首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
X-linked inhibitor of apoptosis protein (XIAP) overexpression has been found to be associated with malignant cancer progression and aggression in individuals with many types of cancers. However, the molecular basis of XIAP in the regulation of cancer cell biological behavior remains largely unknown. In this study, we found that a deficiency of XIAP expression in human cancer cells by either knock-out or knockdown leads to a marked reduction in β-actin polymerization and cytoskeleton formation. Consistently, cell migration and invasion were also decreased in XIAP-deficient cells compared with parental wild-type cells. Subsequent studies demonstrated that the regulation of cell motility by XIAP depends on its interaction with the Rho GDP dissociation inhibitor (RhoGDI) via the XIAP RING domain. Furthermore, XIAP was found to negatively regulate RhoGDI SUMOylation, which might affect its activity in controlling cell motility. Collectively, our studies provide novel insights into the molecular mechanisms by which XIAP regulates cancer invasion and offer a further theoretical basis for setting XIAP as a potential prognostic marker and specific target for treatment of cancers with metastatic properties.  相似文献   

3.
Cancerous inhibitor of PP2A (p90/CIP2A) was recently characterized as an innovative oncoprotein in human malignancies. p90/CIP2A inhibited c-Myc-associated PP2A phosphatase activity to promote cell proliferation and tumor growth. A growing number of studies have demonstrated that the overexpression of p90/CIP2A in various human malignancies. But the function of p90/CIP2A in cancer progression is still poorly understood. In the current research, we aim to explore the biological function of p90/CIP2A in breast cancer. shRNA knockdown was performed in MDA-MB-231 and LM2-4 cell lines. Cell proliferation assay, colony formation assay and flow cytometry were carried out to evaluate the role of p90/CIP2A in cell proliferation and apoptosis. p90/CIP2A depletion in breast cancer cells inhibited proliferation and increased paclitaxel-induced apoptosis. Furthermore, p90/CIP2A silencing down-regulated the expression of c-Myc and the level of p-ERK1/2. Taken together, our data suggest that p90/CIP2A as a crucial oncoprotein has been involved in cell proliferation and apoptosis, which may serve as a therapeutic target in breast cancer treatment.  相似文献   

4.
P21(Waf1/Cip1/Sid1) is a critical component of biomolecular pathways leading to the G(1) arrest evoked in response to DNA damage, growth arrest signals and differentiation commitment. It belongs to the Cip/Kip class of cyclin-dependent kinase inhibitors and is at least partly regulated by p53. P21(Waf1/Cip1/Sid1) functional inactivation possibly resulting from mutations of the gene itself or, more likely, from p53 mutations may be critical for either the cell fate following DNA-damaging insults or clonal evolution toward malignancy. In the study presented here we describe a competitive polymerase chain reaction (PCR) strategy whose sensitivity and reproducibility enable us to attain a precise quantitation of p21(Waf1/Cip1/Sid1) expression levels in hematopoietic progenitors, the cell compartment which mostly suffers from the side effects of genotoxic drugs in use for cancer cure. The strategy was set in the M07 factor-dependent hematopoietic progenitor cell line. We confirmed that its p21(waf1/cip1/sid1) constitutive expression level is very low and up-modulated by DNA-damaging agents: ionizing radiations and ultraviolet light. Gene up-modulation resulted in checkpoint activation and, in particular, in a significant G(1) arrest, required for either the repair of damaged DNA sequences or apoptotic cell death. Our competitive PCR strategy was further validated in CD34(+) purified hematopoietic progenitors from healthy donors mobilized into the peripheral blood by granulocyte colony-stimulating factor and intended for allogeneic bone marrow transplantation. The constitutive p21(WAF1/CIP1/SID1) expression levels, measured in three separate harvests, were very low and no significant differences were apparent. Our results support the use of a competitive PCR strategy as a useful tool for clinical purposes, to assess the individual biomolecular response of early hematopoietic progenitors to antiblastic drugs.  相似文献   

5.
6.
When cells traversing G(1) are irradiated with UV light, two parallel damage checkpoint pathways are activated: Chk1-Cdc25A and p53-p21(WAF1/CIP1), both targeting Cdk2, but the latter inducing a long lasting arrest. In similarly treated S phase-progressing cells, however, only the Cdc25A-dependent checkpoint is active. We have recently found that the p21-dependent checkpoint can be activated and induce a prolonged arrest if S phase cells are damaged with a base-modifying agent, such as methyl methanesulfonate (MMS) and cisplatin. But the mechanistic basis for the differential activation of the p21-dependent checkpoint by different DNA damaging agents is not understood. Here we report that treatment of S phase cells with MMS but not a comparable dose of UV light elicits proteasome-mediated degradation of Cdc6, the assembler of pre-replicative complexes, which allows induced p21 to bind Cdk2, thereby extending inactivation of Cdk2 and S phase arrest. Consistently, enforced expression of Cdc6 largely eliminates the prolonged S phase arrest and Cdk2 inactivation induced with MMS, whereas RNA interference-mediated Cdc6 knockdown not only prolongs such arrest and inactivation but also effectively activates the p21-dependent checkpoint in the UV-irradiated S phase cells.  相似文献   

7.
Human erythrocyte Mn(2+)-dependent (C'A') and -independent (CA) protein-serine/threonine phosphatase (PP) 2A are composed of 34-kDa catalytic C' and C subunits, in which the metal dependency resides, and 63-kDa regulatory A' and A subunits, respectively. Each catalytic and regulatory subunit gave the same V8- and papain-peptide maps, respectively. Stoichiometric zinc and substoichiometric iron were detected in CA but not in C'A' [Nishito et al. (1999) FEBS Lett. 447, 29-33]. The Mn(2+)-dependent protein-tyrosine phosphatase (PTP) activity of C'A' was about 70-fold higher than that of CA. Pre-incubation of CA with 25 mM NaF changed CA to a Mn(2+)-dependent form with higher PTP activity. The same NaF treatment had no effect on C'A'. Pre-incubation of C'A' with ZnCl(2), zinc-metallothionein, or FeCl(2) activated the Mn(2+)-independent PP activity, but pre-incubation with FeCl(3) did not. Ascorbate in the pre-incubation and assay mixture significantly stimulated the effect of FeCl(2). Pre-incubation of C'A' with 5 microM ZnCl(2) and 15 microM FeCl(2) in the presence of 1 mM ascorbate synergistically stimulated the Mn(2+)-independent PP activity, with concomitant suppression of the Mn(2+)-dependent PP and PTP activities. The PP and PTP activities of CA were unaffected by the same zinc and/or iron treatment. Micromolar concentrations of vanadate strongly inhibited the Mn(2+)-dependent PP activity of C'A' but only slightly inhibited the PP activity of CA. Using the distinct effect of vanadate as an indicator, the interconversion between CA and C'A' with the above mentioned treatments was proved. These results support the notion that Mn(2+)-independent CA is a Zn(2+)- and Fe(2+)-metalloenzyme, whose apoenzyme is Mn(2+)-dependent C'A'.  相似文献   

8.
The regulation of protein phosphorylation requires coordinated interaction between protein kinases and protein phosphatases (PPs). Recent evidence has shown that the Galphaq-protein-coupled metabotropic glutamate receptor (mGluR) 5 up-regulates phosphorylation of MAPK/ERK1/2. However, signaling mechanisms linking mGluR5 to ERK are poorly understood. In this study, roles of a major serine/threonine PP, PP2A, in this event were evaluated in cultured neurons. We found that the PP1/2A inhibitors okadaic acid and calyculin A mimicked the effect of the mGluR5 agonists (RS)-3,5-dihydroxyphenylglycine and (RS)-2-chloro-5-hydroxyphenylglycine in facilitating phosphorylation of ERK1/2 and its upstream kinase, MEK1/2, in a PP2A-dependent but not PP1-dependent manner. Co-administration of either inhibitor with an mGluR5 agonist produced additive phosphorylation of ERK1/2. Enzymatic assays showed a basal level of phosphatase activity of PP2A under normal conditions, and activation of mGluR5 selectively inhibited PP2A, but not PP1, activity. In addition, a physical association of the cytoplasmic C terminus of mGluR5 with PP2A was observed, and ligand activation of mGluR5 reduced mGluR5-PP2A binding. Additional mechanistic studies revealed that mGluR5 activation increased tyrosine (Tyr307) phosphorylation of PP2A, which was dependent on activation of a p60c-Src family tyrosine kinase, but not the epidermal growth factor receptor tyrosine kinase and resulted in dissociation of PP2A from mGluR5 and reduced PP2A activity. Together, we have identified a novel, mGluR5-triggered signaling mechanism involving use- and Src-dependent inactivation of PP2A, which contributes to mGluR5 activation of MEK1/2 and ERK1/2.  相似文献   

9.
We discovered a stem cell factor (SCF)-triggered, MEK1-independent, and PI3K-dependent MAPK activation pathway in the Kit-expressing ovarian cancer cell line HEY. When we knocked down MEK1 with RNA interference (RNAi) to study the function of MEK1 on the proliferation and survival of ovarian cancer cells, we found that impaired cell growth still occurred after MEK1 expression had been suppressed, although MAPK activation remained intact. This suggests that there is MEK1-independent activation of MAPK in the SCF-induced ovarian cancer cell growth process, and that MEK1 still plays a crucial role in maintaining the malignant properties of ovarian cancer cells even when it fails to activate MAPK as expected.  相似文献   

10.
11.
Rat-1 cells are used in many studies on transformation, cell cycle, and apoptosis. Whereas UV treatment of Rat-1 cells results in apoptosis, X-ray treatment does not induce either apoptosis or a cell cycle block. X-ray treatment of Rat-1 cells results in both an increase of p53 protein and expression of the p53-inducible gene MDM2 but not the protein or mRNA of the p53-inducible p21(WAF1/CIP1) gene, which in other cells plays an important role in p53-mediated cell cycle block. The lack of p21(WAF1/CIP1) expression appears to be the result of hypermethylation of the p21(WAF1/CIP1) promoter region, as p21(WAF1/CIP1) protein expression could be induced by growth of Rat-1 cells in the presence of 5-aza-2-deoxycytidine. Furthermore, sequence analysis of bisulfite-treated DNA demonstrated extensive methylation of cytosine residues in CpG dinucleotides in a CpG-rich island in the promoter region of the p21(WAF1/CIP1) gene. Stable X-ray-induced p53-dependent p21(WAF1/CIP1) expression and cell cycle block were restored to a Rat-1 clone after transfection with a P1 artificial chromosome (PAC) DNA clone containing a rat genomic copy of the p21(WAF1/CIP1) gene. The absence of expression of the p21(WAF1/CIP1) gene may contribute to the suitability of Rat-1 cells for transformation, cell cycle, and apoptosis studies.  相似文献   

12.
Galpha-interacting protein (GAIP) is a regulator of G protein signaling (RGS) that accelerates the rate of GTP hydrolysis by the alpha-subunit of the trimeric G(i3) protein. Both proteins are part of a signaling pathway that controls lysosomal-autophagic catabolism in human colon cancer HT-29 cells. Here we show that GAIP is phosphorylated by an extracellular signal-regulated (Erk1/2) MAP kinase-dependent pathway sensitive to amino acids, MEK1/2 (PD098059), and protein kinase C (GF109203X) inhibitors. An in vitro phosphorylation assay demonstrates that Erk2-dependent phosphorylation of GAIP stimulates its GTPase-activating protein activity toward the Galpha(i3) protein (k = 0.187 +/- 0.001 s(-)(1), EC(50) = 1.12 +/- 0.10 microm) when compared with unphosphorylated recombinant GAIP (k = 0.145 +/- 0.003 s(-)(1), EC(50) = 3.16 +/- 0. 12 microm) or to GAIP phosphorylated by other Ser/Thr protein kinases (protein kinase C, casein kinase II). This stimulation and the phosphorylation of GAIP by Erk2 were abrogated when serine at position 151 in the RGS domain was substituted by an alanine residue using site-directed mutagenesis. Furthermore, the lysosomal-autophagic pathway was not stimulated in S151A-GAIP mutant-expressing cells when compared with wild-type GAIP-expressing cells. These results demonstrate that the GTPase-activating protein activity of GAIP is stimulated by Erk2 phosphorylation. They also suggested that Erk1/2 and GAIP are engaged in the signaling control of a major catabolic pathway in intestinal derived cells.  相似文献   

13.
Cell transplantation provides a way to compare the regulation of cell proliferation in the same cell type in cell culture and in a vascularized tissue structure in a host animal. The cyclin-dependent kinase inhibitors p57(KIP2), p21(WAF1/CIP1/SDI1) and p27(KIP1) have been extensively studied in cell culture but their role in growth control in tissues is less well understood. In the present experiments we compared the behavior of cell cycle inhibitors in human and bovine adrenocortical cells in culture and following cell transplantation in scid mice. p57 was expressed in the majority of cells in the intact human adrenal cortex. However, double immunofluorescence showed that cells that are in the cell cycle are p57(-) adrenocortical cells, p57 and p27 levels were not affected by inhibition of growth at high cell density, whereas p21 was higher in dividing than growth-inhibited cells. However, p21 was also high in senescent adrenocortical cells. After transplantation of human adrenocortical cells in scid mice, p57 and p27 were observed in most cells in the transplant tissue. Over time the number of p21(+) cells decreased greatly in human adrenocortical cells, but not in bovine adrenocortical cells. This difference correlated with lower levels of cell division (assessed by Ki-67 or incorporation of bromodeoxyuridine) in the human cells in transplant tissues in comparison to bovine cells. The differences between human and bovine cells were observed both when cells were transplanted beneath the kidney capsule and when cells were injected subcutaneously in collagen gel. We conclude that the behavior of p57, but not p21, is consistent with a role as a physiological mediator of proliferative quiescence in the adrenal cortex. The high level of p21 in dividing adrenocortical cells in culture, and in bovine adrenocortical cells in transplant tissues, may be a response to conflicting positive and negative growth influences. Cells may enter the cell cycle under the influence of a strong positive mitogenic signal, but coexisting negative growth stimuli trigger a p21-dependent block to further progression through the cell cycle. This model suggests that bovine adrenocortical cells respond to positive growth stimuli in transplant tissues but human cells lack this response.  相似文献   

14.
15.
Steroid-induced osteoporosis is a common side effect of long-term treatment with glucocorticoid (GC) drugs. GCs have multiple systemic effects that may influence bone metabolism but also directly affect osteoblasts by decreasing proliferation. This may be beneficial at low concentrations, enhancing differentiation. However, high-dose treatment produces a severe deficit in the proliferative osteoblastic compartment. We provide causal evidence that this effect of GC is mediated by induction of the dual-specificity MAPK phosphatase, MKP-1/DUSP1. Excessive MKP-1 production is both necessary and sufficient to account for the impaired osteoblastic response to mitogens. Overexpression of MKP-1 after either GC treatment or transfection ablates the mitogenic response in osteoblasts. Knockdown of MKP-1 using either immunodepletion of MKP-1 before in vitro dephosphorylation assay or short interference RNA transfection prevents inactivation of ERK by GCs. Neither c-jun N-terminal kinase nor p38 MAPK is activated by the mitogenic cocktail in 20% fetal calf serum, but their activation by a DNA-damaging agent (UV irradiation) was inhibited by either GC treatment or overexpression of MKP-1, indicating regulation of all three MAPKs by MKP-1 in osteoblasts. However, an inhibitor of the MAPK/ERK kinase-ERK pathway inhibited osteoblast proliferation whereas inhibitors of c-jun N-terminal kinase or p38 MAPK had no effect, suggesting that ERK is the MAPK that controls osteoblast proliferation. Regulation of ERK by MKP-1 provides a novel mechanism for control of osteoblast proliferation by GCs.  相似文献   

16.
Degradation of collagenous extracellular matrix by collagenase 1 (also known as matrix metalloproteinase 1 [MMP-1]) plays a role in the pathogenesis of various destructive disorders, such as rheumatoid arthritis, chronic ulcers, and tumor invasion and metastasis. Here, we have investigated the role of distinct mitogen-activated protein kinase (MAPK) pathways in the regulation of MMP-1 gene expression. The activation of the extracellular signal-regulated kinase 1 (ERK1)/ERK2 (designated ERK1,2) pathway by oncogenic Ras, constitutively active Raf-1, or phorbol ester resulted in potent stimulation of MMP-1 promoter activity and mRNA expression. In contrast, activation of stress-activated c-Jun N-terminal kinase and p38 pathways by expression of constitutively active mutants of Rac, transforming growth factor beta-activated kinase 1 (TAK1), MAPK kinase 3 (MKK3), or MKK6 or by treatment with arsenite or anisomycin did not alone markedly enhance MMP-1 promoter activity. Constitutively active MKK6 augmented Raf-1-mediated activation of the MMP-1 promoter, whereas active mutants of TAK1 and MKK3b potently inhibited the stimulatory effect of Raf-1. Activation of p38 MAPK by arsenite also potently abrogated stimulation of MMP-1 gene expression by constitutively active Ras and Raf-1 and by phorbol ester. Specific activation of p38alpha by adenovirus-delivered constitutively active MKK3b resulted in potent inhibition of the activity of ERK1,2 and its upstream activator MEK1,2. Furthermore, arsenite prevented phorbol ester-induced phosphorylation of ERK1,2 kinase-MEK1,2, and this effect was dependent on p38-mediated activation of protein phosphatase 1 (PP1) and PP2A. These results provide evidence that activation of signaling cascade MKK3-MKK3b-->p38alpha blocks the ERK1,2 pathway at the level of MEK1,2 via PP1-PP2A and inhibits the activation of MMP-1 gene expression.  相似文献   

17.
18.
Protein phosphatase 1 (PP1) is a major serine/threonine phosphatase that controls gene expression and cell cycle progression. Here we describe the characterization of a novel inhibitory molecule for PP1, human inhibitor-5 of protein phosphatase 1 (IPP5). We find that IPP5, containing the PP1 inhibitory subunits, specifically interacts with the PP1 catalytic subunit and inhibits PP1 phosphatase activity. Furthermore, the mutation of Thr-40 within the inhibitory subunit of IPP5 into Ala eliminates the phosphorylation of IPP5 by protein kinase A and its inhibitor activity to PP1, whereas the mutation of Thr-40 within a truncated form of IPP5 into Asp can serve as a dominant active form of IPP5 in inhibiting PP1 activity. In IPP5-negative SW480 and IPP5-highly positive SW620 human colon cancer cells, we find that overexpression of IPP5 promotes the growth and accelerates the G(1)-S transition of SW480 cells in a Thr-40-dependent manner, which could be reversed by downregulation of the PP1 expression. Moreover, silencing of IPP5 inhibits the growth of SW620 cells both in vitro and in nude mice possibly by inducing G(0)/G(1) arrest but not by promoting apoptosis. According to its role in the promotion of cell cycle progression and cell growth, IPP5 up-regulates the expression of cyclin E and the phosphorylated form of retinoblastoma protein. Our findings suggest that IPP5, by acting as an inhibitory molecule for PP1, can promote tumor cell growth and cell cycle progression, and may be a promising target in cancer therapeutics in IPP5-highly expressing tumor cells.  相似文献   

19.
20.
Studies in Jurkat leukemia cells have suggested that protein-tyrosine phosphatase PTPL1/FAP-1 rescues Fas-induced cell death. However, we have previously shown that this enzyme triggers 4-hydroxytamoxifen-induced growth inhibition in human breast cancer cells. The present study addresses the role of PTPL1/FAP-1 in antiestrogen-regulated apoptotic effect and insulin-like growth factor-I survival action in MCF7 cells and further identifies the impacted signaling pathway. By terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling and cytoplasmic nucleosome enzyme-linked immunosorbent assay, we demonstrated that 4-hydroxytamoxifen-induced apoptosis was totally lost in PTPL1/FAP-1 antisense transfectants in which enzyme expression was abrogated, revealing the crucial role of this phosphatase in the apoptotic process in human breast cancer cells. Time-dependent expression of PTPL1/FAP-1 in MCF7 cells completely abolished the survival action of insulin-like growth factor-I. This effect occurred through a highly significant reduction in phosphatidylinositol 3-kinase/Akt pathway activation (80% reduction in phosphatidylinositol 3-kinase activity, 55% inhibition of Akt activation) accompanied by a 65% decrease in insulin receptor substrate-1 growth factor-induced tyrosine phosphorylation. These results provide the first evidence that PTPL1/FAP-1 has a key role in the apoptotic process in human breast cancer cells independent of Fas but associated with an early inhibition of the insulin receptor substrate-1/phosphatidylinositol 3-kinase pathway. Our data therefore suggest new therapeutic routes and strengthen the importance of identifying endogenous regulators and substrates of this phosphatase in breast tumors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号