首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sphingosine 1-phosphate receptor type 1 (S1P(1)) was shown to be essential for vascular maturation during embryonic development and it has been demonstrated that substantial crosstalk exists between S1P(1) and other pro-angiogenic growth factors, such as vascular endothelial growth factor (VEGF) and basic fibroblast growth factor. We developed a novel S1P(1)-selective antagonist, TASP0277308, which is structurally unrelated to S1P as well as previously described S1P(1) antagonists. TASP0277308 inhibited S1P- as well as VEGF-induced cellular responses, including migration and proliferation of human umbilical vein endothelial cells. Furthermore, TASP0277308 effectively blocked a VEGF-induced tube formation in vitro and significantly suppressed tumor cell-induced angiogenesis in vivo. These findings revealed that S1P(1) is a critical component of VEGF-related angiogenic responses and also provide evidence for the efficacy of TASP0277308 for anti-cancer therapies.  相似文献   

2.
We have previously disclosed 1,2,4-oxadiazole derivative 3 as a potent S1P(3)-sparing S1P(1) agonist. Although compound 3 exhibits potent and manageable immunosuppressive efficacy in various in vivo models, recent studies have revealed that its 1,2,4-oxadiazole ring is subjected to enterobacterial decomposition. As provisions for unpredictable issues, a series of alternative compounds were synthesized on the basis of compound 3. Extensive SAR studies led to the finding of 1,3-thiazole 24c with the EC(50) value of 3.4 nM for human S1P(1), and over 5800-fold selectivity against S1P(3). In rat on host versus graft reaction (HvGR), the ID(50) value of 24c was determined at 0.07 mg/kg. The pharmacokinetics in rat and monkey is also reported. Compared to compound 3, 24c showed excellent stability against enterobacteria.  相似文献   

3.
Sphingosine-1-phosphate (S1P) is a key regulator of immune response. Immune cells, epithelia and blood cells generate high levels of S1P in inflamed tissue. However, it is not known if S1P acts on the endings of nociceptive neurons, thereby contributing to the generation of inflammatory pain. We found that the S1P1 receptor for S1P is expressed in subpopulations of sensory neurons including nociceptors. Both S1P and agonists at the S1P1 receptor induced hypersensitivity to noxious thermal stimulation in vitro and in vivo. S1P-induced hypersensitivity was strongly attenuated in mice lacking TRPV1 channels. S1P and inflammation-induced hypersensitivity was significantly reduced in mice with a conditional nociceptor-specific deletion of the S1P1 receptor. Our data show that neuronally expressed S1P1 receptors play a significant role in regulating nociceptor function and that S1P/S1P1 signaling may be a key player in the onset of thermal hypersensitivity and hyperalgesia associated with inflammation.  相似文献   

4.
Two series of fused tricyclic indoles were identified as potent and selective S1P(1) agonists. In vivo these agonists produced a significant reduction in circulating lymphocytes which translated into robust efficacy in several rodent models of autoimmune disease. Importantly, these agonists were devoid of any activity at the S1P(3) receptor in vitro, and correspondingly did not produce S1P(3) mediated bradycardia in telemeterized rat.  相似文献   

5.
We reveal how a N-scan SAR strategy (systematic substitution of each CH group with a N atom) was employed for quinolinone-based S1P(1) agonist 5 to modulate physicochemical properties and optimize in vitro and in vivo activity. The diaza-analog 17 displays improved potency (hS1P(1) RI; 17: EC(50)=0.020 μM, 120% efficacy; 5: EC(50)=0.070 μM, 110% efficacy) and selectivity (hS1P(3) Ca(2+) flux; 17: EC(50) >25 μM; 5: EC(50)=1.5 μM, 92% efficacy), as well as enhanced pharmacokinetics (17: CL=0.15 L/h/kg, V(dss)=5.1L/kg, T(1/2)=24h, %F=110; 5: CL=0.93L/h/kg, V(dss)=11L/kg, T(1/2)=15 h, %F=60) and pharmacodynamics (17: 1.0mg/kg po, 24h PLC POC=-67%; 5: 3mg/kg po, 24h PLC POC=-51%) in rat.  相似文献   

6.
An SAR campaign designed to increase polarity in the 'tail' region of benzothiazole 1 resulted in two series of structurally novel 5-and 6-substituted S1P(1) agonists. Structural optimization for potency ultimately delivered carboxamide (+)-11f, which in addition to possessing improved physicochemical properties relative to starting benzothiazole 1, also displayed good S1P(3) selectivity and acceptable in vivo lymphocyte-depleting activity.  相似文献   

7.
High-throughput screening of GSK compound collection led to the discovery of a novel series of thiadiazole amides as potent and S1P(3)-sparing sphingosine-1-phosphate 1 (S1P(1)) receptor agonists. Synthesis, structure and activity relationship, selectivity, and some developability properties are described.  相似文献   

8.
谷胱甘肽S-转移酶P1-1在癌变细胞和抗药性肿瘤细胞中表达水平发生变化,提示可以作为恶性转化及肿瘤抗药性的标志物.对大鼠谷胱甘肽S-转移酶P1基因上游调控序列的研究发现在-2.5kb及-2.2kb各存在一增强子序列GPEⅠ,GPEⅡ,-400bP存在一沉寂子.GPEⅠ、沉寂子上均至少结合有3种反式作用因子.人谷胱甘肽S-转移酶P1基因上游区域中迄今尚未发现增强子或沉寂子,但却发现了胰岛素及视黄酸的应答序列,在癌变细胞和抗药性的肿瘤细胞中该基因表达的调控机制有别于正常细胞.  相似文献   

9.
目的:探究1-磷酸鞘氨醇(S1P)对缺氧/复氧乳鼠心肌细胞的保护作用及其分子机制。方法:在大鼠乳鼠心肌细胞原代培养基础上,应用液体石蜡覆盖法制备心肌细胞缺氧/复氧模型,采用流式细胞术PI染色法和流式细胞术罗丹明123染色法检测S1P对缺氧/复氧心肌细胞的细胞凋亡和线粒体膜电位的影响;Western Blot分析法检测S1P作用后的心肌细胞p-Akt1蛋白水平变化,并且观察PI3K(磷脂酰肌醇3-激酶)阻断剂渥曼青霉素(wommamin)对S1P上述作用的影响。结果:在S1P的影响下,缺氧/复氧心肌细胞的凋亡率显著下降(P〈0.01),线粒体膜电位的去极化被明显抑制(P〈0.05),p-Akt1水平明显升高(P〈0.01),wormannin能够部分阻断S1P的上述效应。结论:S1P能够显著抑制缺氧/复氧引起的心肌细胞凋亡,其机制可能与S1P激活PDK-Akt信号通路进而稳定线粒体膜电位有关。  相似文献   

10.
谷胱甘肽S—转移酶基因P1的研究进展   总被引:1,自引:0,他引:1  
  相似文献   

11.
目的:探究间充质干细胞(MSC)与鞘氨醇-1-磷酸(S1P)联用对急性肺损伤发生过程中S1P代谢相关酶的表达调控作用。方法:构建脂多糖(LPS)刺激的急性损伤的肺内皮细胞模型,与MSC及S1P非接触共培养后,利用细胞实时无标记系统,考察MSC与S1P联用对损伤细胞微电子阻抗的增强保护作用,利用RT-PCR考察两者对损伤细胞中S1P代谢相关酶的表达调控作用。结果:MSC与S1P联用与单独使用时相比,作用靶点和效果有显著差别,MSC单独使用时仅下调鞘氨醇激酶1(Sph K1)、S1P裂解酶(S1PL)和鞘磷脂合成酶1(SMS1)的表达,但当将MSC和S1P联合使用时,其对S1PL的下调作用丧失,而鞘氨醇激酶2(Sph K2)和鞘磷脂合成酶2(SMS2)的表达明显下调。结论:MSC作为一种潜在的治疗手段,可以同时作用于多个S1P代谢相关基因,而且其与S1P的联用对相关基因的表达调控并不是简单的作用叠加,而是表现出更为显著的治疗结果。本研究为进一步探讨MSC与S1P联用,通过改善内皮屏障的生物学功能对急性肺损伤的治疗作用及可能的协同机理奠定了实验基础。  相似文献   

12.
Sphingosine 1-phosphate (S1P)/S1P receptor 1 (S1P1) signaling plays an important role in synovial cell proliferation and inflammatory gene expression by rheumatoid arthritis (RA) synoviocytes. The purpose of this study is to clarify the role of S1P/S1P1 signaling in the expression of receptor activator of NF-κB ligand (RANKL) in RA synoviocytes and CD4(+) T cells. We demonstrated MH7A cells, a human RA synovial cell line, and CD4(+) T cells expressed S1P1 and RANKL. Surprisingly, S1P increased RANKL expression in MH7A cells and CD4(+) T cells in a dose-dependent manner. Moreover, S1P enhanced RANKL expression induced by stimulation with TNF-α in MH7A cells and CD4(+) T cells. These effects of S1P in MH7A cells were inhibited by pretreatment with PTX, a specific Gi/Go inhibitor. These findings suggest that S1P/S1P1 signaling may play an important role in RANKL expression by MH7A cells and CD4(+) T cells. S1P/S1P1 signaling of RA synoviocytes is closely connected with synovial hyperplasia, inflammation, and RANKL-induced osteoclastogenesis in RA. Thus, regulation of S1P/S1P1 signaling may become a novel therapeutic target for RA.  相似文献   

13.
At the initial step of carcinogenesis, transformation occurs in single cells within epithelia, where the newly emerging transformed cells are surrounded by normal epithelial cells. A recent study revealed that normal epithelial cells have an ability to sense and actively eliminate the neighboring transformed cells, a process named epithelial defense against cancer (EDAC). However, the molecular mechanism of this tumor-suppressive activity is largely unknown. In this study, we investigated a role for the sphingosine-1-phosphate (S1P)–S1P receptor 2 (S1PR2) pathway in EDAC. First, we show that addition of the S1PR2 inhibitor significantly suppresses apical extrusion of RasV12-transformed cells that are surrounded by normal cells. In addition, knockdown of S1PR2 in normal cells induces the same effect, indicating that S1PR2 in the surrounding normal cells plays a positive role in the apical elimination of the transformed cells. Of importance, not endogenous S1P but exogenous S1P is involved in this process. By using FRET analyses, we demonstrate that S1PR2 mediates Rho activation in normal cells neighboring RasV12-transformed cells, thereby promoting accumulation of filamin, a crucial regulator of EDAC. Collectively these data indicate that S1P is a key extrinsic factor that affects the outcome of cell competition between normal and transformed epithelial cells.  相似文献   

14.
1- 磷酸鞘氨醇是一种有生物活性的脂质代谢产物,具有调节细胞增殖、再生、迁移,细胞内钙离子移动,黏附分子表达以及激活单核细胞黏附内皮细胞等功效,在血管生理性再生及动脉粥样硬化斑块发生发展中发挥重要作用。1- 磷酸鞘氨醇在高密度脂蛋白中含量在所有脂蛋白中最高,其参与调节高密度脂蛋白的抗氧化、抗血栓、抗炎等效应,而这些反应与1- 磷酸鞘氨醇的生物学功能如血管发生、内皮保护、抑制平滑肌细胞迁移、心肌缺血再灌注损伤的保护等密切相关。对1- 磷酸鞘氨醇信号通路在心血管系统中的作用及以该通路为靶点的相关药物研究进展进行综述,为今后研究提供参考。  相似文献   

15.
3′–nucleases/nucleotidases of the S1–P1 family (EC 3.1.30.1) are single–strand–specific or non-specific zinc–dependent phosphoesterases present in plants, fungi, protozoan parasites, and in some bacteria. They participate in a wide variety of biological processes and their current biotechnological applications rely on their single–strand preference, nucleotide non-specificity, a broad range of catalytic conditions and high stability. We summarize the present and potential utilization of these enzymes in biotechnology and medicine in the context of their biochemical and structure–function properties. Explanation of unanswered questions for bacterial and trypanosomatid representatives could facilitate development of emerging applications in medicine.  相似文献   

16.
This paper details exploration of a class of triazole-based cathepsin S inhibitors originally reported by Ellman and co-workers. SAR studies involving modifications across the whole inhibitor provide a perspective on the strengths and weaknesses of this class of inhibitors. In addition, we put the unique characteristics of this class of compounds into perspective with other classes of cathepsin S inhibitors.  相似文献   

17.
S1P(1) receptor driven lymphopenia has proven utility in the treatment of an array of autoimmune disease states. As a part of our efforts to develop potent and selective S1P(1) receptor agonists, we have identified a novel chemical series of 4-oxo-4-(5-(5-phenyl-1,2,4-oxadiazol-3-yl)indolin-1-yl)butanoic acid S1P(1) receptor agonists.  相似文献   

18.
鞘氨醇-1-磷酸(S1P)在植物体内也可作为一种信号分子参与ABA介导的保卫细胞信号转导过程,这一途径和异三聚体G蛋白相耦联。文章对此问题的研究进展作了介绍。  相似文献   

19.
Elevated intraocular pressure is the main risk factor in primary open-angle glaucoma, involving an increased resistance to aqueous humor outflow in the juxtacanalicular region of the conventional outflow pathway which includes the trabecular meshwork (TM) and the inner wall of Schlemm's canal (SC). Previously, sphingosine-1-phosphate (S1P) was shown to decrease outflow facility in porcine and human eyes, thus increasing outflow resistance and intraocular pressure. Owing to S1P's known effect of increasing barrier function in endothelial cells and the robust expression of the S1P? receptor on the inner wall of SC, we hypothesized that S1P? receptor activation promotes junction formation and decreases outflow facility. The effects of subtype-specific S1P receptor compounds were tested in human and porcine whole-eye perfusions and human primary cultures of SC and TM cells to determine the receptor responsible for S1P effects on outflow resistance. The S1P?-specific agonist SEW2871 failed to both mimic S1P effects in paired human eye perfusions, as well as increase myosin light chain (MLC) phosphorylation in cell culture, a prominent outcome in S1P-treated SC and TM cells. In contrast, the S1P? antagonist JTE-013, but not the S1P? or S1P?,? antagonists, blocked the S1P-promoted increase in MLC phosphorylation. Moreover, JTE-013 prevented S1P-induced decrease in outflow facility in perfused human eyes (P < 0.05, n = 6 pairs). Similarly, porcine eyes perfused with JTE-013 + S1P did not differ from eyes with JTE-013 alone (P = 0.53, n = 3). These results demonstrate that S1P? , and not S1P? or S1P?, receptor activation increases conventional outflow resistance and is a potential target to regulate intraocular pressure.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号