首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
3.
Pulmonary ischemia-reperfusion (IR) injury entails acute activation of alveolar macrophages followed by neutrophil sequestration. Although proinflammatory cytokines and chemokines such as TNF-alpha and monocyte chemoattractant protein-1 (MCP-1) from macrophages are known to modulate acute IR injury, the contribution of alveolar epithelial cells to IR injury and their intercellular interactions with other cell types such as alveolar macrophages and neutrophils remain unclear. In this study, we tested the hypothesis that following IR, alveolar macrophage-produced TNF-alpha further induces alveolar epithelial cells to produce key chemokines that could then contribute to subsequent lung injury through the recruitment of neutrophils. Cultured RAW264.7 macrophages and MLE-12 alveolar epithelial cells were subjected to acute hypoxia-reoxygenation (H/R) as an in vitro model of pulmonary IR. H/R (3 h/1 h) significantly induced KC, MCP-1, macrophage inflammatory protein-2 (MIP-2), RANTES, and IL-6 (but not TNF-alpha) by MLE-12 cells, whereas H/R induced TNF-alpha, MCP-1, RANTES, MIP-1alpha, and MIP-2 (but not KC) by RAW264.7 cells. These results were confirmed using primary murine alveolar macrophages and primary alveolar type II cells. Importantly, using macrophage and epithelial coculture methods, the specific production of TNF-alpha by H/R-exposed RAW264.7 cells significantly induced proinflammatory cytokine/chemokine expression (KC, MCP-1, MIP-2, RANTES, and IL-6) by MLE-12 cells. Collectively, these results demonstrate that alveolar type II cells, in conjunction with alveolar macrophage-produced TNF-alpha, contribute to the initiation of acute pulmonary IR injury via a proinflammatory cascade. The release of key chemokines, such as KC and MIP-2, by activated type II cells may thus significantly contribute to neutrophil sequestration during IR injury.  相似文献   

4.
This experiment focused on MAPK activation in host cell invasion and replication of T. gondii, as well as the expression of CC chemokines, MCP-1 and MIP-1 alpha , and enzyme, COX-2/prostaglandin E2 (PGE2) in infected cells via western blot, [3H]-uracil incorporation assay, ELISA and RT-PCR. The phosphorylation of ERK1/2 and p38 in infected HeLa cells was detected at 1 hr and/or 6 hr postinfection (PI). Tachyzoite proliferation was reduced by p38 or JNK MAPK inhibitors. MCP-1 secretion was enhanced in infected peritoneal macrophages at 6 hr PI. MIP-1 alpha mRNA was increased in macrophages at 18 hr PI. MCP-1 and MIP-1 alpha were reduced after treatment with inhibitors of ERK1/2 and JNK MAPKs. COX-2 mRNA gradually increased in infected RAW 264.7 cells and the secretion of COX-2 peaked at 6 hr PI. The inhibitor of JNK suppressed COX-2 expression. PGE2 from infected RAW 264.7 cells was increased and synthesis was suppressed by PD98059, SB203580, and SP600125. In this study, the activation of p38, JNK and/or ERK1/2 MAPKs occurred during the invasion and proliferation of T. gondii tachyzoites in HeLa cells. Also, increased secretion and expression of MCP-1, MIP-1 alpha , COX-2 and PGE2 were detected in infected macrophages, and appeared to occur via MAPK signaling pathways.  相似文献   

5.
Extracellular nucleotides are autocrine and paracrine cellular mediators that signal through P2 nucleotide receptors. Monocytic cells express several P2Y receptors but the role of these G protein-coupled receptors in monocytes is not known. Here, we present evidence that P2Y(6) regulates chemokine production and release in monocytes. We find that UDP, a selective P2Y(6) agonist, stimulates interleukin (IL)-8 release in human THP-1 monocytic cells whereas other nucleotides are relatively inactive. P2 receptor antagonists or P2Y(6) antisense oligonucleotides inhibit IL-8 release induced by UDP. Furthermore, UDP specifically activated IL-8 production in astrocytoma 1321N1 cells transfected with human P2Y(6). Since lipopolysaccharide has been suggested to activate P2 receptors via nucleotide release, we tested whether IL-8 production stimulated by lipopolysaccharide might result from P2Y(6) activation. P2 antagonists or apyrase, an enzyme which hydrolyzes nucleotides including UDP, inhibit IL-8 production induced by lipopolysaccharide but not by other stimuli. Furthermore, IL-8 gene expression activated by lipopolysaccharide is enhanced by P2Y(6) overexpression and inhibited by P2Y(6) antisense oligonucleotides. Thus, UDP activates IL-8 production via P2Y(6) in monocytic cells. Furthermore, lipopolysaccharide mediates IL-8 production at least in part by autocrine P2Y(6) activation. These findings indicate a novel role for P2Y(6) in innate immune defenses.  相似文献   

6.
Irie T  Muta T  Takeshige K 《FEBS letters》2000,467(2-3):160-164
Stimulation of monocytes/macrophages with lipopolysaccharide (LPS) results in activation of nuclear factor-kappaB (NF-kappaB), which plays crucial roles in regulating expression of many genes involved in the subsequent inflammatory responses. Here, we investigated roles of transforming growth factor-beta activated kinase 1 (TGF-TAK1), a mitogen-activated protein kinase kinase kinase (MAPKKK), in the LPS-induced signaling cascade. A kinase-negative mutant of TAK1 inhibited the LPS-induced NF-kappaB activation both in a macrophage-like cell line, RAW 264.7, and in human embryonic kidney 293 cells expressing toll-like receptor 2 or 4. Furthermore, we demonstrated that endogenous TAK1 is phosphorylated upon simulation of RAW 264.7 cells with LPS. These results indicate that TAK1 functions as a critical mediator in the LPS-induced signaling pathway.  相似文献   

7.
8.
Diospyros lotus is traditionally used for the treatment of diabetes, diarrhea, tumor, and hypertension. The purpose of this study was to investigate the anti-inflammatory effect and underlying molecular mechanisms of myricetin in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. Myricetin dose-dependently suppressed the production of pro-inflammatory mediators (NO, iNOS, PGE2, and COX-2) in LPS-stimulated RAW264.7 macrophages. Myricetin administration decreased the production of NO, iNOS, TNF-α, IL-6, and IL-12 in mice. Myricetin decreased NF-κB activation by suppressing the degradation of IκBα, nuclear translocation of p65 subunit of NF-κB, and NF-κB DNA binding activity in LPS-stimulated RAW264.7 macrophages. Moreover, myricetin attenuated the phosphorylation of STAT1 and the production of IFN-β in LPS-stimulated RAW264.7 macrophages. Furthermore, myricetin induced the expression of HO-1 through Nrf2 translocation. In conclusion, these results suggest that myricetin inhibits the production of pro-inflammatory mediators through the suppression of NF-κB and STAT1 activation and induction of Nrf2-mediated HO-1 expression in LPS-stimulated RAW264.7 macrophages.  相似文献   

9.
Chronic obstructive pulmonary disease (COPD) is characterized by intense lung infiltrations of immune cells (macrophages and monocytes). Lipopolysaccharide (LPS) activates macrophages/monocytes, leading to production of tumor necrosis factor α (TNFα) and other cytokines, which cause subsequent lung damages. In the current study, our results demonstrated that AS-703026, a novel MEK/ERK inhibitor, suppressed LPS-induced TNFα mRNA expression and protein secretion in RAW 264.7 murine macrophages, and in murine bone marrow-derived macrophages (BMDMs). Meanwhile, TNFα production in LPS-stimulated COPD patents’ peripheral blood mononuclear cells (PBMCs) was also repressed by AS-703026. At the molecular level, we showed that AS-703026 blocked LPS-induced MEK/ERK activation in above macrophages/monocytes. However, restoring ERK activation in AS-703026-treated RAW 264.7 cells by introducing a constitutive-actively (CA)-ERK1 only partially reinstated LPS-mediated TNFα production. Meanwhile, AS-703026 could still inhibit TNFα response in ERK1/2-depleted (by shRNA) RAW 264.7 cells. Significantly, we found that AS-703026 inhibited LPS-induced nuclear factor κB (NFκB) activation in above macrophages and COPD patients’ PBMCs. In vivo, oral administration of AS-703026 inhibited LPS-induced TNFα production and endotoxin shock in BALB/c mice. Together, we show that AS-703026 in vitro inhibits LPS-induced TNFα production in macrophages/monocytes, and in vivo protects mice from LPS-induced endotoxin shock. Thus, it could be further studied as a useful anti-inflammatory therapy for COPD patients.  相似文献   

10.
Ganoderma lucidum immunomodulatory protein (FIP-glu) is an active ingredient with potential immunoregulatory functions. The study was conducted to explore the immunomodulatory activities of recombinant FIP-glu (rFIP-glu) and its possible mechanism in macrophage RAW264.7 cells. In vitro assays of biological activity indicated that rFIP-glu significantly activated RAW264.7 cells and possessed proinflammatory and anti-inflammatory abilities. RNA sequencing analysis and Western blot analysis showed that macrophage activation involved PI3K/Akt and MAPK pathways. Furthermore, real-time quantitative polymerase chain reaction indicated that the PI3K inhibitor LY294002 blocked the messenger RNA (mRNA) levels of MCP-1 (CCL-2), the MEK1/2 inhibitor U0126 reduced the mRNA levels of TNF-α and MCP-1 (CCL-2), and the JNK1/2/3 inhibitor SP600125 prevented the upregulation of inducible nitric oxide synthase mRNA in rFIP-glu-induced cells. rFIP-glu did not mediate these inflammatory effects through a general pathway but rather through a different pathway for a different inflammatory mediator. These data imply that rFIP-glu possessed immunomodulatory activity in macrophages, which was mediated through PI3K/Akt and MAPK pathways.  相似文献   

11.
Toll-like receptor 4 (TLR4) and TLR2 were shown to be activated by saturated fatty acids (SFAs) but inhibited by docosahexaenoic acid (DHA). However, one report suggested that SFA-induced TLR activation in cell culture systems is due to contaminants in BSA used for solubilizing fatty acids. This report raised doubt about proinflammatory effects of SFAs. Our studies herein demonstrate that sodium palmitate (C16:0) or laurate (C12:0) without BSA solubilization induced phosphorylation of inhibitor of nuclear factor-κB α, c-Jun N-terminal kinase (JNK), p44/42 mitogen-activated-kinase (ERK), and nuclear factor-κB subunit p65, and TLR target gene expression in THP1 monocytes or RAW264.7 macrophages, respectively, when cultured in low FBS (0.25%) medium. C12:0 induced NFκB activation through TLR2 dimerized with TLR1 or TLR6, and through TLR4. Because BSA was not used in these experiments, contaminants in BSA have no relevance. Unlike in suspension cells (THP-1), BSA-solubilized C16:0 instead of sodium C16:0 is required to induce TLR target gene expression in adherent cells (RAW264.7). C16:0-BSA transactivated TLR2 dimerized with TLR1 or TLR6 and through TLR4 as seen with C12:0. These results and additional studies with the LPS sequester polymixin B and in MyD88(-/-) macrophages indicated that SFA-induced activation of TLR2 or TLR4 is a fatty acid-specific effect, but not due to contaminants in BSA or fatty acid preparations.  相似文献   

12.
Malignant fibrous histiocytoma amplified sequence 1 (MFHAS1) has a potential immunoregulatory role dependent on Toll-like receptors (TLRs). TLR2, associated with deleterious systemic inflammation, cardiac dysfunction, and acute kidney injury, acts synergistically in sepsis. The role of MFHAS1 in targeting TLR2 involved in sepsis has not been examined thus far. This study aimed to examine the relationship of MFHAS1 and sepsis, and the effect of MFHAS1 on the TLR2 signaling pathway. Blood samples were collected from eight sepsis patients after surgery and eight patients undergoing selective surgery to determine blood MFHAS1 levels. HEK 293 cells, RAW 264.7 macrophages and THP-1 monocytes were used to confirm the effect of MFHAS1 on TLR2 signaling pathway. Our study showed that blood MFHAS1 was significantly elevated in septic patients, and MFHAS1 was more increased in mononuclear cells from septic patients. Pam3CSK4 (TLR2 ligand) was found to induce MFHAS1 production in RAW 264.7 murine macrophages and THP-1 human monocytes in a time-dependent manner. MFHAS1 has dual effects on TLR2 signaling pathway and inflammation, i.e., inhibitory effect at 6 hours, and then stimulatory effect after 24 hours through the activation of TLR2/NF-κB signaling pathway, and MFHAS1 induced the phosphorylation of JNK and p38 after TLR2 stimulation.  相似文献   

13.
Ca(2+) and Ca(2+)/calmodulin-dependent protein phosphatase calcineurin (CN) have been known to play crucial roles in immune response and inflammation. Using mouse peritoneal macrophages and RAW 264.7 macrophage cells, we demonstrated that LPS mobilized intracellular free Ca(2+) and induced CN phosphatase activity. iNOS expression and NO secretion in response to LPS were suppressed by Ca(2+) antagonists (TMB-8, BAPTA/AM, and nifedipine) and CN inhibitor (cyclosporin A). Transient expression of constitutively active CN in mouse peritoneal macrophages and RAW 264.7 macrophages strongly activated NF-kappaB, a key mediator of iNOS expression. We also found that CN mediates NF-kappaB activation via IkappaB-alpha hyperphosphorylation and degradation. Overexpression of dominant negative mutant of IKKalpha and -beta demonstrates that only IKKbeta is the target for CN. These results indicate that CN is required for full iNOS expression and the effective activation of NF-kappaB in RAW 264.7 and peritoneal macrophages.  相似文献   

14.
Mycobacterial heparin-binding haemagglutinin antigen (HBHA) is a virulence factor that induces apoptosis of macrophages. Endoplasmic reticulum (ER) stress-mediated apoptosis is an important regulatory response that can be utilised to study the pathogenesis of tuberculosis. In the present study, HBHA stimulation induced ER stress sensor molecules in a caspase-dependent manner. Pre-treatment of RAW 264.7 cells with an IκB kinase 2 inhibitor reduced not only C/EBP homology protein expression but also IL-6 and monocyte chemotactic protein-1 (MCP-1) production. BAPTA-AM reduced both ER stress responses and caspase activation and strongly suppressed HBHA-induced IL-6 and MCP-1 production in RAW 264.7 cells. Enhanced reactive oxygen species (ROS) production and elevated cytosolic [Ca2+]i levels were essential for HBHA-induced ER stress responses. Collectively, our data suggest that HBHA induces cytosolic [Ca2+]i, which influences the generation of ROS associated with the production of proinflammatory cytokines. These concerted and complex cellular responses induce ER stress-associated apoptosis during HBHA stimulation in macrophages. These results indicate that the ER stress pathway has an important role in the HBHA-induced apoptosis during mycobacterial infection.  相似文献   

15.
16.
The human P2Y6 receptor (hP2Y6) is a member of the G protein-coupled pyrimidinergic P2 receptor family that responds specifically to the extracellular nucleotide uridine diphosphate (UDP). Recently, the hP2Y6 receptor has been reported to mediate monocyte IL-8 production in response to UDP or lipopolysaccharide (LPS), but the role of hP2Y6 in regulating other pro-inflammatory cytokines or mediators is largely unknown. We demonstrate here that UDP specifically induces soluble TNF-alpha and IL-8 production in a promonocytic U937 cell line stably transfected with hP2Y6. However, we did not detect IL-1alpha, IL-1beta, IL-6, IL-10, IL-18, and PGE2 in the conditioned media from the same cell line. These results distinguish UDP/P2Y6 signaling from LPS signaling. Interestingly, UDP induces the production of IL-8, but not TNF-alpha, in human astrocytoma 1321N1 cell lines stably transfected with hP2Y6. Therefore, the immune effect of UDP/P2Y6 signaling on the production of proinflammatory cytokines is selective and dependent on cell types. We further identify that UDP can also induce the production of proinflammatory chemokines MCP-1 and IP-10 in hP2Y6 transfected promonocytic U937 cell lines, but not astrocytoma 1321N1 cell lines stably transfected with hP2Y6. From the Taqman analysis, UDP stimulation significantly upregulates the mRNA levels of IL-8, IP-10, and IL-1beta, but not TNF-alpha. Taken together, these new findings expand the pro-inflammatory biology of UDP mediated by the P2Y6 receptor.  相似文献   

17.
Macrophages play a fundamental role in silicosis in part by removing silica particles and producing inflammatory mediators in response to silica. Tumor necrosis factor alpha (TNFalpha) is a prominent mediator in silicosis. Silica induction of apoptosis in macrophages might be mediated by TNFalpha. However, TNFalpha also activates signal transduction pathways (NF-kappaB and AP-1) that rescue cells from apoptosis. Therefore, we studied the TNFalpha-mediated mechanisms that confer macrophage protection against the pro-apoptotic effects of silica. We will show that exposure to silica induced TNFalpha production by RAW 264.7 cells, but not by IC-21. Silica-induced activation of NF-kappaB and AP-1 was only observed in RAW 264.7 macrophages. ERK activation in response to silica exposure was only observed in RAW 264.7 macrophages, whereas activation of p38 phosphorylation was predominantly observed in IC-21 macrophages. No changes in JNK activity were observed in either cell line in response to silica exposure. Silica induced apoptosis in both macrophage cell lines, but the induction of apoptosis was significantly larger in IC-21 cells. Protection against apoptosis in RAW 264.7 cells in response to silica was mediated by enhanced NF-kappaB activation and ERK-mediated phosphorylation of the p55 TNFalpha receptor. Inhibition of these two protective mechanisms by specific pharmacological inhibitors or transfection of dominant negative mutants that inhibit IkappaBalpha or ERK phosphorylation significantly increased silica-induced apoptosis in RAW 264.7 macrophages. These data suggest that NF-kappaB activation and ERK-mediated phosphorylation of the p55 TNF receptor are important cell survival mechanisms in the macrophage response to silica exposure.  相似文献   

18.
The anti-inflammatory effects of globular adiponectin (gAcrp) are mediated by IL-10/heme oxygenase 1 (HO-1)-dependent pathways. Although full-length (flAcrp) adiponectin also suppresses LPS-induced pro-inflammatory signaling, its signaling mechanisms are not yet understood. The aim of this study was to examine the differential mechanisms by which gAcrp and flAcrp suppress pro-inflammatory signaling in macrophages. Chronic ethanol feeding increased LPS-stimulated TNF-α expression by Kupffer cells, associated with a shift to an M1 macrophage polarization. Both gAcrp and flAcrp suppressed TNF-α expression in Kupffer cells; however, only the effect of gAcrp was dependent on IL-10. Similarly, inhibition of HO-1 activity or siRNA knockdown of HO-1 in RAW264.7 macrophages only partially attenuated the suppressive effects of flAcrp on MyD88-dependent and -independent cytokine signatures. Instead, flAcrp, acting via the adiponectin R2 receptor, potently shifted the polarization of Kupffer cells and RAW264.7 macrophages to an M2 phenotype. gAcrp, acting via the adiponectin R1 receptor, was much less effective at eliciting an M2 pattern of gene expression. M2 polarization was also partially dependent on AMP-activated kinase. flAcrp polarized RAW264.7 macrophages to an M2 phenotype in an IL-4/STAT6-dependent mechanism. flAcrp also increased the expression of genes involved in oxidative phosphorylation in RAW264.7 macrophages, similar to the effect of flAcrp on hepatocytes. In summary, these data demonstrate that gAcrp and flAcrp utilize differential signaling strategies to decrease the sensitivity of macrophages to activation by TLR4 ligands, with flAcrp utilizing an IL-4/STAT6-dependent mechanism to shift macrophage polarization to the M2/anti-inflammatory phenotype.  相似文献   

19.
20.
NADPH oxidase activation in either RAW264.7 cells or peritoneal macrophages (PM) derived from PPARγ wild-type mice increased reactive oxygen species (ROS) formation, caused PPARγ activation, heme oxygenase-1 (HO-1) induction, and concomitant IFN-β expression. In macrophages transduced with a dominant negative (d/n) mutant of PPARγ (RAW264.7 AF2) as well as PPARγ negative PM derived from Mac-PPARγ-KO mice, NADPH oxidase-dependent IFN-β expression was attenuated. As the underlying mechanism, we noted decreased HO-1 mRNA stability in RAW264.7 AF2 cells as well as PPARγ negative PM, compared to either parent RAW264.7 cells or wild-type PM. Assuming mRNA stabilization of HO-1 by PPARγ we transfected macrophages with a HO-1 3′-UTR reporter construct. The PPARγ agonist rosiglitazone significantly up-regulated luciferase expression in RAW264.7 cells, while it remained unaltered in RAW264.7 AF2 macrophages. Deletion of each of two AU-rich elements in the 3′-UTR HO-1 decreased luciferase activity in RAW264.7 cells. Using LPS as a NADPH oxidase activator, PM from Mac-PPARγ-KO mice showed a decreased HO-1 mRNA half-life in vitro and in vivo compared to PPARγ wild-type mice. These data identified a so far unappreciated role of PPARγ in stabilizing HO-1 mRNA, thus, contributing to the expression of the HO-1 target gene IFN-β.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号