首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The niche is a fundamental ecological concept that underpins many explanations of patterns of biodiversity. The complexity of niche processes in ecological systems, however, means that it is difficult to capture them accurately in theoretical models of community assembly. In this study, we build upon simple neutral biodiversity models by adding the important ingredient of overlapping niche structure. Our model is spatially implicit and contains a fixed number of equal-sized habitats. Each species in the metacommunity arises through a speciation event; at which time, it is randomly assigned a fundamental niche or set of environments/habitats in which it can persist. Within each habitat, species compete with other species that have different but overlapping fundamental niches. Species abundances then change through ecological drift; each, however, is constrained by its maximum niche breadth and by the presence of other species in its habitats. Using our model, we derive analytical expressions for steady-state species abundance distributions, steady-state distributions of niche breadth across individuals and across species, and dynamic distributions of niche breadth across species. With this framework, we identify the conditions that produce the log-series species abundance distribution familiar from neutral models. We then identify how overlapping niche structure can lead to other species abundance distributions and, in particular, ask whether these new distributions differ significantly from species abundance distributions predicted by non-overlapping niche models. Finally, we extend our analysis to consider additional distributions associated with realized niche breadths. Overall, our results show that models with overlapping niches can exhibit behavior similar to neutral models, with the caveat that species with narrow fundamental niche breadths will be very rare. If narrow-niche species are common, it must be because they are in a non-overlapping niche or have countervailing advantages over broad-niche species. This result highlights the role that niches can play in establishing demographic neutrality.  相似文献   

2.
Phenotypic evolution in sympatric species can be strongly impacted by species interactions, either mutualistic or antagonistic. Heterospecific reproductive behaviours between sympatric species have been shown to favour phenotypic divergence of traits used as sexual cues. Those traits may also be involved in local adaptation or in other types of species interactions and, as a result, undergo complex evolutions across sympatric species. Here we focus on mimicry and study how reproductive interference may impair phenotypic convergence between species with various levels of defence. We use a deterministic model assuming two sympatric species where individuals can display two different warning colour patterns. This eco-evolutionary model explores how ecological interactions shape phenotypic evolution within sympatric species. We investigate the effect of 1) the opposing density-dependent selections exerted on colour patterns by predation and reproductive behaviour and 2) the impact of relative species and phenotype abundances on the fitness costs faced by each individual depending on their species and phenotype. Our model shows that reproductive interference may limit the convergent effect of mimetic interactions and may promote phenotypic divergence between Müllerian mimics. The divergent and convergent evolution of traits also strongly depends on the relative species and phenotype abundances and levels of trophic competition, highlighting how the eco-evolutionary feedbacks between phenotypic evolution and species abundances may result in strikingly different evolutionary routes.  相似文献   

3.
Since obligate avian brood parasites depend completely on the effort of other host species for rearing their progeny, the availability of hosts will be a critical resource for their life history. Circumstantial evidence suggests that intense competition for host species may exist not only within but also between species. So far, however, few studies have demonstrated whether the interspecific competition really occurs in the system of avian brood parasitism and how the nature of brood parasitism is related to their niche evolution. Using the occurrence data of five avian brood parasites from two sources of nationwide bird surveys in South Korea and publically available environmental/climatic data, we identified their distribution patterns and ecological niches, and applied species distribution modeling to infer the effect of interspecific competition on their spatial distribution. We found that the distribution patterns of five avian brood parasites could be characterized by altitude and climatic conditions, but overall their spatial ranges and ecological niches extensively overlapped with each other. We also found that the predicted distribution areas of each species were generally comparable to the realized distribution areas, and the numbers of individuals in areas where multiple species were predicted to coexist showed positive relationships among species. In conclusion, despite following different coevolutionary trajectories to adapt to their respect host species, five species of avian brood parasites breeding in South Korea occupied broadly similar ecological niches, implying that they tend to conserve ancestral preferences for ecological conditions. Furthermore, our results indicated that contrary to expectation interspecific competition for host availability between avian brood parasites seemed to be trivial, and thus, play little role in shaping their spatial distributions and ecological niches. Future studies, including the complete ranges of avian brood parasites and ecological niches of host species, will be worthwhile to further elucidate these issues.  相似文献   

4.
On mammals and birds communities of ectoparasites are present, which can include scores of ticks, mites and insects species. The parasitizing of arthropods terrestrial vertebrates appeared as far back a the Cretaceous period, and after 70-100 mil. years of the coevolution ectoparasites have assimilated all food resources and localities of the hosts' bodies. To the present only spatial and (to the less extent) trophic niches of parasitic insects, ticks and mites are studied completely enough. The main results these investigations are discussed in the present paper. A high abundance of the communities is reached because of their partition into the number of ecological niches. Host is complex of ecological niches for many ectoparasites species. These niches reiterate in the populations of a species closely related species of hosts and repeat from generation to generation. The each part of host (niche) being assimilated be certain parasite species is available potentially for other species. The partition of host into ecological niches is clearer than the structure of ecosystems including free-living organisms. A real extent of the ecological niches occupation by different species of ticks, mites and insects is considerably lower than a potential maximum. The degree of ecological niches saturation depends on the history of the coevolution of parasites community components, previous colonization be new ectoparasite species and many other ecological factors affecting host-parasite system. The use of the ecological niche conception in parasitology is proved to be rather promising. Ectoparasites communities because of their species diversity, different types of feeding and a number of habitats on host represent convenient models and study of them can contribute significantly to the developmeht of the general conception of ecological niche.  相似文献   

5.
The extent of range overlap of incipient and recent species depends on the type and magnitude of phenotypic divergence that separates them, and the consequences of phenotypic divergence on their interactions. Signal divergence by social selection likely initiates many speciation events, but may yield niche‐conserved lineages predisposed to limit each others’ ranges via ecological competition. Here, we examine this neglected aspect of social selection speciation theory in relation to the discovery of a nonecotonal species border between sunbirds. We find that Nectarinia moreaui and Nectarinia fuelleborni meet in a ~6 km wide contact zone, as estimated by molecular cline analysis. These species exploit similar bioclimatic niches, but sing highly divergent learned songs, consistent with divergence by social selection. Cline analyses suggest that within‐species stabilizing social selection on song‐learning predispositions maintains species differences in song despite both hybridization and cultural transmission. We conclude that ecological competition between moreaui and fuelleborni contributes to the stabilization of the species border, but that ecological competition acts in conjunction with reproductive interference. The evolutionary maintenance of learned song differences in a hybrid zone recommend this study system for future studies on the mechanisms of learned song divergence and its role in speciation.  相似文献   

6.
Understanding the impacts that invasive vertebrates have on terrestrial ecosystems extends primarily to invaders’ impacts on species with which they interact directly through mechanisms such as predation, competition and habitat modification. In addition to direct effects, invaders can also initiate ecological cascades via indirect population level effects on species with which they do not directly interact. However, evidence that invasive vertebrates initiate ecological cascades in terrestrial ecosystems remains scarce. Here, we ask whether the invasion of the cane toad, a vertebrate invader that is toxic to many of Australia’s vertebrate predators, has induced ecological cascades in a semi-arid rangeland. We compared activity of a large predatory lizard, the sand-goanna, and abundances of smaller lizards preyed upon by goannas in areas of high toad activity near toads’ dry season refuges and areas of low toad activity distant from toads’ dry season refuges. Consistent with the hypothesis that toad invasion has led to declines of native predators susceptible to poisoning, goanna activity was lower in areas of high toad activity. Consistent with the hypothesis that toad-induced goanna decline lead to increases in abundance the prey of goannas, smaller lizards were more abundant in areas of high toad activity. Structural equation modelling showed a positive correlation between goanna activity and distance from dry season refuge habitats used by toads. The abundances of small lizards was correlated negatively with goanna activity and distance from dry season refuges of toads. Our findings provide support for the notion that invasions by terrestrial vertebrates can trigger ecological cascades.  相似文献   

7.
Aim Despite the increasing pace of urbanization, little is known about how this process affects biodiversity globally. We investigate macroecological patterns of bird assemblages in urbanized areas relative to semi‐natural ecosystems. Location World‐wide. Methods We use a database of quantitative bird surveys to compare key assemblage structure parameters for plots in urbanized and semi‐natural ecosystems controlling for spatial autocorrelation and survey methodology. We use the term ‘urbanized’ instead of ‘urban’ ecosystems as many of the plots were not located in the centre of towns but in remnant habitat patches within conurbations. Results Some macroecological relationships were conserved in urbanized landscapes. Species–area, species–abundance and species–biomass relationships did not differ significantly between urbanized and non‐urbanized environments. However, there were differences in the relationships between productivity and assemblage structure. In forests, species richness increased with productivity; in both forests and open habitats, the evenness of species abundances declined as productivity increased. Among urbanized plots, instead, both species richness and the evenness of species abundances were independent of variation in productivity. Main conclusions Remnant habitats within urbanized areas are subject to many ecological alterations, yet key macroecological patterns differ remarkably little in urbanized versus non‐urbanized plots. Our results support the need for increased conservation activities in urbanized landscapes, particularly given the additional benefits of local experiences of biodiversity for the human population. With increasing urbanization world‐wide, broad‐scale efforts are needed to understand and manage the effects of this driver of change on biodiversity.  相似文献   

8.
For closely related sympatric species to coexist, they must differ to some degree in their ecological requirements or niches ( e.g. , diets) to avoid interspecific competition. Baleen whales in the Antarctic feed primarily on krill, and the large sympatric prewhaling community suggests resource partitioning among these species or a nonlimiting prey resource. In order to examine ecological differences between sympatric humpback and minke whales around the Western Antarctic Peninsula, we made measurements of the physical environment, observations of whale distribution, and concurrent acoustic measurements of krill aggregations. Mantel's tests and classification and regression tree models indicate both similarities and differences in the spatial associations between humpback and minke whales, environmental features, and prey. The data suggest (1) similarities (proximity to shore) and differences (prey abundance versus deep water temperatures) in horizontal spatial distribution patterns, (2) unambiguous vertical resource partitioning with minke whales associating with deeper krill aggregations across a range of spatial scales, and (3) that interference competition between these two species is unlikely. These results add to the paucity of ecological knowledge relating baleen whales and their prey in the Antarctic and should be considered in conservation and management efforts for Southern Ocean cetaceans and ecosystems.  相似文献   

9.
The recent renewal of interest in community structure was strongly stimulated by the concept of neutrality, a new view on the problem of species coexistence. In contrast to traditional approach claiming that species competing for common resources should occupy different ecological niches, the neutrality concept assumes that species can coexist if they are ecologically identical, i.e., they have similar specific (per individual) rate of population growth, probability of extinction and the rate of colonization of free space. The analysis of recent literature, full of contradictory opinions on the ideas of neutrality and niche, can be resulted in form of following questions: (1) What do we suggest when we say that "species coexist"? (2) How can we explain the usual pattern of species relative abundances in a community, the so-called "hollow curve" (the distribution of numbers of species arranged in classes of abundance)? (3) Do rare species have some advantages in comparison with abundant species? (4) Can the mechanisms implied by neutrality concept and traditional niche approach work simultaneously in the same community? Trying to answer these questions we should: (1) refuse the demand of indefinite coexistence of species although this condition was considered as necessary in classical mathematical models of competition; (2) accept that community structure depends not only on ecological processes (species dispersal, competition and others) but also on the evolutionary ones (speciation) that determine the pool of species; (3) accept that rare species have some advantages as compared with the most abundant species; (4) accept that in any real community species can coexist either occupying the different niches or approaching ecological similarity. Despite considerable progress achieved in understanding of general principles of community organization, we still don't know how to answer the question "Why are there so many kinds of animals?" that was posed by Hutchinson 50 years ago.  相似文献   

10.
Grazing controls bacterial abundances and composition in many ecosystems. In marine systems, heterotrophic flagellates (HFs) are important predators. Assemblages of HFs are primarily formed by species still uncultured; therefore, many aspects of their trophic behaviour are poorly known. Here, we assessed the functional response of the whole assemblage and of four taxa grown in an unamended seawater incubation. We used fluorescently labelled bacteria to create a prey gradient of two orders of magnitude in abundance and estimated ingestion rates. Natural HFs had a half-saturation constant of 6.7 × 105 prey ml−1, a value lower than that of cultured flagellates and within the range of marine planktonic bacterial abundances. Minorisa minuta was well adapted to low prey abundances and very efficient in ingesting bacteria. MAST-4 and MAST-7 were also well adapted to the typical marine abundances but less voracious. In contrast, Paraphysomonas imperforata, a typical cultured species, did not achieve ingestion rate saturation even at the highest prey concentration assayed. Our study, beside to set the basis for the fundamental differences between cultured and uncultured bacterial grazers, indicate that the examined predator taxa have different functional responses, suggesting that they occupy distinct ecological niches according to their grazing strategies and prey preferences.  相似文献   

11.
Aims Plant invasions represent a unique opportunity to study the mechanisms underlying community assembly rules and species distribution patterns. While a superior competitive ability has often been proposed as a major driver of successful plant invasions, its significance depends crucially on the timing of any competitive interaction. We assess whether a mismatch in germination phenology can favor the establishment of alien species, allowing them to exploit vacant niches where competition is low. As well as having important effects on the survival, growth and fitness of a species, asymmetric competition and potential soil legacies resulting from early or late germination can also impact on species recruitment. However, early or late germination comes at a cost, increases the risks of exposure to unfavorable conditions and requires an enhanced abiotic resistance if it is to lead to successful establishment.Important findings While there are several anecdotal accounts of early and late germination for invasive species, there are limited comparative data with resident species growing under natural conditions. Available evidence from grassland communities indicates that a short-term germination advantage or priority (few days/weeks) provides invasive species with a strong competitive advantage over native species and is a critical factor in many invasions. While the exploitation of periods of low competition is a plausible mechanism for the successful establishment of many invasive plants, direct evidence for this strategy is still scarce. This is particularly true with regard to the exploitation of late germination niches. Consequently, long-term comparative monitoring of the germination phenology of invasive and native plants in situ is needed to assess its significance in a range of ecosystems and its impact on community dynamics.  相似文献   

12.
Bathymodiolin mussels occur at hydrothermal vents and cold seeps, where they thrive thanks to symbiotic associations with chemotrophic bacteria. Closely related genera Idas and Adipicola are associated with organic falls, ecosystems that have been suggested as potential evolutionary 'stepping stones' in the colonization of deeper and more sulphide-rich environments. Such a scenario should result from specializations to given environments from species with larger ecological niches. This study provides molecular-based evidence for the existence of two mussel species found both on sunken wood and bones. Each species specifically harbours one bacterial phylotype corresponding to thioautotrophic bacteria related to other bathymodiolin symbionts. Phylogenetic patterns between hosts and symbionts are partially congruent. However, active endocytosis and occurrences of minor symbiont lineages within species which are not their usual host suggest an environmental or horizontal rather than strictly vertical transmission of symbionts. Although the bacteria are close relatives, their localization is intracellular in one mussel species and extracellular in the other, suggesting that habitat choice is independent of the symbiont localization. The variation of bacterial densities in host tissues is related to the substrate on which specimens were sampled and could explain the abilities of host species to adapt to various substrates.  相似文献   

13.
Cyanobacteria are important primary producers in many marine ecosystems and their abundances and growth rates depend on their ability to assimilate various nitrogen sources. To examine the diversity of nitrate-utilizing marine cyanobacteria, we developed PCR primers specific for cyanobacterial assimilatory nitrate reductase (narB) genes. We obtained amplification products from diverse strains of cultivated cyanobacteria and from several marine environments. Phylogenetic trees constructed with the narB gene are congruent with those based on ribosomal RNA genes and RNA polymerase genes. Analysis of sequence library data from coastal and oligotrophic marine environments shows distinct groups of Synechococcus sp. in each environment; some of which are represented by sequences from cultivated organisms and others that are unrelated to known sequences and likely represent novel phylogenetic groups. We observed spatial differences in the distribution of sequences between two sites in Monterey Bay and differences in the vertical distribution of sequence types at the Hawai'i Ocean Time-series Station ALOHA, suggesting that nitrogen assimilation in Synechococcus living in different ecological niches can be followed with the nitrate reductase gene.  相似文献   

14.
In order to understand invasions, it is important to know how alien species exploit opportunities in unfamiliar ecosystems. For example, are aliens concentrated in niches under-exploited by native communities, or widely distributed across the ecological spectrum? To explore this question, we compared the niches occupied by 394 naturalized alien plants with a representative sample from the native flora of Mediterranean islands. When niche structure was described by a functional group categorization, the distribution of native and alien species was remarkably similar, although “succulent shrubs” and “trees with specialized animal pollination mechanisms” were under-represented in the native species pool. When niche structure was described by Grime’s CSR strategy, the positioning of aliens and natives differed more strongly. Stress-tolerance was much rarer amongst the aliens, and a competitive strategy was more prevalent at the habitat level. This pattern is similar to previous findings in temperate Europe, although in those regions it closely reflects patterns of native diversity. Stressed environments are much more dominant in the Mediterranean. We discuss a number of factors which may contribute to this difference, e.g., competitive and ruderal niches are often associated with anthropogenic habitats, and their high invasibility may be due partly to introduction patterns rather than to a greater efficiency of aliens at exploiting them. Thus far, the reasons for invasion success amongst introduced species have proved difficult to unravel. Despite some differences, our evidence suggests that alien species naturalize across a wide range of niches. Given that their ecologies therefore vary greatly, one may ask why such species should be expected to share predictable traits at all?  相似文献   

15.
Animals from different clades but subject to similar environments often evolve similar body shapes and physiological adaptations due to convergent evolution, but this has been rarely tested at the transcontinental level and across entire classes of animal. Australia's biome diversity, isolation and aridification history provide excellent opportunities for comparative analyses on broad‐scale macroevolutionary patterns. We collected morphological and environmental data on eighty‐four (98%) Australian hylid frog species and categorized them into ecotypes. Using a phylogenetic framework, we tested the hypothesis that frogs from the same ecotype display similar body shape patterns: (i) across all the Australian hylids, and (ii) through comparison with a similar previous study on 127 (97%) Australian myobatrachid species. Body size and shape variation did not follow a strong phylogenetic pattern and was not tightly correlated with environment, but there was a stronger association between morphotype and ecotype. Both arboreal and aquatic frogs had long limbs, whereas limbs of fossorial species were shorter. Other terrestrial species were convergent on the more typical frog body shape. We quantified the strength of morphological convergence at two levels: (i) between fossorial myobatrachid and hylid frogs, and (ii) in each ecomorph within the hylids. We found strong convergence within ecotypes, especially in fossorial species. Ecotypes were also reflected in physiological adaptations: both arboreal and cocooned fossorial frogs tend to have higher rates of evaporative water loss. Our results illustrate how adaptation to different ecological niches plays a crucial role in morphological evolution, boosting phenotypic diversity within a clade. Despite phylogenetic conservatism, morphological adaptation to repeatedly emerging new environments can erase the signature of ancestral morphotypes, resulting in phenotypic diversification and convergence both within and between diverse clades.  相似文献   

16.
高海拔山区气候条件恶劣, 资源匮乏, 探究同域分布的近缘物种如何利用有限的资源以实现稳定共存, 对于了解高山生态系统生物多样性格局的形成和维持机制具有重要意义。鸡形目鸟类飞行能力弱, 属于典型的地栖物种, 生态位空间相对狭窄, 可能面临更高的种间竞争压力。本研究旨在比较几种同域分布的鸡形目鸟类的时空生态位, 为了解高山生态系统同域物种的共存机制提供新的研究案例。2020年4-9月, 研究人员在四川卧龙国家级自然保护区海拔3,300-4,200 m的高山区域进行了野外调查, 通过样线法和样方法对鸡形目鸟类群落优势物种绿尾虹雉(Lophophorus lhuysii)、雉鹑(Tetraophasis obscurus)和雪鹑(Lerwa lerwa)繁殖期的微生境进行调查, 使用红外相机对其活动节律进行监测, 并运用核密度估计法从微生境利用和日活动节律两个生态维度进行了种间生态位比较。结果显示, 雪鹑在微生境利用和日活动节律上均与其他两个物种存在显著差异。绿尾虹雉与雉鹑在微生境的利用上具有相似偏好; 但绿尾虹雉的早活动高峰晚于雉鹑, 晚活动高峰早于雉鹑, 表现出显著的种间日活动节律差异; 然而, 整合两个维度后, 绿尾虹雉和雉鹑的整体生态位仍然高度重叠, 没有显著分化。本研究表明高山鸡形目物种间的生态位分化体现于多个不同的生态维度, 并且不同物种之间的分化方式有所差异。在空间和时间生态位上的显著分化使雪鹑与同域物种间的竞争压力相对较小, 有利于其实现稳定共存。而绿尾虹雉与雉鹑的整体生态位高度重叠, 建议进一步对其食性开展研究, 探讨营养生态位上的潜在种间分化。  相似文献   

17.
Study of the evolution of ecological characteristics using phylogenetic information is only beginning, but several new tools and approaches open fascinating possibilities. The Pipridae is a diverse and well‐known family of frugivorous birds that are easily sampled and that are broadly distributed across many Neotropical environments, and as such are appropriate for studies of ecological niche evolution. Using known occurrences and climate and topography data sets, we modeled ecological niches for each species in the family, and carried out analyses aimed at describing ecological niches of manakins and understanding historical patterns of ecological change in the family. Most species’ ecological niches were characterized by warm and relatively humid conditions, reflecting the great diversification of the family in lowland and montane forests of western South America. Ecological niche evolution was in general conservative, with most sister species pairs being closely similar ecologically, indicating that isolation rather than adaptation to new ecological conditions has dominated the diversification in this family. Exceptions to this pattern represent interesting foci for future research, whereas studies of ecological niches focusing on past distributions of manakins will allow further biogeographic inferences.  相似文献   

18.
Biological traits can determine species ecological niches and define species responses to environmental variation. Species have a specific functional position in the biological community, resulting in interactions like interspecific competition. In this study, we used biological traits in order to define the life strategies of 205 nektonic species of the Mediterranean Sea. Furthermore, traits related to resource use were analyzed to determine the level of trait and niche overlap and their relationship to life strategies. Focusing on habitats of importance (Posidonia beds, coralligène formations, and lagoons), we investigated strategies and niches of the species present there. Finally, we examined the life strategy of Lessepsian species and investigated the niche overlap between them and indigenous species. Archetypal analysis indicated the existence of three life histories corresponding to strategies already documented for fish (equilibrium, periodic, and opportunistic), with some species also placed in intermediate positions. Niche overlap was evaluated by multiple correspondence analysis and the generation of a single distance metric between all species pairs. This identified species occupying relatively empty (underexploited) ecological niches, like the Lessepsian species Siganus luridus and S. rivulatus, a finding that can also be associated with their establishment in the Mediterranean. Most Lessepsian species were associated with the opportunistic life history strategy, again an important aspect related to their establishment. Also, we documented that most species occurring in important habitats have a relatively high overlap of niches. No significant differences were found in the life strategies across Mediterranean habitats; however, variation in niche overlap and traits related to habitat use was detected. The findings can be useful to determine theoretical competition between species and to identify empty ecological niches. Fisheries science can also benefit from comprehending the dynamics of competing stocks or predict the responses of data‐poor stocks to anthropogenic stressors from known examples of species with shared life strategies.  相似文献   

19.
How species with similar ecological requirements avoid competitive exclusion remains contentious, especially in the species‐rich tropics. Niche differentiation has been proposed as a major mechanism for species coexistence. However, different niche dimensions must be studied simultaneously to assess their combined effects on diversity and composition of a community. In most terrestrial ecosystems, ants are among the most abundant and ubiquitous animals. Since they display direct, aggressive competition and often competitively displace subordinate species from resources, niche differentiation may be especially relevant among ants. We studied temporal and trophic niche differentiation in a ground ant community in a forest fragment in French Guiana. Different baits were presented during day and night to assess the temporal and dietary niches of the local species. They represented natural food resources such as sugars, carrion, excrements, seeds, and live prey. In addition, pitfalls provided a background measure of ant diversity. The communities attracted to the different baits significantly differed from each other, and even less attractive baits yielded additional species. We detected species specialized on living grasshoppers, sucrose, seeds, or dead insects. Community‐level differences between day and night were larger than those between baits, and many species were temporally specialized. In contrast to commonness, foraging efficiency of species was correlated to food specialization. We conclude that many ant species occupy different temporal or dietary niches. However, for many generalized species, the dietary, and temporal niche differentiation brought forward through our sampling effort, cannot alone explain their coexistence.  相似文献   

20.
Determining the patterns, causes and consequences of character displacement is central to our understanding of competition in ecological communities. However, the majority of competition research has occurred over small spatial extents or focused on fine-scale differences in morphology or behaviour. The effects of competition on broad-scale distribution and niche characteristics of species remain poorly understood but critically important. Using range-wide species distribution models, we evaluated whether Canada lynx (Lynx canadensis) or bobcat (Lynx rufus) were displaced in regions of sympatry. Consistent with our prediction, we found that lynx niches were less similar to those of bobcat in areas of sympatry versus allopatry, with a stronger reliance on snow cover driving lynx niche divergence in the sympatric zone. By contrast, bobcat increased niche breadth in zones of sympatry, and bobcat niches were equally similar to those of lynx in zones of sympatry and allopatry. These findings suggest that competitively disadvantaged species avoid competition at large scales by restricting their niche to highly suitable conditions, while superior competitors expand the diversity of environments used. Our results indicate that competition can manifest within climatic niche space across species’ ranges, highlighting the importance of biotic interactions occurring at large spatial scales on niche dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号