首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
4.
S Busby  M Dreyfus 《Gene》1983,21(1-2):121-131
Using hydroxylamine mutagenesis in vitro, mutations were introduced into a short DNA fragment containing the two overlapping promoters of the Escherichia coli galactose operon and the start of the first gal gene, galE. The mutagenised fragment was inserted into a lac expression plasmid. In such a vector, lac expression is controlled by the gal promoter region. Amongst eighteen candidates in which expression was reduced due to mutations in the gal fragment, twelve contained promoter mutations and six carried mutations that reduce the initiation of galE translation. The candidates in which promoter activity was reduced contained mutations affecting the promoter P1, which is dependent on the cyclic AMP-receptor protein complex (cAMP-CRP) for activation. All carried mutations in the sequence 5'GTGA3' at the CRP binding site. One of the twelve also contained a second mutation affecting the second promoter, P2, which normally functions in the absence of cAMP-CRP. Amongst the six candidates affecting galE translation, two contained a mutation that changes the initiator codon from AUG to AUA and almost completely suppresses galE expression. The mutations in the other four candidates affect the ribosome binding sequence, 5'GGAG3'. However, multiple mutations that abolish this sequence do not totally suppress galE expression, showing that there must be another way to guide ribosomes to the correct initiation site.  相似文献   

5.
6.
7.
8.
9.
10.
11.
12.
13.
The regulation of open complex formation at the Escherichia coli galactose operon promoters by galactose repressor and catabolite activator protein/cyclic AMP (CAP/cAMP) was investigated in DNA-binding and kinetic experiments performed in vitro. We found that gal repressor and CAP/cAMP bind to the gal regulatory region independently, resulting in simultaneous occupancy of the two gal operators and the CAP/cAMP binding site. Both CAP/cAMP and gal repressor altered the partitioning of RNA polymerase between the two overlapping gal promoters. Open complexes formed in the absence of added regulatory proteins were partitioned between gal P1 and P2 with occupancies of 25% and 75%, respectively. CAP/cAMP caused open complexes to be formed nearly exclusively at P1 (98% occupancy). gal repressor caused a co-ordinated, but incomplete, switch in promoter partitioning from P1 to P2 in both the absence and presence of CAP/cAMP. We measured the kinetic constants governing open complex formation and decay at the gal promoters in the absence and presence of gal repressor and CAP/cAMP. CAP/cAMP had the largest effect on the kinetics of open complex formation, resulting in a 30-fold increase in the apparent binding constant. We conclude that the regulation of open complex formation at the gal promoters does not result from competition between gal repressor, CAP/cAMP and RNA polymerase for binding at the gal operon regulatory region, but instead results from the interactions of the three proteins during the formation of a nucleoprotein complex on the gal DNA fragment. Finally, we present a kinetic model for the regulation of open complex formation at the gal operon.  相似文献   

14.
The two overlapping promoters that control mRNA synthesis at the galactose operon contain three phased stretches of adenine residues, located around positions -84.5, -74 and -63, with respect ot the start of the P1 promoter. As a result, the corresponding DNA sequence is bent, an anomaly that is relieved by the addition of small concentrations of drugs like distamycin A or netropsin. By abortive initiation assays performed on several DNA fragments derived from the wild-type promoter or from various mutants we show that the curved sequence increases the strength of the P1 promoter. In the absence of cyclic AMP (cAMP) and of the corresponding receptor protein (CRP), the upstream curved sequences enhance the rate of isomerization from the closed to the open complex at P1. This effect is abolished when distamycin A is bound in the bent region. In the presence of cAMP-CRP, a more drastic change is observed: activation of the gal P1 promoter takes place at a different formal step, depending whether the upstream curved sequence is present or not (enhancement of the rate of conversion from a closed to an open complex instead of an increase in the affinity of the enzyme during closed complex formation). These data, together with previous results obtained with other mutants of the gal control region, suggest that several closed complexes corresponding to different nucleoprotein arrangements are formed during open complex formation at gal P1, in the presence of CRP.  相似文献   

15.
16.
17.
An isorepressor of the gal regulon in Escherichia coli, GalS, has been purified to homogeneity. In vitro DNase I protection experiments indicated that among operators of the gal regulon, GalS binds most strongly to the external operator of the mgl operon, which encodes the high-affinity beta-methylgalactoside galactose transport system, and with less affinity to the operators controlling expression of the gal operon, which codes for enzymes of galactose metabolism. GalS has even less affinity for the external operator of galP, which codes for galactose permease, the major low-affinity galactose transporter in the cell. This order of affinities is the reverse of that of GalR, which binds most strongly to the operator of galP and most weakly to that of mgl. Our results also show that GalS, like its homolog, GalR, is a dimeric protein which in binding to the bipartite operators of the gal operon selectively represses its P1 promoter. Consistent with the fact that GalR is the exclusive regulator of the low-affinity galactose transporter, galactose permease, and that the major role of GalS is in regulating expression of the high-affinity galactose transporter encoded by the mgl operon, we found that the DNA binding of GalS is 15-fold more sensitive than that of GalR to galactose.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号