首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Infection of mice by murine gammaherpesvirus 68 (MHV-68) is an excellent small-animal model of gammaherpesvirus pathogenesis in a natural host. We have carried out comparative studies of another herpesvirus, murine herpesvirus 76 (MHV-76), which was isolated at the same time as MHV-68 but from a different murid host, the yellow-necked mouse (Apodemus flavicollis). Molecular analyses revealed that the MHV-76 genome is essentially identical to that of MHV-68, except for deletion of 9,538 bp at the left end of the unique region. MHV-76 is therefore a deletion mutant that lacks four genes unique to MHV-68 (M1, M2, M3, and M4) as well as the eight viral tRNA-like genes. Replication of MHV-76 in cell culture was identical to that of MHV-68. However, following infection of mice, MHV-76 was cleared more rapidly from the lungs. In line with this, there was an increased inflammatory response in lungs with MHV-76. Splenomegaly was also significantly reduced following MHV-76 infection, and much less latent MHV-76 was detected in the spleen. Nevertheless, MHV-76 maintained long-term latency in the lungs and spleen. We utilized a cosmid containing the left end of the MHV-68 genome to reinsert the deleted sequence into MHV-76 by recombination in infected cells, and we isolated a rescuant virus designated MHV-76(cA8+)4 which was ostensibly genetically identical to MHV-68. The growth properties of the rescuant in infected mice were identical to those of MHV-68. These results demonstrate that genetic elements at the left end of the unique region of the MHV-68 genome play vital roles in host evasion and are critical to the development of splenic pathology.  相似文献   

2.
Gammaherpesviruses establish life-long persistency inside the host and cause various diseases during their persistent infection. However, the systemic interaction between the virus and host in vivo has not been studied in individual hosts continuously, although such information can be crucial to control the persistent infection of the gammaherpesviruses. For the noninvasive and continuous monitoring of the interaction between gammaherpesvirus and the host, a recombinant murine gammaherpesvirus 68 (MHV-68, a gammaherpesvirus 68) was constructed to express a firefly luciferase gene driven by the viral M3 promoter (M3FL). Real-time monitoring of M3FL infection revealed novel sites of viral replication, such as salivary glands, as well as acute replication in the nose and the lung and progression to the spleen. Continuous monitoring of M3FL infection in individual mice demonstrated the various kinetics of transition to different organs and local clearance, rather than systemically synchronized clearance. Moreover, in vivo spontaneous reactivation of M3FL from latency was detected after the initial clearance of acute infection and can be induced upon treatment with either a proteasome inhibitor Velcade or an immunosuppressant cyclosporine A. Taken together, our results demonstrate that the in vivo replication and reactivation of gammaherpesvirus are dynamically controlled by the locally defined interaction between the virus and the host immune system and that bioluminescence imaging can be successfully used for the real-time monitoring of this dynamic interaction of MHV-68 with its host in vivo.  相似文献   

3.
4.
5.
There is an urgent need to develop novel therapies for controlling chronic virus infections in immunocompromised patients. Disease associated with persistent γ-herpesvirus infection (EBV, human herpesvirus 8) is a significant problem in AIDS patients and transplant recipients, and clinical management of these conditions is difficult. Immune surveillance failure followed by γ-herpesvirus recrudescence can be modeled using murine γ-herpesvirus (MHV)-68 in mice lacking CD4(+) T cells. In contrast with other chronic infections, no obvious defect in the functional capacity of the viral-specific CD8(+) T cell response was detected. We show in this article that adoptive transfer of MHV-68-specific CD8(+) T cells was ineffective at reducing the viral burden. Together, these indicate the potential presence of T cell extrinsic suppressive factors. Indeed, CD4-depleted mice infected with MHV-68 express increased levels of IL-10, a cytokine capable of suppressing the function of both APCs and T cells. CD4-depleted mice developed a population of CD8(+) T cells capable of producing IL-10 that suppressed viral control. Although exhibiting cell surface markers indicative of activation, the IL-10-producing cells expressed increased levels of programmed death-1 but were not enriched in the MHV-68-specific compartment, nor were they uniformly CD44(hi). Therapeutic administration of an IL-10R blocking Ab enhanced control of the recrudescent virus. These data implicate IL-10 as a promising target for the restoration of immune surveillance against chronic γ-herpesvirus infection in immunosuppressed individuals.  相似文献   

6.
Dissecting the host response to a gamma-herpesvirus   总被引:15,自引:0,他引:15  
The murine gamma-herpesvirus 68 (MHV-68) provides a unique experimental model for dissecting immunity to large DNA viruses that persist in B lymphocytes. The analysis is greatly facilitated by the availability of genetically disrupted (-/-) mice that lack key host-response elements, and by the fact that MHV-68 is a lytic virus that can readily be manipulated for mutational analysis. The mutant virus strategy is being used, for example, to characterize the part played in vivo by an MHV-68-encoded chemokine-binding protein that may ultimately find an application in human therapeutics. Experiments with various -/- mice and monoclonal antibody depletion protocols have shown very clearly that type I interferons (IFNs) are essential for the early control of MHV-68 replication, while CD4+ T cells producing IFN-gamma function to limit the consequences of viral persistence. Virus-specific CD8+ effectors acting in the absence of the CD4+ subset seem initially to control the lytic phase in the lung following respiratory challenge, but are then unable to prevent the reactivation of replicative infection in epithelia and the eventual death of CD4+ T-cell-deficient mice. This could reflect the fact that the interaction between the CD8+ T cells and the virus-infected targets is partially compromised by the MHV-68 K3 protein, which inhibits antigen presentation by MHC class I glycoproteins. Immunization strategies focusing on the CD8+ T-cell response to epitopes expressed during the lytic phase of MHV-68 infection can limit virus replication, but are unable to prevent the establishment of latency. Other experiments with mutant viruses also suggest that there is a disconnection between lytic MHV-68 infection and latency. The massive nonspecific immunoglobulin response and the dramatic expansion of Vbeta4+ CD8+ T cells, which is apparently MHC independent, could represent some sort of 'smoke screen' used by MHV-68 to subvert immunity. Although MHV-68 is neither Epstein-Barr virus nor human herpesvirus-8, the results generated from this system suggest possibilities that may usefully be addressed with these human pathogens. Perhaps the main lesson learned to date is that all the components of immunity are likely to be important for the control of these complex viruses.  相似文献   

7.
8.
9.
The chemokine IP-10 (CXCL10) and its cellular receptor CXCR3 are upregulated in the lung during murine gammaherpesvirus 68 (MHV-68) infection. In order to determine the role of the CXCR3 chemokine receptor in the immune response to MHV-68, CXCR3-/- mice were infected with the virus. CXCR3-/- mice showed delayed clearance of replicating MHV-68 from the lungs. This correlated with delayed T-cell recruitment to the lungs and reduced cytolytic activity prior to viral clearance. Splenomegaly and the numbers of latently infected cells per spleen were transiently increased. However, CXCR3-/- mice showed normal virus-specific antibody titers and effective long-term control of MHV-68 infection.  相似文献   

10.
11.
Murine gamma-herpesvirus 68 (MHV-68) provides an important experimental model for analyzing gamma-herpesvirus latent infection. After intranasal infection with MHV-68, we analyzed the distribution of the virus in different anatomical locations and purified populations of cells. Our data show that long-term latency is maintained in a variety of anatomical locations and cell populations with different frequencies. Importantly, we demonstrate that although latency in the lung is established in a variety of cell subsets, long-term latency in the lung is only maintained in B cells. In contrast, splenic latency is maintained in macrophages and dendritic cells, as well as in B cells. In blood, isotype-switched B cells constitute the major viral reservoir. These results show that the cell subsets in which latency is established vary within different anatomical sites. Finally, we demonstrate that long-term latency is accompanied by a low level of infectious virus in lung and spleen. These data have important implications for understanding the establishment and maintenance of latency by gamma(2)-herpesviruses.  相似文献   

12.
Murine gammaherpesvirus 68 (gammaHV68 [also known as MHV-68]) establishes a latent infection in mice, providing a small-animal model with which to identify host and viral factors that regulate gammaherpesvirus latency. While gammaHV68 establishes a latent infection in multiple tissues, including splenocytes and peritoneal cells, the requirements for latent infection within these tissues are poorly defined. Here we report the characterization of a spontaneous 9.5-kb-deletion mutant of gammaHV68 that lacks the M1, M2, M3, and M4 genes and eight viral tRNA-like genes. Previously, this locus has been shown to contain the latency-associated M2, M3, and viral tRNA-like genes. Through characterization of this mutant, we found that the M1, M2, M3, M4 genes and the viral tRNA-like genes are dispensable for (i) in vitro replication and (ii) the establishment and maintenance of latency in vivo and reactivation from latency following intraperitoneal infection. In contrast, following intranasal infection with this mutant, there was a defect in splenic latency at both early and late times, a phenotype not observed in peritoneal cells. These results indicate (i) that there are different genetic requirements for the establishment of latency in different latent reservoirs and (ii) that the genetic requirements for latency depend on the route of infection. While some of these phenotypes have been observed with specific mutations in the M1 and M2 genes, other phenotypes have never been observed with the available gammaHV68 mutants. These studies highlight the importance of loss-of-function mutations in defining the genetic requirements for the establishment and maintenance of herpesvirus latency.  相似文献   

13.
Willer DO  Speck SH 《Journal of virology》2003,77(15):8310-8321
Murine gammaherpesvirus 68 (gammaHV68; also known as MHV-68) can establish a latent infection in both inbred and outbred strains of mice and, as such, provides a tractable small-animal model to address mechanisms and cell types involved in the establishment and maintenance of chronic gammaherpesvirus infection. Latency can be established at multiple anatomic sites, including the spleen and peritoneum; however, the contribution of distinct cell types to the maintenance of latency within these reservoirs remains poorly characterized. B cells are the major hematopoietic cell type harboring latent gammaHV68. We have analyzed various splenic B-cell subsets at early, intermediate, and late times postinfection and determined the frequency of cells either (i) capable of spontaneously reactivating latent gammaHV68 or (ii) harboring latent viral genome. These analyses demonstrated that latency is established in a variety of cell populations but that long-term latency (6 months postinfection) in the spleen after intranasal inoculation predominantly occurs in B cells. Furthermore, at late times postinfection latent gammaHV68 is largely confined to the surface immunoglobulin D-negative subset of B cells.  相似文献   

14.
Murine gammaherpesvirus is a natural pathogen of wild mice. The virus infects alveolar cells and spleen cells during the primary infection and establishes a latent/persistent infection in B lymphocytes. Little is known about the immunological response to gammaherpesviruses during a primary infection. To address this issue, we investigated the pathogenesis of murine herpesvirus 68 (MHV-68) infection in mice deficient in CD4 or CD8 T-cell populations. Infection of the lung and spleen were greatly exacerbated in CD8-deficient mice, reflected by elevated virus titers in the lung and an increase in the number of infected splenocytes located around germinal centers. This finding contrasts with clearance of virus from the lung and spleen by day 12 postinfection in CD4-depleted animals. These data clearly indicate a major role for CD8 T cells in recovery from an acute MHV-68 infection. Whereas CD4 T cells fail to influence the course of infection in the lung, they do contribute to lymphoproliferation seen in the spleen (splenomegaly) during the primary infection. The significance of these results are discussed in relation to the immune response to other herpesviruses, in particular Epstein-Barr virus, with which MHV-68 shares similar molecular and biological properties.  相似文献   

15.
This work describes analyses of the function of the murid herpesvirus 4 strain 68 (MHV-68) M2 gene. A frameshift mutation was made in the M2 open reading frame that caused premature termination of translation of M2 after amino acid residue 90. The M2 mutant showed no defect in productive replication in vitro or in lungs after infection of mice. Likewise, the characteristic transient increase in spleen cell number, Vbeta4 T-cell-receptor-positive CD8(+) T-cell mononucleosis, and establishment of latency were unaffected. However, the M2 mutant virus was defective in its ability to cause the transient sharp rise in latently infected cells normally seen in the spleen after infection of mice. We also demonstrate that expression of M2 is restricted to B cells in the spleen and that M2 encodes a 30-kDa protein localizing predominantly in the cytoplasm and plasma membrane of B cells.  相似文献   

16.
The role of CD28-dependent costimulatory interactions in the development and maintenance of antiviral immune responses was investigated in a mouse model of gammaherpesvirus infection. CD28(-/-) mice could clear a productive infection with murine gammaherpesvirus 68 (MHV-68), although early lung viral titers were significantly increased. Both CD28(-/-) and CD28(+/+) mice maintained effective long-term control of MHV-68. Gamma interferon responses appeared to develop more slowly in CD28(-/-) mice, while cytotoxic T-cell activity was similar to that in wild-type mice. Splenomegaly developed normally in CD28(-/-) mice, whereas virus-specific antibody responses were significantly reduced and aberrant class switching was observed. This work demonstrates that costimulatory interactions involving CD28 are not an absolute requirement for the control of infection with MHV-68.  相似文献   

17.
Murine herpesvirus-68 (MHV-68) is a type 2 gamma herpesvirus that productively infects alveolar epithelial cells during the acute infection and establishes long-term latency in B cells and lung epithelial cells. In C57BL/6 mice, T cells specific for lytic cycle MHV-68 epitope p56/Db dominate the acute phase of the infection, whereas T cells specific for another lytic cycle epitope, p79/Kb, dominate later phases of infection. To further understand this response, we analyzed the kinetics of Ag presentation in vivo using a panel of lacZ-inducible T cell hybridomas specific for several lytic cycle epitopes, including p56/Db and p79/Kb. Two distinct peaks of Ag presentation were observed. The first peak was at day 6 in the mediastinal lymph nodes and correlated with the initial pulmonary lytic infection. The second peak was at day 18 in both the mediastinal lymph nodes and spleen and correlated with the peak of latent infection. Interestingly, the p56 epitope was detected only in the mediastinal lymph nodes at day 6 after infection whereas the p79 epitope was predominantly presented in the spleen at day 18, suggesting that differential epitope presentation drives the switch in T cell responses to this virus. Phenotypic analysis of APCs at day 18 postinfection revealed that dendritic cells, macrophages, and B cells all presented lytic cycle epitopes. Taken together, the data suggest that there is a resurgence of lytic cycle Ags in the spleen, which explains the kinetics and specificity of the T cell response to MHV-68.  相似文献   

18.
Deng H  Chu JT  Park NH  Sun R 《Journal of virology》2004,78(17):9123-9131
Human gammaherpesviruses are associated with lymphomas and other malignancies. Murine gammaherpesvirus 68 (MHV-68) infection of mice has emerged as a model for understanding gammaherpesvirus pathogenesis in vivo. In contrast to human gammaherpesviruses, MHV-68 replicates in permissive cell lines in a robust manner, presenting an efficient model to study the basic mechanisms for DNA replication and recombination processes. In addition, MHV-68 also infects a broad range of cells of different tissue types and from different host species, and the viral genome persists as an episome in infected cells. These features make MHV-68 an attractive system on which to build gene delivery vectors. We have therefore undertaken a study to identify the cis elements required for MHV-68 genome replication and packaging. Here we report that an 8.4-kb MHV-68 genomic fragment between ORF66 and ORF73 conferred on the plasmid the ability to replicate; replication required the presence of either de novo viral infection or viral reactivation from latency. We further mapped the origin of lytic replication (oriLyt) to a 1.25-kb region. Moreover, we demonstrated that the terminal repeat of the viral genome is sufficient for packaging of the replicated oriLyt plasmid into mature viral particles. Functional identification of the MHV-68 oriLyt and packaging signal has laid a foundation for investigating the mechanisms controlling gammaherpesvirus DNA replication during the viral lytic phase and will also serve as a base on which to design gene delivery vectors.  相似文献   

19.
Alpha/beta interferon (IFN-alpha/beta) protects the host from virus infection by inhibition of lytic virus replication in infected cells and modulation of the antiviral cell-mediated immune response. To determine whether IFN-alpha/beta also modulates the virus-host interaction during latent virus infection, we infected mice lacking the IFN-alpha/beta receptor (IFN-alpha/betaR(-/-)) and wild-type (wt; 129S2/SvPas) mice with murine gammaherpesvirus 68 (gammaHV68), a lymphotropic gamma-2-herpesvirus that establishes latent infection in B cells, macrophages, and dendritic cells. IFN-alpha/betaR(-/-) mice cleared low-dose intranasal gammaHV68 infection with wt kinetics and harbored essentially wt frequencies of latently infected cells in both peritoneum and spleen by 28 days postinfection. However, latent virus in peritoneal cells and splenocytes from IFN-alpha/betaR(-/-) mice reactivated ex vivo with >40-fold- and 5-fold-enhanced efficiency, respectively, compared to wt cells. Depletion of IFN-alpha/beta from wt mice during viral latency also significantly increased viral reactivation, demonstrating an antiviral function of IFN-alpha/beta during latency. Viral reactivation efficiency was temporally regulated in both wt and IFN-alpha/betaR(-/-) mice. The mechanism of IFN-alpha/betaR action was distinct from that of IFN-gammaR, since IFN-alpha/betaR(-/-) mice did not display persistent virus replication in vivo. Analysis of viral latent gene expression in vivo demonstrated specific upregulation of the latency-associated gene M2, which is required for efficient reactivation from latency, in IFN-alpha/betaR(-/-) splenocytes. These data demonstrate that an IFN-alpha/beta-induced pathway regulates gammaHV68 gene expression patterns during latent viral infection in vivo and that IFN-alpha/beta plays a critical role in inhibiting viral reactivation during latency.  相似文献   

20.
Intranasal infection of mice with the murine gamma-herpesvirus MHV-68 results in an acute lytic infection in the lung, followed by the establishment of lifelong latency. Development of an infectious mononucleosis-like syndrome correlates with the establishment of latency and is characterized by splenomegaly and the appearance of activated CD8+ T cells in the peripheral blood. Interestingly, a large population of activated CD8+ T cells in the peripheral blood expresses the V beta 4+ element in their TCR. In this report we show that MHV-68 latency in the spleen after intranasal infection is harbored in three APC types: B cells, macrophages, and dendritic cells. Surprisingly, since latency has not previously been described in dendritic cells, these cells harbored the highest frequency of latent virus. Among B cells, latency was preferentially associated with activated B cells expressing the phenotype of germinal center B cells, thus formally linking the previously reported association of latency gene expression and germinal centers to germinal center B cells. Germinal center formation, however, was not required for the establishment of latency. Significantly, although three cell types were latently infected, the ability to stimulate V beta 4+CD8+ T cell hybridomas was limited to latently infected, activated B cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号