orbital agitation, 200?rpm; concentration of sucrose, 0.5% (w/v). The most productive strain was A. niger CDBB-H-175, with a yield of 701.2?U/mL. In a second stage, we optimized (L18) the concentration of nutrients in the culture medium to determine whether this modification would increase the production of β-glucosidase. The optimal conditions for A. niger CDBB-H-175 were as follows (%, w/v): NaNO3, 0.3; KCl, 0.3; KH2PO4, 0.15; NH4NO3, 0.1; NH4H2PO4, 0.1; MgSO4?·?7H2O, 0.05; yeast extract, 0.1. The production of β-glucosidase under these conditions was 1207.9?U/mL. Enzymatic assays were used to characterize the enzyme; the optimum temperature and pH of β-glucosidase produced by the four selected micro-organisms were found to be 65°C and 5.0, respectively. We determined the Michaelis–Menten constants (Km) only for A. niger CDBB-H-175 and CDBB-H-176; the values were 2.7 and 2.2?mM, respectively.  相似文献   

9.
Abstract

The present work was aimed at studying the production of lignocellulolytic enzymes, namely cellulase, xylanase, pectinase, mannanase, and laccase by a newly isolated bacterium Sphingobacterium sp. ksn-11, utilizing various agro-residues as a substrate under submerged conditions. The production of lignocellulolytic enzymes was found to be maximum at the loading of 10%(w/v) agro-residues. The enzyme secretion was enhanced by two-fold at 2?mM CaCO3, optimum pH 7, and temperature 40°. The Field Emission Gun-Scanning Electron Microscope (FEG-SEM) results have shown the degradative effect of lignocellulases; cellulase, xylanase, mannanase, pectinase, and laccase on corn husk with 3.55?U/ml, 79.22?U/ml, 12.43?U/ml, 64.66?U/ml, and 21.12?U/ml of activity, respectively. The hydrolyzed corn husk found to be good adsorbent for polyphenols released during hydrolysis of corn husk providing suitable conditions for stability of lignocellulases. Sphingobacterium sp. ksn is proved to be a promising candidate for lignocellulolytic enzymes in view of demand for enzymes in the biofuel industry.  相似文献   

10.
A novel agro-residue, tea stalks, was tested for the production of tannase under solid-state fermentation (SSF) using Aspergillus niger JMU-TS528. Maximum yield of tannase was obtained when SSF was carried out at 28 °C, pH 6.0, liquid-to-solid ratio (v/w) 1.8, inoculum size 2 ml (1?×?108 spores/ml), 5 % (w/v) ammonium chloride as nitrogen source and 5 % (w/v) lactose as additional carbon source. Under optimum conditions, tannase production reached 62 U/g dry substrate after 96 h of fermentation. Results from the study are promising for the economic utilization and value addition of tea stalks.  相似文献   

11.
The production of cellulase by Bacillus subtilis MU S1, a strain isolated from Eravikulam National Park, was optimized using one-factor-at-a-time (OFAT) and statistical methods. Physical parameters like incubation temperature and agitation speed were optimized using OFAT and found to be 40?°C and 150?rpm, respectively, whereas, medium was optimized by statistical tools. Plackett-Burman design (PBD) was employed to screen the significant variables that highly influence cellulase production. The design showed carboxymethyl cellulose (CMC), yeast extract, NaCl, pH, MgSO4 and NaNO3 as the most significant components that affect cellulase production. Among these CMC, yeast extract, NaCl and pH showed positive effect whereas MgSO4 and NaNO3 were found to be significant at their lower levels. The optimum levels of the components that positively affect enzyme production were determined using response surface methodology (RSM) based on central composite design (CCD). Three factors namely CMC, yeast extract and NaCl were studied at five levels whilst pH of the medium was kept constant at 7. The optimal levels of the components were CMC (13.46?g/l), yeast extract (8.38?g/l) and NaCl (6.31?g/l) at pH 7. The maximum cellulase activity in optimized medium was 566.66?U/ml which was close to the predicted activity of 541.05?U/ml. Optimization of physical parameters and medium components showed an overall 3.2-fold increase in activity compared to unoptimized condition (179.06?U/ml).  相似文献   

12.
This study aimed to assess the variability in respect of titer and properties of xylanase from Trichoderma reesei SAF3 under both solid-state and submerged fermentation. SSF was initially optimized with different agro-residues and among them wheat bran was found to be the best substrate that favored maximum xylanase production of 219 U (gws)?1 at 96 h of incubation. The mycelial stage of the fungi and intracellular accumulation of Ca++ and Mg++ induced maximum enzyme synthesis. Inoculum level of 10 × 106 spores 5 g?1 of dry solid substrate and water activity of 0.6 were found to be optimum for xylanase production under SSF. Further optimization was made using a Box-Behnken design under response surface methodology. The optimal cultivation conditions predicted from canonical analysis of this model were incubation time (A) = 96–99 h, inoculum concentration (B) = 10 × 106 spores 5 g?1 of dry substrate, solid substrate concentration (C) = 10–12 g flask?1, initial moisture level (D) = 10 mL flask?1 (equivalent to a w  = 0.55) and the level of xylanase was 299.7 U (gws)?1. Subsequent verification of these levels agreed (97 % similar) with model predictions. Maximum amount of xylanase was recovered with water (6:1, v/w) and under shaking condition (125 rpm). Purified xylanase from SSF showed better stability in salt and pH, was catalytically and thermodynamically more efficient over enzyme from SmF, though molecular weight of both enzymes was identical (53.8 kDa).  相似文献   

13.
Xanthomonas axonopodis pv. punicae strain—a potent plant pathogen that causes blight disease in pomegranate—was screened for cellulolytic and xylanolytic enzyme production. This strain produced endo-β-1,4-glucanase, filter paper lyase activity (FPA), β-glucosidase and xylanase activities. Enzyme production was optimized with respect to major nutrient sources like carbon and nitrogen. Carboxy methyl cellulose (CMC) was a better inducer for FPA, CMCase and xylanase production, while starch was found to be best for cellobiase. Soybean meal/yeast extract at 0.5 % were better nitrogen sources for both cellulolytic and xylanolytic enzyme production while cellobiase and xylanase production was higher with peptone. Surfactants had no significant effect on levels of extracellular cellulases and xylanases. A temperature of 28 °C and pH 6–8 were optimum for production of enzyme activities. Growth under optimized conditions resulted in increases in different enzyme activities of around 1.72- to 5-fold. Physico-chemical characterization of enzymes showed that they were active over broad range of pH 4–8 with an optimum at 8. Cellulolytic enzymes showed a temperature optimum at around 55 °C while xylanase had highest activity at 45 °C. Heat treatment of enzyme extract at 75 °C for 1 h showed that xylanase activity was more stable than cellulolytic activities. Xanthomonas enzyme extracts were able to act on biologically pretreated paddy straw to release reducing sugars, and the amount of reducing sugars increased with incubation time. Thus, the enzymes produced by X. axonopodis pv. punicae are more versatile and resilient with respect to their activity at different pH and temperature. These enzymes can be overproduced and find application in different industries including food, pulp and paper and biorefineries for conversion of lignocellulosic biomass.  相似文献   

14.
Xylanase production by Aspergillus niger NRRL‐567 in solid‐state fermentation (koji fermentation) was optimized using 24 factorial design and response surface methodology. The evaluated variables were the initial moisture level and concentration of inducers [veratryl alcohol (VA), copper sulphate (CS), and lactose (LAC)], leading to the response of xylanase production. Initial moisture level and LAC were found to be the most significant variable for xylanase production (p<0.05). The highest xylanase production was observed with 3578.8 ± 65.3 IU/gds (gram dry substrate) under optimal conditions using initial moisture of 85% (v/w), pH 5.0 and inducers VA (2 mM/kg), LAC 2% (w/w), and CS (1.5 mM/kg) after 48 h of incubation time. Higher xylanase activity of 3952 ± 78.3 IU/gds was attained during scale‐up of the process in solid‐state tray fermentation under optimum conditions after 72 h of incubation time. The present study demonstrates that A. niger NRRL‐567 can efficiently be used to achieve xylanase production with an economical and environmental benefit in solid‐state tray fermentation. The developed process can be used to develop an effective process for commercially feasible bioproduction of xylanases for speciality applications, such as conversion of lignocellulosic biomass to biofuels and other value‐added products.  相似文献   

15.
A high titre of thermo-alkali-stable xylanase was attained in cane molasses medium. When the culture variables for endoxylanase production were optimized [cane molasses 7 %, soluble alkaline extract of wheat bran (SAE-WB) 37 % and ammonium chloride 0.30 %], a 4.5-fold enhancement in xylanase production (69 U ml?1) was achieved as compared to that in the unoptimized medium (15 U ml?1). The enzyme titre attained in shake flasks could be sustained in a 7-l laboratory bioreactor. An activity band corresponding to 40 kDa was visualized on SDS-PAGE zymogram analysis. The enzyme has broad range of pH and temperature for activity with optima at 9.0 and 80 °C, and stable between pH 4.0 and 11.0 with 85 % retention of activity. It has T 1/2 of 40 and 15 min at 70 and 80 °C. The enzyme is halotolerant since it displays activity in the presence of salt up to 15 %, and remains 100 % active in the absence of salt. The supplementation of whole wheat dough with xylanase improves antistaling property, reducing sugar content, bread volume with prebiotic xylooligosaccharides in bread. This is the first report on xylanase production in cane molasses medium with SAE-WB as the inducer and its applicability in whole wheat bread making that improves human health.  相似文献   

16.
We investigated the enzymatic complex produced by selected fungi strains isolated from the environment using the agro-industrial residues rice husk, soybean hull, and spent malt as substrates. Microbial growth was carried out in solid-state cultivation (SSC) and in submerged cultivations (SC) and the enzymatic activities of xylanase, cellulase, β-xylosidase, and β-glucosidase were determined. All substrates were effective in inducing enzymatic activities, with one strain of Aspergillus brasiliensis BLf1 showing maximum activities for all enzymes, except for cellulases. Using this fungus, the enzymatic activities of xylanase, cellulase, and β-glucosidase were generally higher in SSC compared to SC, producing maxima activities of 120.5, 25.3 and 47.4 U g?1 of dry substrate, respectively. β-xylosidase activity of 28.1 U g?1 of dry substrate was highest in SC. Experimental design was carried out to optimize xylanase activity by A. brasiliensis BLf1 in SSC using rice husk as substrate, producing maximum xylanase activity 183.5 U g?1 dry substrate, and xylooligosaccharides were produced and characterized. These results suggest A. brasiliensis BLf1 can be used to produce important lytic enzymes to be applied in the preparation of xylooligosaccharides.  相似文献   

17.
Pretreatment of rice husk by alkaline peroxide assisted wet air oxidation (APAWAO) approach was investigated with the aim to enhance the enzymatic convertibility of cellulose in pretreated rice husk. Rice husk was presoaked overnight in 1% (w/v) H2O2 solution (pH adjusted to 11.5 using NaOH) (equivalent to 16.67 g H2O2 and 3.63 g NaOH per 100 g dry, untreated rice husk) at room temperature, followed by wet air oxidation (WAO). APAWAO pretreatment resulted in solubilization of 67 wt % of hemicellulose and 88 wt % of lignin initially present in raw rice husk. Some amount of oligomeric glucose (?8.3 g/L) was also observed in the APAWAO liquid fraction. APAWAO pretreatment resulted in 13‐fold increase in the amount of glucose that could be obtained from otherwise untreated rice husk. Up to 86 wt % of cellulose in the pretreated rice husk (solid fraction) could be converted into glucose within 24 hours, yielding over 21 g glucose per 100 g original rice husk. Scanning electron microscopy was performed to visualize changes in biomass structure following the APAWAO pretreatment. Enzymatic cellulose convertibility of the pretreated slurry at high dry matter loadings was also investigated. © 2011 American Institute of Chemical Engineers Biotechnol. Prog., 2011  相似文献   

18.
Synthesis of amylase by Aspergillus niger strain UO-01 under solid-state fermentation with sugarcane bagasse was optimized by using response surface methodology and empirical modelling. The process parameters tested were particle size of sugarcane bagasse, incubation temperature and pH, moisture level of solid support material and the concentrations of inoculum, total sugars, nitrogen and phosphorous. The optimum conditions for high amylase production (457.82 EU/g of dry support) were particle size of bagasse in the range of 6–8 mm, incubation temperature and pH: 30.2°C and 6.0, moisture content of bagasse: 75.3%, inoculum concentration: 1 × 107 spores/g of dry support and concentrations of starch, yeast extract and KH2PO4: 70.5, 11.59 and 9.83 mg/g of dry support, respectively. After optimization, enzyme production was assayed at the optimized conditions. The results obtained corroborate the effectiveness and reliability of the empirical models obtained.  相似文献   

19.
Bacillus amyloliquefaciens CH51, an isolate from cheonggukjang, Korean fermented soyfood, secretes several enzymes into culture medium. A gene encoding 19 kDa xylanase was cloned by PCR. Sequencing showed that the gene encoded a glycohydrolase family 11 xylanase and named xynA. xynAHis, xynA with additional codons for his-tag, was overexpressed in Escherichia coli BL21(DE3) using pET-26b(+). XynAHis was purified using HisTrap affinity column. Km and Vmax of XynAHis were 0.363 mg/ml and 701.1 μmol/min/mg, respectively with birchwood xylan as a substrate. The optimum pH and temperature were pH 4 and 25 °C, respectively. When xynA was introduced into Bacillus subtilis WB600, active XynA was secreted into culture medium.  相似文献   

20.
Agave tequilana fructans are the source of fermentable sugars for the production of tequila. Fructans are processed by acid hydrolysis or by cooking in ovens at high temperature. Enzymatic hydrolysis is considered an alternative for the bioconversion of fructans. We previously described the isolation of Aspergillus niger CH-A-2010, an indigenous strain that produces extracellular inulinases. Here we evaluated the potential application of A. niger CH-A-2010 inulinases for the bioconversion of A. tequilana fructans, and its impact on the production of ethanol. Inulinases were analyzed by Western blotting and thin layer chromatography. Optimal pH and temperature conditions for inulinase activity were determined. The efficiency of A. niger CH-A-2010 inulinases was compared with commercial enzymes and with acid hydrolysis. The hydrolysates obtained were subsequently fermented by Saccharomyces cerevisiae to determine the efficiency of ethanol production. Results indicate that A. niger CH-A-2010 predominantly produces an exo-inulinase activity. Optimal inulinase activity occurred at pH 5.0 and 50 °C. Hydrolysis of raw agave juice by CH-A-2010 inulinases yielded 33.5 g/l reducing sugars, compared with 27.3 g/l by Fructozyme® (Novozymes Corp, Bagsværd, Denmark) and 29.4 g/l by acid hydrolysis. After fermentation of hydrolysates, we observed that the conversion efficiency of sugars into ethanol was 97.5 % of the theoretical ethanol yield for enzymatically degraded agave juice, compared to 83.8 % for acid-hydrolyzed juice. These observations indicate that fructans from raw Agave tequilana juice can be efficiently hydrolyzed by using A. niger CH-A-2010 inulinases, and that this procedure impacts positively on the production of ethanol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号