首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The relationship between seed moisture content and seed longevityin sesame (Sesamum indicum L.) in hermetic storage at 50 °Cis logarithmic. The logarithmic relationship is maintained from15 per cent down to 2 per cent – the lowest moisture contenttested — but above 15 per cent this ‘air-dry’relationship no longer holds since further increase in seedmoisture content does not reduce longevity. Tentative estimatesof constant values for the improved seed viability equationare provided, and implications for long-term storage are discussed. Sesame, Sesamum indicum L., seed storage, improved viability equation, seed moisture content, seed longevity prediction  相似文献   

2.
Low Moisture Content Limits to Relations Between Seed Longevity and Moisture   总被引:25,自引:1,他引:24  
Discontinuities at low moisture contents in the otherwise logarithmicrelations between seed longevity and seed moisture content (%,f. wt basis) in hermetic storage at 65 °C were detectedat 2–0% in groundnut (Arachis hypogaea L.), 3·5%in onion (Allium cepa L.), 4·5% in sugar beet (Beta vulgarisL.), 4·6% in barley (Hordeum vulgare L.), 5·3%in chickpea (Cicer arietinum L.) and wheat (Triticum aestinumL.), and 5·6% in cowpea [Vigna unguiculata (L.) Walp.].In contrast, the equilibrium relative humidity of seeds at thesevalues was similar, varying between 9·9% (onion and sugarbeet) and 11·5% (wheat). The mean value was 10·5%r.h. (s.e. 0.2). There was no significant (P > 0·05)effect of further reduction in seed moisture content below thesecritical values on longevity, except in wheat (P < 0·005),in which there was a further increase in longevity. In soyabean [Glycine max (L) Merrill], the logarithmic relation continueddown to the lowest moisture content investigated, 3·3%(11·4% equilibrium relative humidity). Above the criticalvalue, seed longevity in groundnut showed the least sensitivityto increase in percentage moisture content, while barley showedthe greatest, the values of the viability constant Cw (slopeof the negative logarithmic relation between longevity and moisture)being 4·089 (s.e. 0·278) and 5·966 (s.e.0·325), respectively. These differences in the valueof Cw among the eight crops were significant P < 0·005),whereas the relative sensitivity of seed longevity to changein equilibrium relative humidity above the critical moisturecontent did not differ significantly among the eight (P >0·10) and was equivalent to a doubling of longevity foreach 8·7% reduction in equilibrium relative humidity.Accordingly it is concluded that the relative effect of waterpotential on seed longevity can be considered to be the samefor these and probably also for many other orthodox species. Barley, chickpea, cowpea, groundnut, onion, soya bean, sugar beet, wheat, seed storage, seed longevity, seed moisture content, viability equation, water relations  相似文献   

3.
The lower limit to the negative logarithmic relation betweenseed longevity and moisture content was determined in threesubspecies of rice (Oryza satwa L.) by storing seeds of fivecultivars at 65 °C with 11 different moisture contents (1.5–15.3%f. wt) for various periods up to 150 d and then testing forgermination. The estimates of the low-moisture-content limit(mc) were 4.3% for subsp. indica, 4.4% for subsp. japonica,and 4.5% for subsp. javanica. These moisture contents were inequilibrium with 10.5—12.0% r.h. No significant effectof moisture content between 1.5% and mc on longevity was detected(P > 0.05), while between mc and 15.3% there were negativelogarithmic relations between longevity and moisture content.There were no significant differences in the relations betweenlongevity and moisture either above or below mc between thetwo japonica cultivars or between the two javanica cultivars(P > 0.10). There was also no significant difference in theslope of the negative logarithmic relation between longevityand moisture above mc among the three subspecies (P > 0.25).However, there were significant differences in the standarddeviation of the frequency distribution of seed deaths in timeat any one moisture content, both above and below mc; this isa measure of seed longevity which is independent of pre-storageenvironment, and the differences observed show that there aregenetically determined differences in longevity among the threesubspecies (P < 0.005), indica being the longest and japonicathe shortest lived. The results provide no evidence for intra-specificvariation in mc and support the view that the maximum seed storagemoisture content which provides the maximum longevity is thatwhich is in equilibrium with about 10–11% r.h. It is concludedthat while the seed viability constant Cw of the seed viabilityequation is species specific and therefore applies to most,if not all, cultivars of rice, variation in the value of KEis the source of the differences in potential longevity of thethree subspecies. Rice, Oryza sativa L, seed storage, seed longevity, seed moisture, viability equation  相似文献   

4.
Seed of three chickpea (Cicer arietinum L.), three cowpea [Vignaunguiculata (L.) Walp.] and four soya bean [Glycine max (L.)Merr.] cultivars were hermetically stored for up to 2 yearsin various constant environments which included temperaturesfrom —20 to 70 °C and moisture contents (fresh weightbasis) from 5 to 25 per cent. In all cases the survival curvescould be described by negative cumulative normal distributions.The longevity of the various seed lots differed but the valueof the standard deviation (the reciprocal of which gives theslope of the survival curve when percentage germination is transformedto probit) was the same for all cultivars within a species whenstored under similar conditions. Within each species the relativeeffects of moisture and temperature on longevity did not differsignificantly between cultivars. In all three species therewas a negative logarithmic relationship between seed moisturecontent and longevity, but the relative effect of moisture contentdiffered between the species: differences in the longevity ofsoya bean seed as a function of moisture content were less thanfor either cowpea or chickpea. The relative effect of temperatureon seed longevity did not differ between the three species,and the seed of all three species showed increasing temperaturecoefficients for the change in rate of loss of viability withincrease in temperature. The complete pattern of loss in viabilityin all three species can be described by a single equation whichwas developed for barley and has also been shown to apply toonion seed. The constants applicable to the three grain legumeshave been calculated so that it is now possible to predict percentageviability of any seed lot of these species after any storageperiod under a very wide range of storage conditions. Cicer arietinum L., chickpea, Glycine max (L.) Merr., soya bean, Vigna unguiculata (L.) Walp., cowpea, seed longevity, seed storage, moisture content, temperature  相似文献   

5.
KRAAK  H. L.; VOS  J. 《Annals of botany》1987,59(3):343-349
Seeds of two lettuce cultivars (Lactuca sativa L., cv. Meikoninginand cv. Grand Rapids) were hermetically stored with constantmoisture contents ranging between 3.6 and 17.9 per cent (freshweight basis) at constant temperatures ranging between 5 and75 °C. The decline with time in percentage germination andpercentage normal seedlings was determined for each storagetreatment. The data were fitted to an equation which containsthe constants: K1, the probit of the initial percentage germinationor normal seedlings; KE, a species constant; CW, the constantof a logarithmic moisture term; CH, the constant of a lineartemperature term and CQ, the constant of a quadratic temperatureterm. Regression analysis of data from storage periods up to5.5 years at temperatures of 5–75 °C and seed moisturecontents of 3.6–13.6 per cent yielded the following values:KE= 8.218, CW=4.797±0.163, CH=0.0489±0.0050 andCQ=0.000365±0.000056. Although this equation consistentlyprovided a better fit, simplified equations, assuming eithera log-linear relationship between seed longevity and temperature,or a log-linear relationship between seed longevity and bothmoisture content and temperature, accounted for more than 94per cent of the variation at the restricted temperature rangeof 5–40 °C. Longevity of the same seed lots at sub-zero temperatures (–5,–10 and –20 °C) was studied in separate tests.Freezing damage, resulting in abnormal seedlings in the germinationtest, occurred at –20 °C when the moisture contentof the seeds exceeded 12 per cent. No decline in percentagenormal seedlings was observed after a storage period of 18 monthsor longer at –20 °C, provided the seed moisture contentdid not exceed 9.5 per cent. For seeds stored at –5 and–10 °C with 9.6–12.5 per cent moisture content,the observed rate of decline of percentage normal seedlingswas adequately predicted by the viability equation, using theabove values for the constants. This suggests that for low moisturecontents the viability equation can be applied to estimate longevityat sub-zero temperatures. Lettuce, Lactuca sativa (L.), seed longevity, seed storage, viability constants, storage conditions  相似文献   

6.
Temperature and Seed Storage Longevity   总被引:8,自引:1,他引:7  
Seed survival data for eight diverse species, namely the cerealbarley (Hordeum vulgare L.), the grain legumes chickpea (Cicerarietinum L.), cowpea [Vigna unguiculata (L.) Walp.] and soyabean [Glycine max (L.) Merr.], the timber trees elm (Ulmus carpinifoliaGleditsch.), mahogany (Swietenia humilis Zucc.), and terb (Terminaliabrassii Exell.), and the leaf vegetable lettuce (Lactuca sativaL.) were compared over a wide range of storage environments(temperatures from –13 °C to 90 °C, seed moisturecontents from 1.8 to 25% f. wt) using a viability equation developedpreviously. In accordance with that equation, the effect oftemperature on seed longevity was dependent upon the temperaturerange. The temperature coefficients of the viability equationdid not differ significantly (P > 0.05) among the eight speciesdespite their contrasting taxonomy. Thus the quantitative relationbetween seed longevity and temperature does not vary among diversespecies. The same conclusion was obtained for the coefficientsof a proposed alternative model of the relation between seedlongevity and temperature. The implications of the two temperaturemodels in the viability equation for extrapolations to low andvery low temperatures are discussed. Seed storage, seed longevity, seed moisture, temperature, viability equation, genetic resources conservation, Cicer arietinum L., Glycine max (L.) Merr., Hordeum vulgare L., Lactuca sativa L., Swietenia humilis Zucc., Terminalia brassii Exell., Ulmus carpinifolia Gleditsch., Vigna unguiculata (L.) Walp  相似文献   

7.
Seeds of barley (Hordeum vulgare L.) and mung bean (Vigna radiata(L.) Wilczek), with orthodox seed storage behaviour, were imbibedfor between 8 h and 96 h at 15 °C and 25 °C, respectively,while barley seeds were also maintained in moist aerated storageat 15 °C for 14 d. These seeds and seedlings, together withcontrols, were then dried to various moisture contents between3% and 16% (wet basis) and hermetically stored for six monthsat —20°C, 0°C or 15°C. In both species, neitherdesiccation nor subsequent hermetic storage of the control lotsresulted in loss in viability. The results for barley seedsimbibed for 24 h were similar to the control, but desiccationsensitivity increased progressively with duration of imbibitionbeyond 24 h in barley or 8 h in mung bean; these treatmentsalso reduced the longevity of the surviving seeds in air-drystorage. Loss in viability in barley imbibed for 48 h was mostrapid at the two extreme seed storage moisture contents of 3·6%and 14·3%, and in both these cases was more rapid at15 °C than at cooler temperatures. Similarly, for mung beanimbibed for 8 h, loss in viability was most rapid at the lowest(4·3%) moisture content, but in this case it was morerapid at –20 °C than at warmer temperatures. Thus,these results for the storage of previously imbibed orthodoxseeds conform with the main features of intermediate seed storagebehaviour Key words: Barley, Hordeum vulgare L., mung bean, Vigna radiata (L.) Wilczek, desiccation sensitivity, seed longevity, seed storage behaviour  相似文献   

8.
Winter wheat (Triticum aestivum L.) cv. Hereward was grown inthe field in two double-walled polyethylene-covered tunnelswithin each of which a temperature gradient was superimposedon diurnal and seasonal fluctuations in temperature. The meantemperature between anthesis and harvest maturity varied from14.3 to 18.4C among plots within these tunnels. The CO2 concentrationwas controlled at different values in each tunnel; seasonalmean concentrations were 380 and 684 µmol CO2 mol–1air. Crops were also grown outside the tunnels at ambient temperaturesand CO2. Samples of seeds were harvested sequentially from eachplot between anthesis and harvest maturity. Seed germinationand seed survival during subsequent air-dry storage were determinedfor each sample. The onset of both ability to germinate anddesiccation tolerance (ability to germinate after rapid desiccationto 10–15% moisture content and subsequent rehydration)coincided in all environments. Full germination capacity (>97%, determined at 10C) was reached 4–18 d before theend of the seed-filling phase (mass maturity) in most cases.There was little or no decline in germination capacity duringsubsequent seed development and maturation. Differences in seedquality were evident, however, throughout seed development andmaturation when seed survival curves during subsequent storagewere compared. Potential longevity in air-dry storage (assessedby the value K1 of the seed viability equation) improved consistentlyboth before and after mass maturity. There was a significantpositive relation between the rate of increase in potentiallongevity (dK1Idt) and temperature (the minimum temperaturefor seed quality development was 4.8 C), but neither CO2 concentrationnor production within the polyethylene tunnels affected thisrelation. Key words: Wheat, Triticum aestivum L., seed development, seed longevity, carbon dioxide, temperature  相似文献   

9.
Seeds of Hancornia speciosa germinated best at a temperatureof 20–30 °C. The viability of the seeds during storagewas short and the best storage conditions for viability entailedkeeping the seeds in polyethylene bags. Seed viability was maintainedonly when the seeds were stored at a moisture content above30%; storage conditions which allowed dehydration resulted ina rapid loss of viability (the seeds showed recalcitrant behaviour). Low temperature during storage did not improve longevity. Arelationship between germination and moisture content was established,but when the moisture content fell below 25% there was a drasticreduction of germination. After 9 weeks of storage, even athigh moisture content, seeds lost viability. Loss of seed viability during seed dehydration was associatedwith increased leakage of electrolytes and organic solutes,and reduced tetrazolium staining during subsequent imbibition. Hancornia speciosa, germination, recalcitrant seeds, storage, moisture  相似文献   

10.
The influence of prehydration in water or priming in –1.5 MPa polyethylene glycol 8000 solution for various periods,followed by redrying, on germination rate and longevity of lettuce(Lactuca sativa L.) seeds (achenes) was determined during controlleddeterioration at 10% moisture content (fresh weight basis) and40°C. Short prehydration treatments (up to 1 h) had littleeffect on either germination rate or longevity, but significantlyimproved root growth rates. Increasing durations of prehydrationor priming reduced the mean time to germination by up to 61%relative to untreated seeds, but also reduced mean seed longevityby as much as 84% Prehydration and priming altered the relationshipsbetween germination rate and viability and between normal andabnormal seedlings during ageing. Prehydration in abscisic acidor at a temperature inhibitory to germination did not preventthe reduction in longevity under controlled deterioration conditions.While prehydration or priming treatments effectively acceleratesubsequent germination rates of lettuce seeds, the redried seedsare nonetheless highly susceptible to deterioration in storage. Key words: Lettuce, Lactuca sativa L., seed priming, seed deterioration, germination rate  相似文献   

11.
Effects of 2 °C chilling on the threshold moisture contentsand water potentials for various physiological processes wereestimated forAesculus hippocastanumL. seed. Seed harvested atthe time of maximum seed fall exhibited a dual response to drying:partial drying from near 50% to 32–40% moisture contentprogressively increased germination percentage (at 16 °C)up to various peak values; further desiccation was detrimental,confirming that the seeds are ‘recalcitrant’. Themoisture content for optimum germination was increased by atleast 10% as the chilling period was raised from 0 to 9 weeks.A negative linear relationship was found between log10mean timeto germinate and probit final germination, regardless of pre-treatment,indicating that partial desiccation and chilling are interchangeablein promoting germination of hydrated seed. For nearly fullyhydrated seeds, increasing the chilling period from 6 to 26weeks increased the viability-loss onset point for desiccationinjury from near 40% to about 48% moisture content without alteringthe drying rates of seed tissues. Extending moist chilling invarious seed lots from 0 to 26 weeks decreased subsequent longevityat 16 °C. For 26-week-chilled seeds longevity (the periodto lose one probit of germination) differed above and belowa threshold moisture content of 48%. It remained constant inthe moisture-content range 48–38%, but increased progressivelyas moisture content was raised above 48%. This threshold moisturecontent coincided with the value above which chilled seed pre-germinatedin storage. The results indicate that post-harvest desiccationand chilling alter the water relations of various physiologicalprocesses and a schematic summary is presented which relatesthe results to an axis water sorption isotherm.Copyright 1998Annals of Botany Company Aesculus hippocastanumL., horse chestnut, chilling, moisture content, water potential, desiccation tolerance, longevity, recalcitrant seed, embryo axis, maturation, germination.  相似文献   

12.
Storage experiments were carried out on barley seed (Hordeumdistichum L.) lasting from 1 min to 926 days, including 52 hermeticstorage environments covering a range of temperatures from 3to 90 °C and 5·5 per cent to 24·6 per centmoisture content (f. wt basis). Over the entire range of conditionssurvival curves conformed to negative cumulative normal distributionsand, for any given measure of longevity, e.g. half-viabilityperiod, longevity was roughly proportional to the negative exponentof both temperature and moisture content. Although previouslyreported viability equations were adequate to describe theserelationships over restricted ranges of environments, over theextended range of conditions tested here it was shown that therelationship between log seed viability and temperature is infact slightly convex, whilst that between log seed viabilityand moisture content is slightly concave. An improved viabilityequation was applied which takes into account those curvaturesand, at the same time takes into account the initial viabilityof a seed lot which reflects pre-storage deterioration. Thefit was excellent and thus it is now possible to predict percentageviability of any lot of barley seed after any storage periodunder a very wide range of conditions. Hordeum distichum L., barley viability, seed longevity, seed storage, moisture content of barley seed, temperature, influence of seed viability  相似文献   

13.
Data on the survival of pollen ofTypha latifoliaL. stored forup to 261 d over seven different saturated salt solutions (providing0.5 to 66% relative humidity) and six different constant temperatures(from -5 to +45 °C) were analysed to quantify the effectof air-dry storage environment on pollen longevity. Pollen survivalcurves conformed much more closely to negative cumulative normaldistributions than to negative exponential relations. Estimatesofp50(storage period required to reduce pollen viability to50%), provided by negative cumulative normal distributions,were available from 37 different storage environments in whichpollen viability was reduced below 50%. Once observations at0.5% and 5.5% relative humidity were excluded from analysis,there was a negative logarithmic relation between these estimatesof longevity and pollen moisture content (%, wet basis) anda curvilinear semi-logarithmic relation between longevity andtemperature. When the negative logarithmic relation betweenlongevity and moisture content was replaced by a negative semi-logarithmicrelation between longevity and the relative humidity of thestorage environment the resultant model was less satisfactory,principally because pollen longevity over saturated solutionsof calcium nitrate (43–62% relative humidity) and sodiumnitrite (60–66% relative humidity) were consistently greaterand smaller, respectively, than fitted values. Notwithstandingthese errors, comparison between the fitted relations and observationsat the two lowest relative humidities provided estimates ofthe lower-relative-humidity limits to these relations. Theseprovisional estimates varied with storage temperature beinglowest at 25 °C (<5.5% relative humidity). However, therewas no linear trend to that variation (P>0.25): the meanestimate was 11.9 (s.e.=1.4)%. The considerable similaritiesamong models of pollen longevity in air-dry storage, and theirestimated lower limits, and those developed previously for orthodoxseeds and spores are discussed.Copyright 1999 Annals of BotanyCompany. Typha latifoliaL., pollen, storage, survival, longevity, relative humidity, moisture content, temperature.  相似文献   

14.
Seeds of quinoa (Chenopodium quinoa Willd.), sunflower (Helianthusannuus L.) and linseed (Linum usitatissimum L.) showed negativelogarithmic relations between longevity and moisture contentsbetween 4.4 and 15.4, 3.2 and 13.0, and 3.2 and 15.5%, respectively,in hermetic storage at 65 °C. However, between 1.8 and 3.1,1.1 and 1.9, and 1.1 and 2.1%, respectively, longevity did notvary. The critical moisture content, below which further reductionin moisture content no longer increased longevity in hermeticstorage at 65 °C, for each species was 4.1, 2.04 and 2.7%,respectively. Quinoa, Chenopodium quinoa Willd., sunflower, Helianthus annuus L., linseed, Linum usitatissimum L., seed storage, improved viability equation, seed longevity, seed moisture content  相似文献   

15.
Conidia ofMetarhizium flavoviridewere hermetically stored at50 °C and 14 moisture contents between 2.5 and 31.8% (freshweight basis) for up to 146 d, and tested for germination onSabouraud Dextrose Agar at 25 °C for 24 h. Survival of conidiaconformed to cumulative negative normal distributions and all14 survival curves could be constrained to a common origin.There was a negative logarithmic relation between longevityand conidia moisture content, but limits to the relation weredetected: the lower-moisture-content limit was 4.6% [in equilibriumwith 10.7% relative humidity (RH) at 20 °C], below whichvalue further reduction in moisture content did not increaseconidia longevity; and an upper-moisture-content limit betweenabout 21.2 and 31.8% moisture content (between 77 and 90.0%equilibrium RH at 20 °C) above which conidia longevity nolonger decreased. The observations could also be described bya negative semi-logarithmic relation between conidia longevityand equilibrium relative humidity. In this model, each reductionin equilibrium relative humidity by 11.2% within the range 10.7to 80% RH doubled conidia longevity. The similarities in theserelations, and the limits to these relations, between the conidiaof this entomopathogenic fungus and the orthodox seeds of higherplants are discussed.Copyright 1998 Annals of Botany Company Conidia longevity, equilibrium relative humidity,Metarhizium flavoviride, moisture content, hermetic storage, viability equation  相似文献   

16.
An Intermediate Category of Seed Storage Behaviour?: I. COFFEE   总被引:15,自引:3,他引:12  
Seeds of four cultivars of arabica coffee (Coffea arabica L.)were tested for germination following hermetic storage for upto 12 months at several different combinations of temperaturesbetween –20 °C and 15 °C and moisture contentsbetween 5% and 10% (wet basis). Most of the seeds from one cultivarwithstood desiccation to between 5% and 6% moisture content,a seed water potential of approximately –250 MPa, butthose of the remaining three cultivars were much more sensitiveto desiccation damage. Moreover, in all four cultivars, seedlongevity at cool and sub-zero temperatures, and at low moisturecontents did not conform with orthodox seed storage behaviour:viability was lost more rapidly under these conditions thanat either warmer temperatures or higher moisture contents. Theresults confirm that coffee seeds fail to satisfy the definitionsof either typical orthodox or recalcitrant seed storage behaviour.These results, therefore, point to the possibility of a thirdcategory of storage behaviour intermediate between those oforthodox and recalcitrant seeds. One of the main features ofthis category is that dry seeds are injured by low temperatures. Key words: coffee, Coffea arabica L., seed storage, seed longevity, desiccation, temperature  相似文献   

17.
Improved Equations for the Prediction of Seed Longevity   总被引:23,自引:1,他引:22  
Equations for predicting seed longevity in storage have beenimproved so that they now take into account variations withina species in initial seed quality—which is affected bygenotype and pre-storage environment—and so that theyare more accurate over a wider range of storage environmentsThese improvements have been incorporated into a seed viabilitynomograph for barley (Hordeum distichum L.) which may be usedto predict percentage viabihty of any seed lot after any timein any storage environment within the range –20 to 90°C and 5–25 per cent moisture content. Applicationsof the improved equations to seed drying and to long-term seedstorage for genetic conservation are discussed. Hordeum distichum L., barley, seed viability, seed longevity prediction, seed storage, seed drying, storage temperature, seed moisture content, genetic resources conservation  相似文献   

18.
The Dry Storage of Citrus Seeds   总被引:1,自引:0,他引:1  
The survival of seeds of lemon (Citrus limon L.), lime [C. arantifolia(Christm.) Swing.] and sour orange (C. aurantium L.) was examinedunder a wide range of constant moisture contents and temperatures.Seed longevity was increased by decreasing the moisture contentand temperature of the storage environment. Maximum viabilitywas maintained in the combination of storage conditions includingthe lowest moisture content (5 per cent) and lowest temperature(–20 °C) investigated. The practicality of dry storageof citrus seed for genetic conservation is discussed. Citrus limon L., lemon, Citrus aurantifolia (Christm.), Swing, lime, Citrus aurantium L., sour orange, dry storage, moisture content, temperature, seed viability, seed longevity  相似文献   

19.
The moisture content of newly germinated cabbage seed (radicles1 05 mm long) was reduced to 14% of f.wt without loss of viability.As the moisture content was reduced below 45%, the temperatureat which the germinated seeds froze, and therefore died, decreasedprogressively to a minimum of –34 C at 19% moisture content.No freezing exotherms were recorded in seeds with moisture contentsbelow 19%. Seeds with a moisture content between 14 and 16%maintained viability for at least 1 week when cooled at 26C.min–1to –20 C and held at this temperature, indicating thepotential for prolonged storage of these low-moisture-contentgerminated (LMCG) seeds. Brassica oleracea, cabbage, germinated seed, seed storage, fluid drilling, freezing exotherm, thermal analysis  相似文献   

20.
Soya Bean Seed Growth and Maturation In vitro without Pods   总被引:2,自引:0,他引:2  
Immature Glycine max (L.) Merrill seeds, initially between 50and 450 mg f. wt, were grown and matured successfully in vitro.Excised seeds were floated in a liquid medium containing 5 percent sucrose, minerals and glutamine in flasks incubated at25 °C under 300 to 350 µE m–2 s–1 fluorescentlight. During 16 to 21 d in culture, seeds grew to a matured. wt of 100 to 600 mg per seed at an average rate of 5 to 25mg d. wt per seed d–1 depending on initial size. Growthrates were maximal during the first 8 to 10 d in vitro but declinedwith loss of green colour in the cotyledons. Seed coats rupturedwith rapid cotyledon expansion during the first 2 d in culture.Embryos were tolerant to desiccation and 80 to 90 per cent germinatedif removed from culture before complete loss of green colour.The growth of excised seeds in vitro exceeded the growth ofseeds in detached pods, but when windows were cut in pods topermit direct exposure of seeds to the medium, seed growth wascomparable. Glycine max (L.) Merrill, soya bean, seed culture, seed growth, seed maturation, germination  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号