首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Preconditioning (PC) with nitric oxide (NO) donors or agents that increase endothelial NO synthase (eNOS) activity 24 h before ischemia-reperfusion (I/R) prevents postischemic leukocyte rolling (LR) and stationary leukocyte adhesion (LA). Since 5'-AMP-activated protein kinase (AMPK) phosphorylates eNOS at Ser1177, resulting in activation, we postulated that AMPK activation may trigger the development of a preconditioned anti-inflammatory phenotype similar to that induced by NO donors. Wild-type (WT) C57BL/6J and eNOS(-/-) mice were treated with the AMPK agonist 5-aminoimidazole-4-carboxamide 1-beta-d-furanoside (AICAR) 30 min (early AICAR PC) or 24 h (late AICAR PC) before I/R; LR and LA were quantified in single postcapillary venules in the jejunum using intravital microscopy. I/R induced comparable marked increases in LR and LA in WT and eNOS(-/-) mice relative to sham-operated (no ischemia) animals. Late AICAR PC prevented postischemic LR and LA, whereas early AICAR PC prevented LA in WT mice. Late AICAR PC was ineffective in preventing I/R-induced LR but not LA in the eNOS(-/-) mice, and the same pattern was seen in WT animals treated with the NOS inhibitor N(omega)-nitro-l-arginine. Early AICAR PC remained effective in preventing LA in eNOS(-/-) mice. Our results indicate that both early and late PC with an AMPK agonist produces an anti-inflammatory phenotype in postcapillary venules. Since the protection afforded by late AICAR PC on postischemic LR was prevented by NOS inhibition in WT mice and absent in eNOS-deficient mice, it appears that eNOS triggers this protective effect. In stark contrast, antecedent AMPK activation prevented I/R-induced LA by an eNOS-independent mechanism.  相似文献   

2.
We recently demonstrated that preconditioning with an exogenous hydrogen sulfide donor (NaHS-PC) 24 h before ischemia and reperfusion (I/R) causes postcapillary venules to shift to an anti-inflammatory phenotype in C57BL/6J wild-type (WT) mice such that these vessels fail to support increases in postischemic leukocyte rolling (LR) and leukocyte adhesion (LA). The objective of the present study was to determine whether heme oxygenase-1 (HO-1) is a mediator of these anti-inflammatory effects noted during I/R in mice preconditioned with NaHS. Intravital fluorescence microscopy was used to visualize LR and LA in single postcapillary venules of the murine small intestine. I/R induced marked increases in LR and LA, effects that were prevented by NaHS-PC. Treatment with the HO inhibitor tin protoporphyrin IX, but not the inactive protoporphyrin CuPPIX, just before reperfusion prevented the anti-inflammatory effects of antecedent NaHS. The anti-inflammatory effects of NaHS-PC were mimicked by preconditioning with hemin, an agent that induces HO-1 expression. We then evaluated the effect of NaHS as a preconditioning stimulus in mice that were genetically deficient in HO-1 (HO-1(-/-) on an H129 background with appropriate WT strain controls). NaHS-PC was ineffective in HO-1(-/-) mice. Our work indicates that HO-1 serves as an effector of the anti-inflammatory effects of NaHS-PC during I/R 24 h later.  相似文献   

3.
Ingestion of low levels of ethanol 24 h before [ethanol preconditioning (EPC)] ischemia and reperfusion (I/R) prevents postischemic leukocyte rolling (LR) and adhesion (LA), effects that were abolished by adenosine A(2) receptor (ADO-A(2)R) antagonists or nitric oxide (NO) synthase (NOS) inhibitors. The aims of this study were to determine whether NO derived from endothelial NOS (eNOS) during the period of ethanol exposure triggered entrance into this preconditioned state and whether these events were initiated by an ADO-A(2)R-dependent mechanism. Ethanol or distilled water vehicle was administered to C57BL/6J [wild type (WT)] or eNOS-deficient (eNOS-/-) mice by gavage. Twenty-four hours later, the superior mesenteric artery was occluded for 45 min. LR and LA were quantified by intravital microscopy after 30 and 60 min of reperfusion. I/R increased LR and LA in WT mice, effects that were abolished by EPC or NO donor preconditioning (NO-PC). NO-PC was not attenuated by coincident administration of an ADO-A(2)R antagonist. I/R increased LR and LA in eNOS-/- mice to levels comparable with those noted in WT animals. However, EPC only slightly attenuated postischemic LR and LA, whereas NO-PC remained effective as a preconditioning stimulus in eNOS-/- mice. Preconditioning with an ADO-A(2)R agonist (which we previously demonstrated prevents I/R-induced LR and LA in WT animals) failed to attenuate these postischemic adhesive responses in eNOS-/- mice. Our results indicate that EPC is triggered by NO formed secondary to ADO-A(2)R-dependent eNOS activation during the period of ethanol exposure 24 h before I/R.  相似文献   

4.
Vascular inflammation and enhanced production of angiotensin II (ANG II) are involved in the pathogenesis of hypertension and diabetes, disease states that predispose the afflicted individuals to ischemic disorders. In light of these observations, we postulated that ANG II may play a role in promoting leukocyte rolling (LR) and adhesion (LA) in postcapillary venules after exposure of the small intestine to ischemia-reperfusion (I/R). Using an intravital microscopic approach in C57BL/6J mice, we showed that ANG II type I (AT(1)) or type II (AT(2)) receptor antagonism (with valsartan or PD-123319, respectively), inhibition of angiotensin-converting enzyme (ACE) with captopril, or calcitonin gene-related peptide (CGRP) receptor blockade (CGRP8-37) prevented postischemic LR but did not influence I/R-induced LA. However, both postischemic LR and LA were largely abolished by concomitant AT(1) and AT(2) receptor blockade or chymase inhibition (with Y-40079). Additionally, exogenously administered ANG II increased LR and LA, effects that were attenuated by pretreatment with a CGRP receptor antagonist or an NADPH oxidase inhibitor (apocynin). Our work suggests that ANG II, formed by the enzymatic activity of ACE and chymase, plays an important role in inducing postischemic LR and LA, effects that involve the engagement of both AT(1) and AT(2) receptors and may be mediated by CGRP and NADPH oxidase.  相似文献   

5.
Ingestion of alcoholic beverages at low to moderate levels 24 h prior to ischemia and reperfusion (I/R) prevents postischemic leukocyte/endothelial cell adhesive interactions, a phenomenon referred to as late ethanol preconditioning (EtOH-PC). The aim of this study was to determine whether oxidants act as initiators of late EtOH-PC. Ethanol was instilled into the stomachs of C57BL/6 mice as a bolus by gavage at a dose that produced a peak plasma concentration of 45 mg/dl 30 min after administration and returned to control levels 60 min after ingestion. Twenty four hours later, the superior mesenteric artery was occluded for 45 min followed by 70 min of reperfusion. The numbers of rolling and firmly adherent leukocytes were quantified in postcapillary venules of the small intestine in sham animals (no EtOH-PC, no I/R), in mice subjected to I/R alone or EtOH-PC + I/R, and in animals treated with Mn-TBAP (a cell-permeant superoxide dismutase mimetic), oxypurinol (a XO inhibitor), the NAD(P)H oxidase inhibitors PR-39 or apocynin, or oxypurinol plus PR39 during the period of EtOH-PC on Day 1 followed by I/R on Day 2. In separate groups of mice, oxypurinol or apocynin were also administered 1 h after ethanol ingestion on Day 1, with induction of I/R 24 h later. I/R induced marked increases in leukocyte rolling and adherence, effects that were completely prevented by EtOH-PC. Coincident treatment with Mn-TBAP, oxypurinol, PR-39, apocynin, or oxypurinol plus PR-39 with ethanol attenuated these anti-inflammatory actions of EtOH-PC. However, administration of oxypurinol or apocynin 1 h after ethanol ingestion failed to prevent these protective effects of EtOH-PC. Our results indicate that reactive oxygen species formed during the period of ethanol exposure on Day 1 trigger the development of an anti-inflammatory phenotype that renders the small bowel resistant to the proadhesive effects of I/R 24 h later.  相似文献   

6.
We examined whether capsaicin-sensitive sensory neurons might be involved in the increase in the gastric tissue level of prostaglandins, thereby contributing to the reduction of water immersion restraint stress (WIR)-induced gastric mucosal injury in rats. Gastric tissue levels of calcitonin gene-related peptide (CGRP), 6-keto-PGF1alpha, and PGE2 were transiently increased 30 min after WIR. These increases were significantly inhibited by subcutaneous injection of capsazepine (CPZ), a vanilloid receptor antagonist, and by functional denervation of capsaicin-sensitive sensory neurons induced by the administration of high-dose capsaicin. The administration of capsaicin (orally) and CGRP (intravenously) significantly enhanced the WIR-induced increases in the gastric tissue level of prostaglandins 30 min after WIR, whereas CGRP-(8-37), a CGRP receptor antagonist, significantly inhibited them. Pretreatment with Nomega-nitro-L-arginine methyl ester (L-NAME), a nonselective inhibitor of nitric oxide (NO) synthase (NOS), and that with indomethacin inhibited the WIR-induced increases in gastric tissue levels of prostaglandins, whereas either pretreatment with aminoguanidine (AG), a selective inhibitor of the inducible form of NOS, or that with NS-398, a selective inhibitor of cyclooxygenase (COX)-2, did not affect them. CPZ, the functional denervation of capsaicin-sensitive sensory neurons, and CGRP-(8-37) significantly increased gastric MPO activity and exacerbated the WIR-induced gastric mucosal injury in rats subjected to 4-h WIR. The administration of capsaicin and CGRP significantly increased the gastric tissue levels of prostaglandins and inhibited both the WIR-induced increases in gastric MPO activity and gastric mucosal injury 8 h after WIR. These effects induced by capsaicin and CGRP were inhibited by pretreatment with L-NAME and indomethacin but not by pretreatment with AG and NS-398. These observations strongly suggest that capsaicin-sensitive sensory neurons might release CGRP, thereby increasing the gastric tissue levels of PGI2 and PGE2 by activating COX-1 through activation of the constitutive form of NOS in rats subjected to WIR. Such activation of capsaicin-sensitive sensory neurons might contribute to the reduction of WIR-induced gastric mucosal injury mainly by inhibiting neutrophil activation.  相似文献   

7.
Ethanol preconditioning (EtOH-PC) refers to a phenomenon in which tissues are protected from the deleterious effects of ischemia/reperfusion (I/R) by prior ingestion of ethanol at low to moderate levels. In this study, we tested whether prior (24 h) administration of ethanol as a single bolus that produced a peak plasma concentration of 42-46 mg/dl in gerbils would offer protective effects against neuronal damage due to cerebral I/R. In addition, we also tested whether reactive oxygen species (ROS) derived from NADPH oxidase played a role as initiators of these putative protective effects. Groups of gerbils were administered either ethanol or the same volume of water by gavage 24 h before transient global cerebral ischemia induced by occlusion of both common carotid arteries for 5 min. In some experiments, apocynin, a specific inhibitor of NADPH oxidase, was administered (5 mg/kg body wt, i.p.) 10 min before ethanol administration. EtOH-PC ameliorated behavioral deficit induced by cerebral I/R and protected the brain against I/R-induced delayed neuronal death, neuronal and dendritic degeneration, oxidative DNA damage, and glial cell activation. These beneficial effects were attenuated by apocynin treatment coincident with ethanol administration. Ethanol ingestion was associated with translocation of the NADPH oxidase subunit p67(phox) from hippocampal cytosol fraction to membrane, increased NADPH oxidase activity in hippocampus within the first hour after gavage, and increased lipid peroxidation (4-hydroxy-2-nonenal) in plasma and hippocampus within the first 2 h after gavage. These effects were also inhibited by concomitant apocynin treatment. Our data are consistent with the hypothesis that antecedent ethanol ingestion at socially relevant levels induces neuroprotective effects in I/R by a mechanism that is triggered by ROS produced through NADPH oxidase. Our results further suggest the possibility that preconditioning with other pharmacological agents that induce a mild oxidative stress may have similar therapeutic value for suppressing stroke-mediated damage in brain.  相似文献   

8.
Long-term ethanol consumption at low to moderate levels exerts cardioprotective effects in the setting of ischemia and reperfusion (I/R). The aims of this study were to determine whether 1) a single orally administered dose of ethanol [ethanol preconditioning (EtOH-PC)] would induce a biphasic temporal pattern of protection (early and late phases) against the inflammatory responses to I/R and 2) adenosine and nitric oxide (NO) act as initiators of the late phase of protection. Ethanol was administered as a bolus to C57BL/6 mice at a dose that achieved a peak plasma concentration of ~45 mg/dl 30 min after gavage and returned to control levels within 60 min of alcohol ingestion. The superior mesenteric artery was occluded for 45 min followed by 60 min of reperfusion beginning 10 min or 1, 2, 3, 4, or 24 h after ethanol ingestion, and the numbers of fluorescently labeled rolling and firmly adherent (stationary) leukocytes in single postcapillary venules of the small intestine were quantified using intravital microscopic approaches. I/R induced marked increases in leukocyte rolling and adhesion, effects that were attenuated by EtOH-PC 2-3 h before I/R (early phase), absent when assessed after 10 min, 1 h, and 4 h of ethanol ingestion, with an even more powerful late phase of protection reemerging when I/R was induced 24 h later. The anti-inflammatory effects of late EtOH-PC were abolished by treatment with adenosine deaminase, an adenosine A(2) (but not A(1)) receptor antagonist, or a NO synthase (NOS) inhibitor during the period of EtOH-PC. Preconditioning with an adenosine A(2) (but not an A(1)) receptor agonist in lieu of ethanol 24 h before I/R mimicked the protective actions of late phase EtOH-PC. Like EtOH-PC, the effect of preconditioning with an adenosine A(2) receptor agonist was abrogated by coincident NOS inhibition. These findings suggest that EtOH-PC induces a biphasic temporal pattern of protection against the proinflammatory effects of I/R. In addition, our observations are consistent with the hypothesis that the late phase of EtOH-PC is triggered by NO formed secondary to adenosine A(2) receptor-dependent activation of NOS during the period of ethanol exposure.  相似文献   

9.
We sought to determine the mechanisms whereby brief administration of bradykinin (bradykinin preconditioning, BK-PC) before prolonged ischemia followed by reperfusion (I/R) prevents postischemic microvascular dysfunction. Intravital videomicroscopic approaches were used to quantify I/R-induced leukocyte/endothelial cell adhesive interactions and microvascular barrier disruption in single postcapillary venules of the rat mesentery. I/R increased the number of rolling, adherent, and emigrated leukocytes and enhanced venular albumin leakage, effects that were prevented by BK-PC. The anti-inflammatory effects of BK-PC were largely prevented by concomitant administration of a B(2)-receptor antagonist but not by coincident B(1) receptor blockade, nitric oxide (NO) synthase inhibition, or cyclooxygenase blockade. However, NO synthase blockade during reperfusion after prolonged ischemia was effective in attenuating the anti-inflammatory effects of BK-PC. Pan protein kinase C (PKC) inhibition antagonized the beneficial effects of BK-PC but only when administered during prolonged ischemia. In contrast, specific inhibition of the conventional PKC isotypes failed to alter the effectiveness of BK-PC. These results indicate that bradykinin can be used to pharmacologically precondition single mesenteric postcapillary venules to resist I/R-induced leukocyte recruitment and microvascular barrier dysfunction by a mechanism that involves B(2) receptor-dependent activation of nonconventional PKC isotypes and subsequent formation of NO.  相似文献   

10.
Ghrelin is an important hormone involved in the control of the human appetite center. Recently, protective properties of this hormone have been recognized in various models of impairment of the gastric mucosa, including stress, ischemia and reperfusion (I/R). Ghrelin is predominantly secreted by the gastric mucosa of stomach, but there are other sources of ghrelin, for example in the hypothalamus and various parts of the central nervous system (CNS) that should be taken into consideration. This hormone exerts biological effects via the activation of growth hormone secretagogue receptor (GHSR), the presence of which was confirmed in different parts of the gastrointestinal (GI) tract and midbrain structures. Although substantial evidence of the divergent biological effects of ghrelin and the mechanism of its action has been emphasized, the precise mechanisms of ghrelin which affords GI protection is still unclear. Particularly, there is a sparse amount of evidence concerning its action on the GI system. The major aim of the present study was to evaluate the importance of peripherally and centrally administered ghrelin at different times of the ischemia and reperfusion (I/R period in the modulation of resistance of the intestinal mucosa to the injury induced by ischemia and subsequent reperfusion. Secondly, we wanted to evaluate the possible mechanism of the action of ghrelin with a particular focus on its influence on the intestinal blood flow. Male Wistar rats were divided into 4 series (A-D) of the experimental groups (n=7). In series A the importance of peripherally administered ghrelin at different time of I/R period was studied. In series B the importance of centrally administered ghrelin at different time of I/R period was evaluated. In series C and D, the mechanisms of peripherally and centrally administered hormone were examined, respectively. Two models of the I/R period were selected: short lasting (30/60 min) and long lasting (60/120 min). The following drugs were used: ghrelin (50 μg/kg i.p. or 1 nmol in 10 μl i.c.v.), 6 hydroxy dopamine (50 mg/kg i.p.), nadolol (0.5 mg/kg i.p.), calcitonin gene related peptide fragment (CGRP(8-37), 100 μg /kg i.p.), capsaicin (5-10 mg/100 ml solution s.c.). The mesenteric blood flow (MBF-ml/min), the intestinal microcirculatory blood flow (LDBF-PU), the arterio-venous oxygen difference (AVO(2)-ml/O(2)/100 ml blood), and the intestinal oxygen uptake (VO(2)) in ml O(2)/min were measured. Mucosal impairment was assessed planimetrically with the use of a digital photo analyzer (LA) and histologically with the use of the six-point Park/Chiu scale. Peripheral administration of ghrelin evoked marked increase of MBF and LDBF by 42% and 48%, respectively, with significant reduction of LA by 38%. When ghrelin was administered at the beginning of the reperfusion period during the short I/R period or prior to the long lasting I/R period, the vascular reactions and protective effects were reduced, but not completely abolished. The central administration of ghrelin before the short I/R period significantly increased the MBF and LDBF by about 32% and 35%, respectively, as well as LA reduction by about 20% in comparison to the control group. However, when ghrelin was administered prior to the long I/R period or after the onset of completed ischemia, neither vascular nor protective effects were noticed. Sensory denervation and the blockade of the CGRP1 receptors totally blocked the protective and hyperemic effects of the peripherally administered ghrelin. Selective blockade of the adrenergic system or blunting of the vagal nerves (vagotomy) significantly but not totally eliminated the effects of centrally applied ghrelin, which were abolished when both adrenergic and parasympathetic pathways were ablated. These results indicate that ghrelin applied centrally or peripherally markedly increases resistance of the intestinal tissue during the I/R period induced mucosal and hyperemic impairment evoked by I/R. Ghrelin is an important mediator of the increase in the intestinal microcirculation and elevation of the intestinal metabolism, which seems to be, at least in part, responsible for the observed protection of the intestine subjected to I/R. Impairment of this microvasculature response due to I/R seems to be responsible for a markedly observed weaker effect of ghrelin when this hormone was administered after the ischemic period. The lack of a protective effect observed after central administration of this peptide against a long lasting I/R period is probably due to damage of neural pathways caused by I/R. Finally, the peripheral activity of ghrelin in the intestine is mediated by the sensory neurons with a prominent role of CGRP released from their endings. However, this peripheral action of ghrelin depends upon the proper functioning of both the sympathetic and parasympathetic system.  相似文献   

11.
Calcitonin gene-related peptide (CGRP) is a 37-amino acid peptide and potent vasodilatator agent located in sensory C fibres. Several functional studies suggest that CGRP could be involved in the vasodilatation of different vascular beds during neurogenic inflammation. We have studied, in pentobarbital anaesthetised pigs, the antagonistic effect of local intra-arterial (i.a.) pretreatment with the analogues CGRP 8-37, [D31, P34, F35]CGRP 27-37 and [N31, P34, F35]CGRP 27-37 on the vasodilatation of the nasal vascular bed induced by exogenous CGRP, capsaicin, bradykinin (BK) and histamine. The attenuating effect of CGRP 8-37 analogue on exogenous CGRP-induced vasodilatation, previously described in other in vivo animal models, was confirmed in the pig nasal mucosa. It also interfered with BK-and, to a lesser extent, with capsaicin-and histamine-induced decrease in vascular resistance. CGRP 27-37 analogues reduced the duration of CGRP-, capsaicin- and BK-induced vasodilatation by more than 50%. Peak values of vasodilatation were attenuated by more than 25% overall. Attenuation of histamine-induced decrease in vascular resistance was less pronounced. It is concluded that CGRP 27-37 analogues antagonise the action of exogenous CGRP, capsaicin, BK and histamine by attenuating their vasodilatation effect, both in intensity and duration. These results strongly suggest that BK- and histamine-induced vasodilatation is partly mediated by CGRP. CGRP 8-37 and 27-37 appear to be potential contributors to the study of CGRP and its physiological role in neurogenic inflammation. In addition, they may have putative therapeutic applications in the treatment of rhinitic patients suffering from chronic nasal obstruction.  相似文献   

12.
The aim of the present study was to assess whether calcitonin gene-related peptide (CGRP) modulates exocytotic norepinephrine release in ischemic myocardium. In isolated rat hearts subjected to 30 min of low flow ischemia, CGRP release increased 2.8-fold whereas stimulation-induced norepinephrine release decreased 4.1-fold. Pretreatment of rats with capsaicin almost completely depleted cardiac CGRP stores; however, suppression of norepinephrine release by 30 min of low flow ischemia was not affected. At normal flow, exogenous CGRP (5 micromol l-1) had no effect on norepinephrine release. These findings suggest that CGRP release from sensory neurons does not interact with the cardiac sympathetic system during myocardial ischemia.  相似文献   

13.
Li D  Li NS  Chen QQ  Guo R  Xu PS  Deng HW  Li YJ 《Regulatory peptides》2008,147(1-3):4-8
Previous studies have demonstrated that endogenous calcitonin gene-related peptide (CGRP) plays an important role in mediation of ischemic preconditioning. In the present study, we tested whether CGRP is also involved in mediation of the protective effects of postconditioning in isolated rat hearts. Sixty minutes of left coronary artery occlusion and followed by 60 min of reperfusion caused a significant decrease in cardiac function and a significant increase in creatine kinase (CK) release and infarct size. Postconditioning with three cycles of 1-min ischemia and 1-min reperfusion produced a marked improvement of cardiac function and decreased CK release and infarct size, concomitantly with an increase in the release of CGRP release in coronary effluent. However, the cardioprotection afforded by postconditioning was abolished by CGRP 8-37 (10− 7 M), a selective CGRP receptor antagonist, or pretreatment with capsaicin (50 mg/kg, s.c.), which depletes transmitters in sensory nerves. Exogenous CGRP (5 × 10− 9 M) administration of CGRP reappeared postconditioning-like cardioprotection in the rats pretreated with capsaicin. These results suggest that the protective effects of ischemic postconditioning are related to stimulation of endogenous CGRP release in rat hearts.  相似文献   

14.
Stimulation of sensory nerves in the airway mucosa causes local release of the neuropeptides substance P and calcitonin gene-related peptide (CGRP). In this study we used a modification of the reference-sample microsphere technique to measure changes in regional blood flow and cardiac output distribution produced in the rat by substance P, CGRP, and capsaicin (a drug that releases endogenous neuropeptides from sensory nerves). Three sets of microspheres labeled with different radionuclides were injected into the left ventricle of anesthetized F344 rats before, immediately after, and 5 min after left ventricular injections of capsaicin, substance P, or CGRP. The reference blood sample was withdrawn from the abdominal aorta and was simultaneously replaced with 0.9% NaCl at 37 degrees C. We found that stimulation of sensory nerves with a low dose of capsaicin causes a large and selective increase in microvascular blood flow in the extrapulmonary airways. The effect of capsaicin is mimicked by systemic injection of substance P but not by CGRP, suggesting that substance P is the main agent of neurogenic vasodilation in rat airways.  相似文献   

15.
Moderate consumption of red wine has been shown to exert cardioprotection against ischemia/reperfusion. Because oxidant-dependent leukocyte infiltration plays a critical role in ischemia/reperfusion-induced tissue injury, we hypothesized that resveratrol, a red wine constituent polyphenol would attenuate postischemic leukocyte recruitment and subsequent endothelial dysfunction. Intravital microscopic approaches were used to quantify leukocyte/endothelial cell interactions and venular protein leakage in rat mesenteries exposed to either 20 min ischemia and 60 min reperfusion (I/R), oxidants generated by the reaction of hypoxanthine and xanthine oxidase (HX/XO), platelet-activating factor (PAF), or leukotriene B4 (LTB4). I/R or HX/HX produced marked increases in the number of adherent (LA) and emigrated (LE) leukocytes, which were associated with significant increases in venular albumin leakage (VAL). Intravenous administration of resveratrol or superoxide dismutase (SOD) attenuated these increases in LA, LE, and VAL. Superfusion of the mesentery with PAF or LTB4 also markedly increased LA, LE, and VAL. While resveratrol attenuated the proinflammatory effects of PAF, LTB4-induced changes were not affected by resveratrol. Resveratrol prevents leukocyte recruitment and endothelial barrier disruption induced by a number of superoxide-dependent proinflammatory stimuli, including I/R, HX/XO, or PAF. These salutary effects appear to be related to the antioxidant properties of resveratrol and contribute to the cardioprotective actions associated with consumption of red wine.  相似文献   

16.
Immunohistochemical and radioimmunoassay studies revealed that both CGRP- and SP-like immunoreactivity in the caudal spinal trigeminal nucleus and tract, the substantia gelatinosa and the dorsal cervical spinal cord as well as in cell bodies of the trigeminal ganglion and the spinal dorsal root ganglion is markedly depleted by capsaicin which is known to cause degeneration of a certain number of primary sensory neurons. Higher brain areas and the ventral spinal cord were not affected by capsaicin treatment. Furthermore CGRP and substance P-like immunoreactivity were shown to be colocalized in the above areas and to coexist in cell bodies of the trigeminal ganglion and the spinal dorsal root ganglia. It is suggested that CGRP, like substance P, may have a neuromodulatory role on nociception and peripheral cardiovascular reflexes.  相似文献   

17.
18.
Stimulation of capsaicin sensitive nerves or administration of calcitonin gene-related peptide (CGRP) before induction of acute pancreatitis (AP) attenuates pancreatic damage, whereas CGRP administration after development of AP aggravates lesion of pancreatic tissue. The aim of this study was to determine the effect of prolonged activity of sensory nerves or CGRP administration on the pancreatic repair after repeated episodes of AP. Five episodes of acute caerulein-induced pancreatitis (10 microg/kg/h for 5 h s.c.) were performed at weekly intervals in rats receiving either vehicle or capsaicin at the sensory nerve stimulatory dose (0.5 mg/kg, 3 times daily), or CGRP (10 microg/kg, 3 times daily). Two weeks after the last induction of AP morphological signs of pancreatic damage, pancreatic blood flow (PBF), serum and pancreatic amylase activity, fecal chymotrypsin activity, pancreatic weight, pancreatic RNA and DNA content, as well as, serum interleukin-1beta (Il-1beta ) were assessed. Pancreata of animals receiving vehicle alone showed almost full recovery within two weeks after last episode of pancreatitis induction. In capsaicin-treated group of rats, we observed the increase in PBF by 44% and in serum Il-1beta concentration by 91%. The pancreatic amylase activity, fecal activity of chymotrypsin, pancreatic nucleic acids content and DNA synthesis were decreased. In rats treated with CGRP the alterations in PBF, serum Il-1beta concentration, as well as, in pancreatic and fecal activity of enzymes were similar to capsaicin treated group but less pronounced. We conclude that prolonged activity of capsaicin-sensitive sensory nerves and the presence of their main mediator-CGRP during pancreatic regeneration after AP leads to pancreatic functional insufficiency typical for chronic pancreatitis.  相似文献   

19.
Calcitonin gene-related peptide (CGRP) is a 37 AA peptide localized in blood vessels and nerves of the GI tract. Activation of CGRP receptors (subtypes 1 or 2) usually induces vasodilation and/or muscle relaxation, but its effects in dog and on gastroduodenal motility are still unclear. This study looked for the effect of CGRP and the antagonist CGRP8-37, specific for CGRP type 1 receptor, 1) on GI motility (interdigestive and postprandial), and 2) on hemodynamy, in conscious dogs. During the interdigestive period, the infusion of CGRP1-37 (200 pmol/kg/h) or CGRP8-37 (2000 pmol/kg/h) did not modify the duration of the migrating motor complex nor the release nor the motor action of plasma motilin. The gastric emptying of a solid meal (15 g meat/kg) was reduced by the administration of CGRP1-37 (AUC: 2196 +/- 288.6 versus 3618 +/- 288.4 with saline or T12: 78 +/- 7.3 versus 50 +/- 4.3 min; P < 0.01) and this effect was reversed by the antagonist CGRP8-37. CGRP1-37 significantly (P < 0. 01) diminished arterial pressures (118 +/- 1.6/64 +/- 1.4 vs. 125 +/- 1.4/75 +/- 1.2 mmHg with saline) and accelerated the basal cardiac rhythm (110 +/- 1.4 versus 83 +/- 1.6 beats/min). However, CGRP8-37 failed to block the cardiovascular effects of CGRP1-37. In dog, CGRP could influence digestive motility by slowing the gastric emptying of a meal through an action on CGRP-1 receptors. Hemodynamic effects of CGRP were not blocked by CGRP8-37 and seem therefore mediated by CGRP-2 receptor subtype.  相似文献   

20.
The nociceptive effects of i.p administration of a synthetic peptide (CgA4-16) derived from chromogranin A (CgA) were studied on a model of inflammatory (somato-visceral) pain. Inflammatory mediators participate in controlling the activity of enterochromaffin cells that store and release chromogranins. Adult male Wistar rats were injected i.p with diluted acetic acid (AA) to induce abdominal writhes. Pharmacological agents were injected prior to CgA4-16 and/or AA together. While i.p CgA4-16 alone did not produce any effect, the peptide increased the number of abdominal constrictions induced by i.p AA administration in a dose-related manner. To determine the possible mechanisms involved in CgA4-16 produced pronociceptive effect, i.p diltiazem or indomethacin were tested. The pronociceptive effect induced by CgA4-16 was blocked by pretreatment of either substance. I.p administration of CGRP, substance P (SP) or capsaicin evoked dose-related abdominal writhing. CgA4-16, 20 min prior to CGRP or capsaicin, potentiated the nociceptive effects induced by CGRP or capsaicin, but not those induced by SP. Taken together, these data suggest for the first time that a CgA-derived peptide may modulate inflammatory pain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号