首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dendritic cells (DC) are increasingly applied as a cellular adjuvant in immunotherapy of cancer. Two major myeloid DC subsets are recognized: interstitial DC (IDC) that infiltrate connective tissues and Langerhans cells (LC) that line epithelial surfaces. Yet, functional differences between IDC and LC remain to be defined. We recently showed that the CD34(+) acute myeloid leukemia cell line MUTZ-3 supports differentiation of both DC-SIGN(+) IDC and Langerin-positive Birbeck granule-expressing LC. By comparative functional characterization of MUTZ-3 IDC and MUTZ-3 LC, we aimed to elucidate the relative abilities of these two DC subsets to induce a specific T cell response and reveal the more suitable candidate for use as a clinical vehicle of tumor vaccines. Although mature LC and IDC displayed comparable lymph node-homing potential, mature LC showed higher allogeneic T cell stimulatory capacity. Nevertheless, IDC supported the induction of tumor Ag-specific CD8(+) T cells at an overall higher efficiency. This might be related to the observed inability of LC to release T cell stimulatory cytokines such as IL-12p70, IL-23, and IL-15. Although this inability did not result in a detectable deviation in the cytokine expression profile of primed T cells, transduction with IL-12p70 significantly improved priming efficiency of LC, and ensured a functional equivalence with IDC in this regard. In conclusion, except for the inability of LC to release distinct type 1 T cell stimulatory cytokines, in vitro function of LC and IDC suggests comparable abilities of both subsets for the in vivo induction of antitumor T cells.  相似文献   

2.
We studied cytokine-driven differentiation of primitive human CD34(+)HLA-DR(-) cells to myeloid dendritic cells (DC). Hemopoietic cells were grown in long-term cultures in the presence of various combinations of early acting cytokines such as FLT3-ligand (FLT3-L) and stem cell factor (SCF) and the differentiating growth factors GM-CSF and TNF-alpha. Two weeks of incubation with GM-CSF and TNF-alpha generated fully functional DC. However, clonogenic assays demonstrated that CFU-DC did not survive beyond 1 wk in liquid culture regardless of whether FLT3-L and/or SCF were added. FLT3-L or SCF alone did not support DC maturation. However, the combination of the two early acting cytokines allowed a 100-fold expansion of CFU-DC for >1 month. Phenotypic analysis demonstrated the differentiation of CD34(+)DR(-) cells into CD34(-)CD33(+)DR(+)CD14(+) cells, which were intermediate progenitors capable of differentiating into functionally active DC upon further incubation with GM-CSF and TNF-alpha. As expected, GM-CSF and TNF-alpha generated DC from committed CD34(+)DR(+) cells. However, only SCF, with or without FLT3-L, induced the expansion of DC precursors for >4 wk, as documented by secondary clonogenic assays. This demonstrates that although GM-CSF and TNF-alpha do not require additional cytokines to generate DC from primitive human CD34(+)DR(-) progenitor cells, they do force terminal differentiation of DC precursors. Conversely, FLT3-L and SCF do not directly affect DC differentiation, but instead sustain the long-term expansion of CFU-DC, which can be induced to produce mature DC by GM-CSF and TNF-alpha.  相似文献   

3.
Corticosteroids (CS) have been shown to exert strong inhibitory effects on dendritic cell (DC) differentiation and function. Those studies were mostly performed with monocyte-derived DC, which represents only one subpopulation from the wide variety of DC types. In the present study the effects of the CS dexamethasone and prednisolone were investigated on the differentiation of CD34(+) hemopoietic progenitor cells into 1) Langerhans cells (LC), which differentiate directly into CD1a(+) DC; and 2) dermal/interstitial DC, which differentiate via a CD14(+)CD1a(-) phenotype into CD14(-)CD1a(+) DC. CS present during the entire 11-day culture period, resulting in fully differentiated CD1a(+) DC, increased the percentage of langerin(+) DC within the CD1a(+) population. In line with these data, CS treatment during the first 6 days of differentiation reduced the development of CD14(+) dermal DC precursors and thereby seemed to support the generation of CD1a(+) LC precursors. Addition of CS from day 6 onward specifically blocked the development of CD1a(+) dermal DC by both inhibition of spontaneous and IL-4-induced differentiation of CD14(+) DC precursors into CD1a(+) DC as well as induction of apoptosis in CD14(+) DC precursors. Apoptosis was not found in CD14(+) macrophage precursors derived from the same CD34(+) progenitors. The development and function of LC were not affected by CS, as demonstrated by a normal T cell stimulatory capacity and IL-12 production. These data demonstrate that CS interfere with the normal development of DC from CD34(+) progenitors by specific induction of apoptosis in precursors of dermal/interstitial DC. In view of the different functional capacities of dermal/interstitial DC and Langerhans cells, this might affect the overall cellular immune response.  相似文献   

4.
In vitro differentiation of embryonic stem (ES) cells is often used to study hematopoiesis. However, the differentiation pathway of lymphocytes, in particular natural killer (NK) cells, from ES cells is still unclear. Here, we used a multi-step in vitro ES cell differentiation system to study lymphocyte development from ES cells, and to characterize NK developmental intermediates. We generated embryoid bodies (EBs) from ES cells, isolated CD34(+) EB cells and cultured them on OP9 stroma with a cocktail of cytokines to generate cells we termed ES-derived hematopoietic progenitors (ES-HPs). EB cell subsets, as well as ES-HPs derived from EBs, were tested for NK, T, B and myeloid lineage potentials using lineage specific cultures. ES-HPs derived from CD34(+) EBs differentiated into NK cells when cultured on OP9 stroma with IL-2 and IL-15, and into T cells on Delta-like 1-transduced OP9 (OP9-DL1) with IL-7 and Flt3-L. Among CD34(+) EB cells, NK and T cell potentials were detected in a CD45(-) subset, whereas CD45(+) EB cells had myeloid but not lymphoid potentials. Limiting dilution analysis of ES-HPs generated from CD34(+)CD45(-) EB cells showed that CD45(+)Mac-1(-)Ter119(-) ES-HPs are highly enriched for NK progenitors, but they also have T, B and myeloid potentials. We concluded that CD45(-)CD34(+) EB cells have lymphoid potential, and they differentiate into more mature CD45(+)Lin(-) hematopoietic progenitors that have lymphoid and myeloid potential. NK progenitors among ES-HPs are CD122(-) and they rapidly acquire CD122 as they differentiate along the NK lineage.  相似文献   

5.
BACKGROUND: Gene delivery in dendritic cells (DC) has raised considerable interest to modulate DC functions and induce therapeutic immunity or tolerance in an antigen-specific fashion. Among immature DC, Langerhans cells (LC) are attractive candidates for antigen delivery using lentiviral vectors (LV). METHODS: LC derived from monocytes (Mo-LC), or derived from CD34+ cells (CD34-LC) in the presence of cytokine cocktail, were transduced with LV expressing enhanced green fluorescent protein (E-GFP) under the control of the ubiquitous phosphoglycerate kinase (PGK) promoter at a multiplicity of infection of 18, at days 0 to 3 for Mo-LC, or at days 0 to 12 for CD34-LC. We assessed gene transfer levels from the percentage of E-GFP+ cells in the final cultures, and examined the morphology, immunophenotype, state of differentiation and function of transduced LC. RESULTS: Day 0 transduction of monocytes or CD34+ progenitors before cytokine pre-activation and LC differentiation resulted in stable gene expression in 7.8% of Mo-LC and 24% of CD34-LC. Monocyte-derived DC (Mo-DC) differentiated in serum-free medium were also efficiently transduced up to 13.2%. Interestingly, Mo-LC cells committed towards LC phenotype were permissive for transduction up to day 3. Transduction levels of CD34-LC peaked at day 6 to 44% and decreased thereafter. LV transduction did not perturb viability, phenotype and function of E-GFP-expressing LC. CONCLUSIONS: LC generated ex vivo can serve as vaccine vehicles in humans through efficient transduction by LV. These LC will be helpful to assess in vitro the immunogenicity of gene therapy vectors, from the characterization of their phenotypic and functional maturation.  相似文献   

6.
GM-CSF is believed to be an essential factor for growth and differentiation of myeloid dendritic cells (DC). Employing a low-density fraction of rat bone marrow cells, we attempted to generate DC with human Flt-3/Flk-2 and IL-6. In this culture system, typical DC gradually appeared without exogenous GM-CSF supplement. Phenotypes and functions of the DC were examined. Evidence provided that the most efficient long-term outgrowth of DC progenitors was obtained by GM-CSF independent culture systems with the aid of Flt3/Flk-2 and IL-6, not with c-kit ligand and IL-6. Furthermore, CD103 (OX-62), which is widely used for rat DC separation, was found to be insufficient for enriching DC, due to the down-regulation of the marker. However, the most efficient selection of rat DC was made by CD161a (NKR-P1A), a C-type lectin family. The GM-CSF independent DC was functionally active in vitro as well as in vivo assays.  相似文献   

7.
The plastic role of dendritic cells (DCs) in the regulation of immune responses has made them interesting targets for immunotherapy, but also for pathogens or tumors to evade immunity. Functional alterations of DCs are often ascribed to manipulation of canonical NF-κB activity. However, though this pathway has been linked to murine myeloid DC biology, a detailed analysis of its importance in human myeloid DC differentiation, survival, maturation, and function is lacking. The myeloid DC subsets include interstitial DCs and Langerhans cells. In this study, we investigated the role of canonical NF-κB in human myeloid DCs generated from monocytes (monocyte-derived DCs [mo-DCs]) or CD34(+) progenitors (CD34-derived myeloid DCs [CD34-mDCs]). Inhibition of NF-κB activation during and after mo-DC, CD34-interstitial DC, or CD34-Langerhans cell differentiation resulted in apoptosis induction associated with caspase 3 activation and loss of mitochondrial transmembrane potential. Besides regulating survival, canonical NF-κB activity was required for the acquisition of a DC phenotype. Despite phenotypic differences, however, Ag uptake, costimulatory molecule and CCR7 expression, as well as T cell stimulatory capacity of cells generated under NF-κB inhibition were comparable to control DCs, indicating that canonical NF-κB activity during differentiation is redundant for the development of functional APCs. However, both mo-DC and CD34-mDC functionality were reduced by NF-κB inhibition during activation. In conclusion, canonical NF-κB activity is essential for the development and function of mo-DCs as well as CD34-mDCs. Insight into the role of this pathway may help in understanding how pathogens and tumors escape immunity and aid in developing novel treatment strategies aiming to interfere with human immune responses.  相似文献   

8.
Langerhans cells (LC) are a unique subset of dendritic cells (DC), present in the epidermis and serving as the first line of defense against pathogens invading the skin. To investigate the role of human LCs in innate immune responses, we examined TLR expression and function of LC-like DCs derived from CD34+ progenitor cells and compared them to DCs derived from peripheral blood monocytes (monocyte-derived DC; Mo-DC). LC-like DCs and Mo-DCs expressed TLR1-10 mRNAs at comparable levels. Although many of the TLR-induced cytokine patterns were similar between the two cell types, stimulation with the TLR3 agonist poly(I:C) triggered significantly higher amounts of the IFN-inducible chemokines CXCL9 (monokine induced by IFN-gamma) and CXCL11 (IFN-gamma-inducible T cell alpha chemoattractant) in LC-like DCs as compared with Mo-DCs. Supernatants from TLR3-activated LC-like DCs reduced intracellular replication of vesicular stomatitis virus in a type I IFN-dependent manner. Finally, CXCL9 colocalized with LCs in skin biopsy specimens from viral infections. Together, our data suggest that LCs exhibit a direct antiviral activity that is dependent on type I IFN as part of the innate immune system.  相似文献   

9.
In this paper, we describe a protocol for hematopoietic differentiation of human pluripotent stem cells (hPSCs) and generation of mature myeloid cells from hPSCs through expansion and differentiation of hPSC-derived lin(-)CD34(+)CD43(+)CD45(+) multipotent progenitors. The protocol comprises three major steps: (i) induction of hematopoietic differentiation by coculture of hPSCs with OP9 bone marrow stromal cells; (ii) short-term expansion of multipotent myeloid progenitors with a high dose of granulocyte-macrophage colony-stimulating factor; and (iii) directed differentiation of myeloid progenitors into neutrophils, eosinophils, dendritic cells, Langerhans cells, macrophages and osteoclasts. The generation of multipotent hematopoietic progenitors from hPSCs requires 9 d of culture and an additional 2 d to expand myeloid progenitors. Differentiation of myeloid progenitors into mature myeloid cells requires an additional 5-19 d of culture with cytokines, depending on the cell type.  相似文献   

10.
Yu Z  Liu W  Liu D  Fan L 《Cellular immunology》2006,241(1):32-37
This study was designed to investigate the regulatory role of soluble interleukin-6 receptor (sIL-6R) and interleukin-6 (IL-6) fusion protein (Hyper-IL-6) in the differentiation of human myeloid and erythroid progenitors by a serum-free liquid suspension culture system, using the human cord blood-derived CD34(+)CD38(-) cells as a target. We found that Hyper-IL-6 promoted the generation of CD15(+) granulocytic and CD14(+) monocytic cells and suppressed that of CD14(-)CD1a(+) dendritic cells from CD36(-)CD15(-)CD14(-)CD1a(-)IL-6R(+) myeloid progenitors. Conversely, CD34(+)CD38(-) cell-derived early erythroid progenitors were negative for IL-6R expression. Hyper-IL-6 potentiated the generation of CD36(+)glycophorinA(high) mature erythroid cells from the IL-6R(-) early erythroid progenitors. Our results indicate that Hyper-IL-6 augments the generation of CD15(+) granulocytic, CD14(+) monocytic and CD36(+)glycophorinA(high) cell and suppresses that of CD14(-)CD1a(+) dendritic cells.  相似文献   

11.
The steroid hormone estrogen regulates the differentiation, survival, or function of diverse immune cells. Previously, we found that physiological amounts of 17beta-estradiol act via estrogen receptors (ER) to promote the GM-CSF-mediated differentiation of dendritic cells (DC) from murine bone marrow progenitors in ex vivo cultures. Of the two major subsets of CD11c(+) DC that develop in these cultures, estrogen is preferentially required for the differentiation of a CD11b(int)Ly6C(-) population, although it also promotes increased numbers of a CD11b(high)Ly6C(+) population. Although both DC subsets express ERalpha, only the CD11b(high)Ly6C(+) DC express ERbeta, perhaps providing a foundation for the differential regulation of these two DC types by estrogen. The two DC populations exhibit distinct phenotypes in terms of capacity for costimulatory molecule and MHC expression, and Ag internalization, which predict functional differences. The CD11b(int)Ly6C(-) population shows the greatest increase in MHC and CD86 expression after LPS activation. Most notably, the estrogen-dependent CD11b(int)Ly6C(-) DC express langerin (CD207) and contain Birbeck granules characteristic of Langerhans cells. These data show that estrogen promotes a DC population with the unique features of epidermal Langerhans cells and suggest that differentiation of Langerhans cells in vivo will be dependent upon local estrogen levels and ER-mediated signaling events in skin.  相似文献   

12.
The C-type lectin langerin/CD207 was originally discovered as a specific marker for epidermal Langerhans cells (LC). Recently, additional and distinct subsets of langerin(+) dendritic cells (DC) have been identified in lymph nodes and peripheral tissues of mice. Although the role of LC for immune activation or modulation is now being discussed controversially, other langerin(+) DC appear crucial for protective immunity in a growing set of infection and vaccination models. In knock-in mice that express the human diphtheria toxin receptor under control of the langerin promoter, injection of diphtheria toxin ablates LC for several weeks whereas other langerin(+) DC subsets are replenished within just a few days. Thus, by careful timing of diphtheria toxin injections selective states of deficiency in either LC only or all langerin(+) cells can be established. Taking advantage of this system, we found that, unlike selective LC deficiency, ablation of all langerin(+) DC abrogated the activation of IFN-γ-producing and cytolytic CD8(+) T cells after gene gun vaccination. Moreover, we identified migratory langerin(+) dermal DC as the subset that directly activated CD8(+) T cells in lymph nodes. Langerin(+) DC were also critical for IgG1 but not IgG2a Ab induction, suggesting differential polarization of CD4(+) T helper cells by langerin(+) or langerin-negative DC, respectively. In contrast, protein vaccines administered with various adjuvants induced IgG1 independently of langerin(+) DC. Taken together, these findings reflect a highly specialized division of labor between different DC subsets both with respect to Ag encounter as well as downstream processes of immune activation.  相似文献   

13.
Dendritic cells (DC) are the professional APCs that initiate T cell immune responses. DC can develop from both myeloid and lymphoid progenitors. In the mouse, the CD8alpha(+) DC had been designated as "lymphoid" DC, and CD8alpha(-) DC as "myeloid" DC until recently when it was demonstrated that common myeloid progenitors can also give rise to CD8alpha(+) DC in bone marrow chimera mice. However, it is still not clear which committed myeloid lineages differentiate into CD8alpha(+) DC. Because monocytes can differentiate into DC in vivo, the simplest hypothesis is that the CD8alpha(+) DC can be derived from the monocyte/macrophage. In this study we show that cell clones, isolated from CD8alpha(+) DC lymphoma but with a monocytic phenotype (CD11c(low/-)D11b(high)CD8alpha(-)I-A(low)), can redifferentiate into CD8alpha(+) DC either when stimulated by LPS and CD40L or when they migrate into the lymphoid organs. Maturation of DC in vivo correlated with strong priming of allogeneic T cells. Moreover, the monocytes from cultured splenocytes or peritoneal exudates macrophages of wild-type mice are also capable of differentiating into CD11c(+)CD8alpha(+) DC after their migration into the draining lymph nodes. Our results suggest that monocytes can be direct precursors for CD11c(+)CD8alpha(+) DC in vivo. In addition, the monocyte clones described in this study may be valuable for studying the differentiation and function of CD8alpha(+) DC that mediate cross-presentation of Ag to CD8 T cells specific for cell-associate Ags.  相似文献   

14.
15.
BACKGROUND: AML blast populations are heterogeneous in their phenotype and functional properties, and contain a small subset of cells that regenerate leukemia in immunocompromised mice or produce clonogenic progeny in long-term cultures. This suggests the existence of a hierarchy of AML progenitor cells. CD33 is a myeloid marker absent on normal hematopoietic stem cells but expressed in about 75% of AML patients, and has been used for BM purging strategies and Ab-targeted therapies. These CD33 Ab therapies benefit only a minority of AML patients, suggesting that AML stem cells are heterogeneous in their CD33 expression. METHODS: In order to evaluate this question, we determined expression levels of CD34 and CD33 on AML progenitors with long-term in vitro proliferative ability and NOD/SCID engrafting ability. RESULTS: The CD34(+) CD33(-) subfraction contained the majority of progenitors detected in vitro and most often engrafted the mice. This proliferation was leukemic from the CD34(+) AML patients, however from the CD34(-) AML patients only normal progenitors were detected in this fraction in some cases. DISCUSSION: These data suggest that most leukemic progenitors of CD34(+) patients do not express CD33. In contrast, CD34(-) AML primitive leukemic progenitors may be CD33(+). CD34(-) AML patients could potentially benefit most from CD33-targeted therapies or purging.  相似文献   

16.
Studies from a number of laboratories have shown that the myeloid lineage is prominent in human cytomegalovirus (HCMV) latency, reactivation, dissemination, and pathogenesis. Existing as a latent infection in CD34(+) progenitors and circulating CD14(+) monocytes, reactivation is observed upon differentiation to mature macrophage or dendritic cell (DC) phenotypes. Langerhans' cells (LCs) are a subset of periphery resident DCs that represent a DC population likely to encounter HCMV early during primary infection. Furthermore, we have previously shown that CD34(+) derived LCs are a site of HCMV reactivation ex vivo. Accordingly, we have utilized healthy-donor CD34(+) cells to study latency and reactivation of HCMV in LCs. However, the increasing difficulty acquiring healthy-donor CD34(+) cells--particularly from seropositive donors due to the screening regimens used--led us to investigate the use of CD14(+) monocytes to generate LCs. We show here that CD14(+) monocytes cultured with transforming growth factor β generate Langerin-positive DCs (MoLCs). Consistent with observations using CD34(+) derived LCs, only mature MoLCs were permissive for HCMV infection. The lytic infection of mature MoLCs is productive and results in a marked inhibition in the capacity of these cells to promote T cell proliferation. Pertinently, differentiation of experimentally latent monocytes to the MoLC phenotype promotes reactivation in a maturation and interleukin-6 (IL-6)-dependent manner. Intriguingly, however, IL-6-mediated effects were restricted to mature LCs, in contrast to observations with classical CD14(+) derived DCs. Consequently, elucidation of the molecular basis behind the differential response of the two DC subsets should further our understanding of the fundamental mechanisms important for reactivation.  相似文献   

17.
Expression of CD7 on normal human myeloid progenitors.   总被引:3,自引:0,他引:3  
Existence of biphenotypic leukemias co-expressing CD7 and CD34 has prompted the question of whether a similar population of cells is present in normal human bone marrow. As CD7 is considered to be a T cell-restricted Ag, the co-expression of CD7 with the "human stem cell Ag" CD34 may identify a bipotent stage within hemopoietic differentiation. Cells with this phenotype have previously been isolated from human thymus. In this report we provide evidence that human marrow mononuclear cells also contain a minor subpopulation of cells co-expressing CD7 and CD34. The CD7+/CD34+ cells were found to contain committed myeloid progenitors assayed both as CFU in semi-solid media and by their ability to produce granulocytes in long term marrow cultures. Expression of CD7 on myeloid committed progenitors was further confirmed in a C-mediated cytotoxic assay. We conclude that CD7 expression is not restricted to T cells but is also expressed during early stages of myeloid differentiation.  相似文献   

18.
19.
P-glycoprotein (Pgp) and vaults are associated with multidrug resistance in tumor cells, but their physiological functions are not yet clear. Pgp, the prototypical transmembrane transporter molecule, may also facilitate the migration of skin dendritic cells (DC). Vaults--ribonucleoprotein cell organelles, frequently overexpressed in Pgp-negative drug-resistant tumor cells--have also been associated with intracellular transport processes. Given the pivotal role of DC in dealing with exposure to potentially harmful substances, the present study was set out to examine the expression of Pgp and vaults during differentiation and maturation of DC. DC were obtained from different sources, including blood-derived monocytes, CD34(+) mononuclear cells, and chronic myeloid leukemia cells. Whereas flow cytometric and immunocytochemical analyses showed slightly augmented levels of Pgp, up-regulation of vault expression during DC culturing was strong, readily confirmed by Western blotting, and independent of the source of DC. In further exploring the functional significance of vault expression, it was found that supplementing DC cultures with polyclonal or mAbs against the major vault protein led to lower viabilities of LPS- or TNF-alpha-matured monocytes-DC. Moreover, expression of critical differentiation, maturation, and costimulatory molecules, including CD1a and CD83, was reduced and their capacity to induce Ag-specific T cell proliferative and IFN-gamma release responses was impaired. These data point to a role for vaults in both DC survival and functioning as APC.  相似文献   

20.
Dendritic cells (DC) arise from a diverse group of hematopoietic progenitors and have marked phenotypic and functional heterogeneity. The signal transduction pathways that regulate the ability of progenitors to undergo DC differentiation, as well as the specific characteristics of the resulting DC, are only beginning to be characterized. We have found previously that activation of protein kinase C (PKC) by cytokines or phorbol esters drives normal human CD34(+) hematopoietic progenitors and myeloid leukemic blasts (KG1, K562 cell lines, and primary patient blasts) to differentiate into DC. We now report that PKC activation is also required for cytokine-driven DC differentiation from monocytes. Of the cPKC isoforms, only PKC-betaII was consistently activated by DC differentiation-inducing stimuli in normal and leukemic progenitors. Transfection of PKC-betaII into the differentiation-resistant KG1a subline restored the ability to undergo DC differentiation in a signal strength-dependent fashion as follows: 1) by development of characteristic morphology; 2) the up-regulation of DC surface markers; 3) the induction of expression of the NFkappaB family member Rel B; and 4) the potent ability to stimulate allo-T cells. Most unexpectedly, the restoration of PKC-betaII signaling in KG1a was not directly due to overexpression of the transfected classical PKC (alpha, betaII, or gamma) but rather through induction of endogenous PKC-beta gene expression by the transfected classical PKC. The mechanism of this positive autoregulation involves up-regulation of PKC-beta promoter activity by constitutive PKC signaling. These findings indicate that the regulation of PKC-betaII expression and signaling play critical roles in mediating progenitor to DC differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号