首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
A comparative thermodynamic study of the interaction of anilinonaphthalene sulfonate (ANS) derivatives with bovine serum albumin (BSA) was performed by using differential scanning calorimetry (DSC) and isothermal titration calorimetry (ITC). The chemically related ligands, 1,8-ANS and 2,6-ANS, present a similar affinity for BSA with different binding energetics. The analysis of the binding driving forces suggests that not only hydrophobic effect but also electrostatic interactions are relevant, even though they have been extensively used as probes for non-polar domains in proteins. Ligand association leads to an increase in protein thermostability, indicating that both dyes interact mainly with native BSA. ITC data show that 1,8-ANS and 2,6-ANS have a moderate affinity for BSA, with an association constant of around 1-9x10(5) M(-1) for the high-affinity site. Ligand binding is disfavoured by conformational entropy. The theoretical model used to simulate DSC data satisfactorily reproduces experimental thermograms, validating this approach as one which provides new insights into the interaction between one or more ligands with a protein. By comparison with 1,8-ANS, 2,6-ANS appears as a more "inert" probe to assess processes which involve conformational changes in proteins.  相似文献   

2.
Abstract

The binding of drugs to serum proteins is governed by weak non-covalent forces. In this study, the nature and magnitude of the interactions between piroxicam (PRX) and bovine serum albumin (BSA) was assessed using spectroscopic, calorimetric and computational molecular methods. The fluorescence data revealed an atypical behavior during PRX and BSA interaction. The quenching process of tryptophan (Trp) by PRX is a dual one (approximately equal static and dynamic quenched components). The FRET results indicate that a non-radiative transfer of energy occurred. The association constant and the number of binding sites indicate moderate PRX and BSA binding. The competitive binding study indicates that PRX is bound to site I from the hydrophobic pocket of subdomain IIA of BSA. The synchronous spectra showed that the microenvironment around the BSA fluorophores and protein conformation do not change considerably. The Trp lifetimes revealed that PRX mainly quenches the fluorescence of Trp-213 situated in the hydrophobic domain. The CD and DSC investigation show that addition of PRX stabilizes the protein structure. ITC results revealed that BSA-PRX binding involves a combination of electrostatic, hydrophobic and hydrogen interactions. The analysis of the computational data is consistent with the experimental results. This thorough investigation of the PRX-BSA binding may provide support for other studies concerning moderate affinity drugs with serum protein.

Communicated by Ramaswamy H. Sarma  相似文献   

3.
The interactions of N‐acetyl‐L‐cysteine‐capped CdTe quantum dots (QDs) with bovine serum albumin (BSA) and bovine hemoglobin (BHb) were investigated by isothermal titration calorimetry (ITC), fluorescence, synchronous fluorescence, fluorescence lifetime, ultraviolet–visible absorption, and circular dichroism techniques. Fluorescence data of BSA–QDs and BHb–QDs revealed that the quenching was static in every system. While CdTe QDs changed the microenvironment of tryptophan in BHb, the microenvironment of BSA kept unchanged. Adding CdTe QDs affected the skeleton and secondary structure of the protein (BSA and BHb). The ITC results indicated that the interaction between the protein (BSA and BHb) and QDs‐612 was spontaneous and the predominant force was hydrophobic interaction. In addition, the binding constants were determined to be 1.19 × 105 L mol?1 (BSA–QDs) and 2.19 × 105 L mol?1 (BHb–QDs) at 298 K. From these results, we conclude that CdTe QDs have a larger impact on the structure of BHb than BSA.  相似文献   

4.
A significant challenge in the molecular interaction field is to accurately determine the stoichiometry and stepwise binding affinity constants for macromolecules having >1 binding site. The mission of the Molecular Interactions Research Group (MIRG) of the Association of Biomolecular Resource Facilities (ABRF) is to show how biophysical technologies are used to quantitatively characterize molecular interactions, and to educate the ABRF members and scientific community on the utility and limitations of core technologies [such as biosensor, microcalorimetry, or analytic ultracentrifugation (AUC)]. In the present work, the MIRG has developed a robust model protein interaction pair consisting of a bivalent variant of the Bacillus amyloliquefaciens extracellular RNase barnase and a variant of its natural monovalent intracellular inhibitor protein barstar. It is demonstrated that this system can serve as a benchmarking tool for the quantitative analysis of 2-site protein-protein interactions. The protein interaction pair enables determination of precise binding constants for the barstar protein binding to 2 distinct sites on the bivalent barnase binding partner (termed binase), where the 2 binding sites were engineered to possess affinities that differed by 2 orders of magnitude. Multiple MIRG laboratories characterized the interaction using isothermal titration calorimetry (ITC), AUC, and surface plasmon resonance (SPR) methods to evaluate the feasibility of the system as a benchmarking model. Although general agreement was seen for the binding constants measured using solution-based ITC and AUC approaches, weaker affinity was seen for surface-based method SPR, with protein immobilization likely affecting affinity. An analysis of the results from multiple MIRG laboratories suggests that the bivalent barnase-barstar system is a suitable model for benchmarking new approaches for the quantitative characterization of complex biomolecular interactions.  相似文献   

5.
In some plants, 2-carboxy-d-arabinitol 1-phosphate (CA 1P) is tightly bound to catalytic sites of ribulose, 1,5-bisphosphate carboxylase/oxygenase (rubisco). This inhibitor's tight binding property results from its close resemblance to the transition state intermediate of the carboxylase reaction. Amounts of CA 1P present in leaves varies with light level, giving CA 1P characteristics of a diurnal modulator of rubisco activity. Recently, a specific phosphatase was found that degrades CA 1P, providing a mechanism to account for its disappearance in the light. The route of synthesis of CA 1P is not known, but could involve the branched chain sugar, hamamelose. There appear to be two means for diurnal regulation of the number of catalytic sites on rubisco: carbamylation mediated by the enzyme, rubisco activase, and binding of CA 1P. While strong evidence exists for the involvement of rubisco activase in rubisco regulation, the significance of CA 1P in rubisco regulation is enigmatic, given the lack of general occurrence of CA 1P in plant species. Alternatively, CA 1P may have a role in preventing the binding of metabolites to rubisco during the night and the noncatalytic binding of ribulose bisphosphate in the light.  相似文献   

6.
In this study, we used ITC (isothermal titration calorimetry) to quantitatively investigate the impacts of temperature and protein concentration on adsorption behavior on a solid surface, using BSA (bovine serum albumin) as a model protein, and alum (aluminum hydroxide) gel as an adsorbent. The zeta potential measurement for alum gel (0.25 mV at pH 9.3) revealed that its surface charge was not strong enough for electrostatic interaction. ITC analysis showed that the BSA-alum gel interaction was entropy-driven, suggesting that during adsorption, water molecules were expelled from the hydration layers of the alum gel and BSA. Therefore, the major mechanism for the BSA-alum gel interaction was hydrophobic interaction rather than electrostatic interaction. This biothermodynamic approach can be helpful not only to identify interaction mechanisms, but also to explore the optimum conditions for protein-adsorbent interactions.  相似文献   

7.
Biophysical techniques such as isothermal titration calorimetry (ITC) and surface plasmon resonance (SPR) are routinely used to ascertain the global binding mechanisms of protein-protein or protein-ligand interaction. Recently, Dumas etal, have explicitly modelled the instrument response of the ligand dilution and analysed the ITC thermogram to obtain kinetic rate constants. Adopting a similar approach, we have integrated the dynamic instrument response with the binding mechanism to simulate the ITC profiles of equivalent and independent binding sites, equivalent and sequential binding sites and aggregating systems. The results were benchmarked against the standard commercial software Origin-ITC. Further, the experimental ITC chromatograms of 2′-CMP + RNASE and BH3I-1 + hBCLXL interactions were analysed and shown to be comparable with that of the conventional analysis. Dynamic approach was applied to simulate the SPR profiles of a two-state model, and could reproduce the experimental profile accurately.  相似文献   

8.
利用毛细管电泳 (capillary electrophoresis, CE)建立牛血清白蛋白(bovine serum albumin, BSA)-酪胺(tyramine, TA)分子作用机制的分析方法,构建TA-BSA相互作用模型,并研究其相互作用机理. 生理条件下,采用HD法(Hummel-Dreyer, HD),前沿分析法(frontal analysis, FA)和空峰法(vacant peak, VP)研究TA与BSA的结合机制,构建TA-BSA理论模型,获取TA和BSA相互作用参数,分析理论模型的适用度. 通过分子模拟,构建TA与BSA的结合模型,考察TA的BSA结合机制. 结果表明,HD法和VP法均适用于分析TA-BSA体系的相互作用,VP法最优. 模型适用度分析得出双对数方程最适合模拟TA-BSA相互作用,TA与BSA结合强度较弱,且只有单一类型的结合位点. 构建的TA与BSA结合模型表明,TA与BSA的相互作用力主要是氢键和范德华力,兼有疏水作用力. 本文结果可为分析生物胺-蛋白质分子作用机制研究提供有意义的参考.  相似文献   

9.
The binding interactions between megestrol acetate (MA) and bovine serum albumin (BSA) under simulated physiological conditions (pH 7.4) were investigated by fluorescence spectroscopy, circular dichroism and molecular modeling. The results revealed that the intrinsic fluorescence of BSA was quenched by MA due to formation of the MA–BSA complex, which was rationalized in terms of a static quenching procedure. The binding constant (Kb) and number of binding sites (n) for MA binding to BSA were 2.8 × 105 L/mol at 310 K and about 1 respectively. However, the binding of MA with BSA was a spontaneous process due to the negative ∆G0 in the binding process. The enthalpy change (∆H0) and entropy change (∆S0) were – 124.0 kJ/mol and –295.6 J/mol per K, respectively, indicating that the major interaction forces in the binding process of MA with BSA were van der Waals forces and hydrogen bonding. Based on the results of spectroscopic and molecular docking experiments, it can be deduced that MA inserts into the hydrophobic pocket located in subdomain IIIA (site II) of BSA. The binding of MA to BSA leads to a slight change in conformation of BSA but the BSA retained its secondary structure, while conformation of the MA has significant change after forming MA–BSA complex, suggesting that flexibility of the MA molecule supports the binding interaction of BSA with MA. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
Protein-flavonol interaction: fluorescence spectroscopic study   总被引:2,自引:0,他引:2  
Recent studies have shown that various synthetic as well as therapeutically active naturally occurring flavonols possess novel luminescence properties that can potentially serve as highly sensitive monitors of their microenvironments in biologically relevant systems. We report a study on the interactions of bovine serum albumin (BSA) with the model flavonol 3-hydroxyflavone (3HF), using the excited-state proton-transfer (ESPT) luminescence of 3HF as a probe. Upon addition of BSA to the flavonoid solutions, we observe remarkable changes in the absorption, ESPT fluorescence emission and excitation profiles as well as anisotropy (r) values. Complexation of 3HF with protein results in a pronounced shift (20 nm) of the ESPT emission maximum of the probe (from lambda(max)(em) = 513 nm to lambda(max)(em) = 533 nm) accompanied by a significant increase in fluorescence intensity. The spectral data also suggest that, in addition to ESPT, the protein environment induces proton abstraction from 3HF leading to formation of anionic species in the ground state. Fairly high values of anisotropy are observed in the presence of BSA for the tautomer (r = 0.25) as well as anion (r = 0.35) species of 3HF, implying that both the species are located in motion-restricted environments of BSA molecules. Analysis of relevant spectroscopic data leads to the conclusions that two binding sites are involved in BSA-3HF interaction, and the interaction is slightly positively cooperative in nature with a similar binding constant of 1.1 - 1.3 x 10(5) M(-1) for both these sites. Proteins 2001;43:75-81.  相似文献   

11.
The binding of lipoic acid (LA), to methylglyoxal (MG) modified BSA was studied using isothermal titration calorimetry in combination with enzyme kinetics and molecular modelling. The binding of LA to BSA was sequential with two sites, one with higher binding constant and another comparatively lower. In contrast the modified protein showed three sequential binding sites with a reduction in affinity at the high affinity binding site by a factor of 10. CD results show appreciable changes in conformation of the modified protein as a result of binding to LA. The inhibition of esterase like activity of BSA by LA revealed that it binds to site II in domain III of BSA. The pH dependence of esterase activity of native BSA indicated a catalytic group with a pK(a) = 7.9 +/- 0.1, assigned to Tyr411 with the conjugate base stabilised by interaction with Arg410. Upon modification by MG, this pK(a) increased to 8.13. A complex obtained by docking of LA to BSA and BSA in which Arg410 is modified to hydroimidazolone showed that the long hydrocarbon chain of lipoic acid sits in a cavity different from the one observed for unmodified BSA. The molecular electrostatic potential showed that the modification of Arg410 reduced the positive electrostatic potential around the protein-binding site. Thus it can be concluded that the modification of BSA by MG resulted in altered ligand binding characteristics due to changes in the internal geometry and electrostatic potential at the binding site.  相似文献   

12.
The oxygen binding behaviour of hemocyanins from Crustacea is regulated by small organic compounds such as urate and -lactate. We investigated the binding characteristics of urate and the related compound caffeine to the 2×6-meric hemocyanin of A. leptodactylus under fully oxygenated conditions employing isothermal titration calorimetry (ITC). An analysis of urate and caffeine binding based on a model of n identical binding sites resulted in approximately four binding sites for caffeine and eight for urate. This result suggests that the binding process for these effectors is more complex than this most simple model. Therefore, we introduced a number of alternative models. Displacement experiments helped to select the appropriate model. Based on these experiments, at least two different types of binding sites for urate and caffeine exist on the 2×6-meric hemocyanin of A. leptodactylus. The two binding sites differ strongly in their specificity towards the two analogues. It can be hypothesized that two different subunit types (β and γ) are responsible for the two types of binding sites.  相似文献   

13.
The mechanism of interaction of riboflavin (RF) with bovine serum albumin (BSA) using fluorometric and circular dichroism (CD) methods has been reported. The association constant (K) for RF-BSA binding shows that the interaction is non-covalent in nature. Stern-Volmer analysis of fluorescence quenching data shows that the fraction of fluorophore (BSA) accessible to the quencher (RF) is close to unity, indicating that both tryptophan residues of BSA are involved in the interaction. The high magnitude of rate constant for quenching kq (10(13) M(-1) s(-1) indicates that RF binding site is in close proximity to tryptophan residue of BSA. Thermodynamic parameters obtained from data at different temperatures showed that the binding of RF to BSA predominantly involves the formation of hydrophobic bonds. Binding studies in the presence of a hydrophobic probe 8-anilino-1-naphthalene sulphonic acid, sodium salt (ANS) showed that RF and ANS do not share common sites in BSA. The small decrease in critical micellar concentration of anionic surfactant, sodium dodecyl sulphate in the presence of RF shows that ionic character of RF also contributes to binding and is not solubilized inside the micelle. Significant decrease in concentration of free RF has been observed in the presence of paracetamol. The CD spectrum shows the binding of RF leads to a change in the alpha helical structure of BSA.  相似文献   

14.
The interaction between two chromates [sodium chromate (Na2CrO4) and potassium chromate K2CrO4)] and bovine serum albumin (BSA) in physiological buffer (pH 7.4) was investigated by the fluorescence quenching technique. The results of fluorescence titration revealed that two chromates could strongly quench the intrinsic fluorescence of BSA through a static quenching procedure. The apparent binding constants K and number of binding sites n of chromate with BSA were obtained by the fluorescence quenching method. The thermodynamic parameters enthalpy change (ΔH), entropy change (ΔS) were negative, indicating that the interaction of two chromates with BSA was driven mainly by van der Waals forces and hydrogen bonds. The process of binding was a spontaneous process in which Gibbs free energy change was negative. The distance r between donor (BSA) and acceptor (chromate) was calculated based on Forster’s non-radiative energy transfer theory. The results of UV–Vis absorption, synchronous fluorescence, three-dimensional fluorescence and circular dichroism (CD) spectra showed that two chromates induced conformational changes of BSA.  相似文献   

15.
A comparative study on the interaction of different PEG-containing diblock copolymers including SA400, SA600, SA1500 and OA1500 (stearyl and oleyl esters of polyethylene glycol with 400, 600 and 1500 molecular weights, respectively) with bovine serum albumin (BSA) was carried out using isothermal titration calorimetry (ITC), attenuated total reflectance Fourier transform infrared (ATR-FTIR), circular dichroism (CD), and fluorescence spectroscopies. ITC data show that SA400, SA600, SA1500 and OA1500 bind to BSA, with association constants of (14.5, 3.16, 50.7 and 17.6)x10(3)M(-1), respectively. Results also show that the binding is enthalpically driven, disfavored by conformational entropy. Quantitative analysis of the FTIR absorbance spectra at amide I' (1600-1700cm(-1)) as well as far UV circular dichroism data show that these polymers do not disturb the BSA structure and only cause a slight increment in helicity along with a slight decrease in the beta-structure. Only stearyl esters SA400 and SA1500 slightly decreased the random structure content of the BSA. The diblock copolymers inhibit protein aggregation and bind to BSA better than their constituent PEGs causing an increment in its T(m); SA1500 is showing the strongest effect.  相似文献   

16.
The aim of this study was to describe a competition between cytarabine (araC) and aspirin (ASA) in binding with bovine serum albumin (BSA). High-affinity binding sites for both drugs were determined using a spectrofluorimetric method. Cytarabine as well as aspirin binds in the IIA hydrophobic subdomain of the transporting protein. Binding constants for araC-BSA and ASA-BSA were calculated by the Scatchard method. Analysis of ultraviolet (UV) difference spectra showed that araC, which has a higher affinity to BSA in comparison to ASA [Ka(araC) > Ka(ASA)] displaces ASA in high-affinity binding sites.The competition between drugs in low-affinity binding sites was investigated using (1)H nuclear magnetic resonance (NMR) and 13C-NMR spectra. We concluded that in the low-affinity binding sites cytarabine decreases the affinity of albumin toward aspirin. However, the interaction between araC and BSA becomes more difficult in the presence of aspirin.  相似文献   

17.
Mixing oppositely charged polyelectrolytes in aqueous solutions leads to the spontaneous formation of polyelectrolyte complexes. Here, we characterize the interaction between xanthan of two different chain lengths, a tri-glucosamine and a chitosan polymer by isothermal titration calorimetry (ITC). Analysis of the experimental thermodynamic data assuming a single set of identical sites indicated both enthalpic and entropic contributions to the overall interaction in the interaction between xanthan and tri-glucosamine. The relative contribution of entropy compared to enthalpy was found to be largest for the shortest chain length of xanthan. Using a chitosan polymer instead of tri-glucosamine gave rise to two different stages in the interaction process. A model where the first stage of the ITC curve represent an initial polyelectrolyte complexation stage followed by aggregation on further titration of chitosan to the xanthan is suggested. Ultrastructure images by applying atomic force microscopy at some selected extents of titration are consistent with the two-stage interpretation of the thermodynamic data.  相似文献   

18.
19.
Plasma protein binding and endothelial enzyme interactions in the lung   总被引:2,自引:0,他引:2  
The influence of plasma albumin binding of the synthetic angiotensin-converting enzyme (ACE) substrate [3H]benzoyl-phenylalanyl-alanyl-proline (BPAP) on BPAP hydrolysis by pulmonary endothelial ACE was studied in isolated rabbit lungs perfused with a salt solution containing either 5% bovine serum albumin (BSA) or 5% dextran. The single-pass indicator-dilution method was used to measure the fraction (M) of [3H]BPAP hydrolyzed. Lung M was greater with albumin-free perfusate than when BSA was present. M decreased as the time (ti) that the BPAP was in contact with the BSA before reaching the lung was increased, suggesting that some BSA binding sites for BPAP were not in equilibrium during bolus transit through the lungs. The M vs. ti data were correlated using a model incorporating both rapid and slow binding kinetics of BPAP and BSA. For the slow BPAP-BSA interaction, the dissociation rate constant was approximately 0.015 s-1, and the fraction of the BPAP bound to these slowly equilibrating sites at equilibrium was approximately 22%. The results indicate that transient plasma protein binding kinetics can affect lung BPAP hydrolysis.  相似文献   

20.
The interaction between fasudil hydrochloride (FSD) and bovine serum albumin (BSA) was investigated using fluorescence and ultraviolet spectroscopy under imitated physiological conditions. The Stern–Volmer quenching model has been successfully applied and the results revealed that FSD could quench the intrinsic fluorescence of BSA effectively via static quenching. The binding constants and binding sites for the BSA–FSD system were evaluated. The corresponding thermodynamic parameters obtained at different temperatures indicated that hydrophobic force played a major role in the interaction of FSD and BSA. The distance between the donor (BSA) and the acceptor (FSD) was obtained according to fluorescence resonance energy transfer (FRET). Synchronous fluorescence spectroscopy and FT‐IR spectra showed that the conformation of BSA was changed in the presence of FSD. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号