首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Activin A, a transforming growth factor-β family cytokine, plays a crucial role in regulating the onset and severity of many inflammatory conditions, such as acute lipopolysaccharide (LPS)-induced inflammation. Activin A is also implicated in type 2 diabetes (T2D), a disease characterised by insulin resistance, hyperglycaemia and chronic elevation of pro-inflammatory cytokines, including tumour necrosis factor (TNF-α). In the human, neutrophils contain activin A that can be released in response to TNF-α. Studies of inflammatory disease in vivo, however, generally use the mouse, so it is essential to know if murine neutrophils have similar properties. Regulation of activin A was investigated in bone marrow-derived neutrophil precursors (BMNPs) from 8 to 10 weeks old C57BL6/J male mice. The BMNPs contained 7-fold higher concentrations of activin A than bone marrow mononuclear cells. Release of activin A from isolated BMNPs was stimulated by TNF-α, but this was not due to increased activin A production. In contrast to TNF-α, LPS had no effect on isolated BMNPs, but stimulated activin A release and production in total bone marrow cell cultures. Moreover, activin A release in response to LPS, was not prevented in TNF-α null mice. Increased glucose and insulin had no effect on base-line activin A secretion by BMNPs in culture, but pre-treatment with insulin blocked the TNF-α induced release of activin A. These results indicate that murine neutrophils are a source of stored activin A, the release of which can be directly stimulated by TNF-α, although TNF-α is not the only stimulator of activin A release during inflammation. Furthermore, regulation of neutrophil activin A release by insulin may also play a role in the inflammation associated with T2D.  相似文献   

2.
《Biomarkers》2013,18(5):400-409
Background: Tumour necrosis factor (TNF)-α influences the pathogenesis of lung fibrosis and carcinogenesis in normal cells. Polymorphisms of this gene have been suggested to be associated with susceptibility to lung diseases.

Methods: Association studies were performed in German subjects, using control subjects (n?=?177), pulmonary fibrosis patients (n?=?612) and bronchial carcinoma patients (n?=?374).

Results: Compared with a healthy (control) group, a significant result could be obtained for the asbestosis (patient) group (crude odds ratio (ORcrude)?=?1.57; 95% confidence interval (CI) 1.05–2.36; p?=?0.03), especially with severe lung asbestosis (ORcrude?=?4.15; 95% CI 1.06–16.16; p?=?0.04). A significant association was revealed when comparing asbestosis patients (ORcrude?=?4.08; 95% CI 1.53–10.54; p?=?0.004 and ORadjusted?=?3.89; 95% CI 1.49–10.17; p?=?0.006) with asbestos-induced lung cancer patients.

Conclusion: The results confirm the hypothesis that TNF-α polymorphisms are associated with asbestos-induced fibrotic or malignant lung diseases in Germans.  相似文献   

3.

Background  

Previous studies have revealed that tumour necrosis factor (TNF)-α is upregulated in fibrosing alveolitis (FA) in humans. The aim of this study was to compare the TNF-α secretory profile of alveolar macrophages (AMs) and peripheral blood monocytes (Mos) of patients with cryptogenic FA and systemic sclerosis (SSc), a rheumatological disorder in which lung fibrosis can occur. In particular, we wished to assess whether TNF-α levels differ between SSc patients with FA (FASSc) and a nonfibrotic group.  相似文献   

4.
The gender difference in tumor necrosis factor-α (TNF-α) production in human neutrophils stimulated by lipopolysaccharide (LPS) and interferon-γ (IFN-γ) was explored by using peripheral blood neutrophils from young men and women. As compared with female neutrophils, male neutrophils released greater amounts of TNF-α, and exhibited stronger activation of mitogen-activated protein kinases and phosphatidylinositol 3-kinase in response to LPS stimulation. LPS-induced TNF-α production was markedly enhanced by pretreatment of cells with IFN-γ, and IFN-γ-mediated priming in male neutrophils was significantly greater than that in female neutrophils. Male neutrophils showed higher expression of TLR4, but not IFN-γ receptors, than female neutrophils, and its expression was increased by stimulation with IFN-γ or IFN-γ plus LPS. These findings indicate that male neutrophils show higher responsiveness to stimulation with LPS and IFN-γ than female neutrophils, and suggest that the gender difference in neutrophil responsiveness to LPS and IFN-γ is partly responsible for that in the outcome of sepsis, in which premenopausal women show a favorable prognosis as compared with men.  相似文献   

5.
Arylamines and nitroarenes are very important intermediates in the industrial manufacture of dyes, pesticides and plastics, and are significant environmental pollutants. The metabolic steps of N-oxidation and nitroreduction to yield N-hydroxyarylamines are crucial for the toxic properties of arylamines and nitroarenes. Nitroarenes are reduced by microorganisms in the gut or by nitroreductases and aldehyde dehydrogenase in hepatocytes to nitrosoarenes and N-hydroxyarylamines. N-Hydroxyarylamines can be further metabolized to N-sulphonyloxyarylamines, N-acetoxyarylamines or N-hydroxyarylamine N-glucuronide. These highly reactive intermediates are responsible for the genotoxic and cytotoxic effects of this class of compounds. N-Hydroxyarylamines can form adducts with DNA, tissue proteins, and the blood proteins albumin and haemoglobin in a dose-dependent manner. DNA and protein adducts have been used to biomonitor humans exposed to such compounds. All these steps are dependent on enzymes, which are present in polymorphic forms. This article reviews the metabolism of arylamines and nitroarenes and the biomonitoring studies performed in animals and humans exposed to these substances.  相似文献   

6.
7.
To understand the structure-function relationship of human tumor necrosis factor- (TNF-), mutational analysis was carried out on the lower regions (regions 1–6) of the molecule. The muteins were prepared as a soluble form by using a chaperonin co-expression system and the cytotoxic activities of the purified muteins were evaluated on TNF-sensitive murine fibrosarcoma L929 cells. Three regions (regions 1, 2 & 4) were found where mutations significantly influenced the bioactivity. In region 1 (residues 1–10), the number of deleted residues and the positioning of positive charges are important to achieve a maximum activity and in region 4 (residues 84–88), introduction of charged residues in one of the positions 86–88 significantly increased the cytotoxic activity. On the other hand, any mutation introduced in region 2 (residues 37–41) had a deleterious effect. The present study provides a structural basis for the design of highly potent TNF- as a therapeutic agent.Revisions requested 18 October 2004; Revisions received 22 November 2004  相似文献   

8.
We study the correlation of the occurrence of coronary heart disease (CHD) with the presence of the single-nucleotide polymorphism (SNP) at the -308 position of the tumor necrosis factor alpha (TNF-α) gene. We also consider the influence of the occurrence of type 2 diabetes (t2DM). Using Bayesian inference, we first pursue a bottom-up approach to compute the working hypothesis and the probabilities derivable from the data. We then pursue a top-down approach by modelling the signal pathway that causally connects the SNP with the emergence of CHD. We compute the functional form of the probability of CHD conditional on the presence of the SNP in terms of both the statistical and biochemical properties of the system. From the probability of occurrence of a disease conditional on a given risk factor, we explore the possibility of extracting information on the pathways involved in the occurrence of the disease. This is a first study that we want to systematise into a comprehensive formalism to be applied to the inference of the mechanism connecting the risk factors to the disease.  相似文献   

9.
Tumour Necrosis Factor binding at the cell surface induces a complex series of signaling events culminating in the caspase cascade, which is central to apoptosis. However, recent work from several laboratories has questioned caspase involvement in commitment to cell death. We have therefore investigated the involvement of caspases in the crucial commitment stage of tumour necrosis factor-induced apoptosis in human T-leukaemic CEM-C7 cells and breast carcinoma MCF-7 cells, using both peptide-based and viral caspase inhibitors. Our observations converge on the conclusion that commitment to death in these systems is dependent on caspase activity, e.g. baculovirus p35 produces over 50-fold protection of colony-forming ability, the most stringent criterion of cell survival. These observations strongly support the view that the caspase family is of great biological and medical significance, since caspase dysfunction resulting in failure to commit to cell death after treatment with tumour necrosis factor or other stimuli may contribute to cancer development.  相似文献   

10.
Anti-tumour necrosis factor (TNF)α therapy is highly effective in rheumatoid arthritis and it is surprising, therefore, that a recent study showed that intraperitoneal administration of recombinant TNFα reduced the severity of adjuvant-induced arthritis and decreased IFNγ expression in cultured draining lymph node cells. Furthermore, in untreated arthritic rats, maximal TNFα expression in draining lymph node cells coincided with spontaneous disease remission, suggesting a role for endogenous TNFα in recovery from arthritis. If confirmed in further studies, these findings suggest that, in addition to its well-established pro-inflammatory properties, TNFα may also play a disease-limiting role in this model of rheumatoid arthritis by suppressing effector T cell responses.  相似文献   

11.
12.
13.
《遗传学报》2022,49(4):269-278
Nonalcoholic steatohepatitis (NASH), an inflammatory subtype of nonalcoholic fatty liver disease, is featured by significantly elevated levels of various proinflammatory cytokines. Among numerous proinflammatory factors that contribute to NASH pathogenesis, the secreted protein, tumor necrosis factor-alpha (TNF-α), plays an essential role in multiple facets of NASH progression and is therefore considered as a potential therapeutic target. In this review, we will first systematically describe the preclinical studies on the biochemical function of TNF-α and its intracellular downstream signaling mechanisms through its receptors. Moreover, we extensively discuss its functions in regulating inflammation, cell death, and fibrosis of liver cells in the pathogenesis of NASH, and the molecular mechanism that TNF-α expression is regulated by NF-κB and other upstream master regulators during NASH progression. As TNF-α is one of the causal factors that remarkably contributes to NASH progression, combination of therapeutic modalities, including TNF-α-based therapies may lead to the resolution of NASH via multiple pathways and thus generate clinical benefits. For translational studies, we summarize recent advances in strategies targeting TNF-α and its signaling pathway, which paves the way for potential therapeutic treatments for NASH in the future.  相似文献   

14.
Mitochondrial defects, affecting parameters such as mitochondrial number and shape, levels of respiratory chain complex components and markers of oxidative stress, have been associated with the appearance and progression of multiple sclerosis. Nevertheless, mitochondrial physiology has never been monitored during oligodendrocyte progenitor cell (OPC) differentiation, especially in OPCs challenged with proinflammatory cytokines. Here, we show that tumor necrosis factor alpha (TNF-α) inhibits OPC differentiation, accompanied by altered mitochondrial calcium uptake, mitochondrial membrane potential, and respiratory complex I activity as well as increased reactive oxygen species production. Treatment with a mitochondrial uncoupler (FCCP) to mimic mitochondrial impairment also causes cells to accumulate at the progenitor stage. Interestingly, AMP-activated protein kinase (AMPK) levels increase during TNF-α exposure and inhibit OPC differentiation. Overall, our data indicate that TNF-α induces metabolic changes, driven by mitochondrial impairment and AMPK activation, leading to the inhibition of OPC differentiation.Multiple sclerosis (MS) is a neurological disorder of the central nervous system that is characterized by demyelination and neurodegeneration. Although the pathogenesis of MS is not completely understood, various findings suggest that immune-mediated loss of myelin and different types of mitochondrial dysfunction are associated with this disease.1 Mitochondria are often described as cellular powerhouses that utilize oxygen to produce adenosine triphosphate (ATP), a molecule that is critical for most cellular functions.2 In addition, mitochondria are the major sites of the intracellular production of highly reactive free radicals that, if not neutralized, alter cellular metabolism and damage cellular components.3In several studies, mitochondrial dysfunction has been reported to be frequently associated with demyelination, whereas proper function is required for correct oligodendrocyte differentiation and myelination.4, 5 Furthermore, there is in vitro evidence that cytokine-induced oligodendrocyte injury involves mitochondrial dysfunction.6 One cytokine that is of particular interest in MS is tumor necrosis factor alpha (TNF-α). Evidence implicating TNF-α in the underlying pathology of MS includes: (i) reports that MS patients have elevated TNF-α levels at the sites of active MS lesions at autopsy,7 (ii) reports that TNF-α levels are elevated in the cerebrospinal fluid and serum of individuals with MS compared with unaffected individuals and that these TNF-α levels correlate with the severity of the lesions.8, 9Moreover, it has been widely reported that TNF-α is able to impair oligodendrocyte differentiation and that in leukemia cell lines, TNF-α-induced cell death requires impairments in the activity of mitochondrial respiratory chain complex I. Complex I is strategically important for regulating ATP synthesis and is one of the most important sources of reactive oxygen species (ROS) within cells.10 Despite this evidence, the relationships between mitochondrial physiology, TNF-α, and oligodendrocyte differentiation have not yet been examined. This study addressed the hypothesis that the impairment of oligodendrocyte differentiation caused by TNF-α exposure is causally linked to altered mitochondrial physiology.  相似文献   

15.
Activation of innate immunity with the subsequent development of a chronic low-grade inflammatory response is now recognized as a critical factor in the pathogenesis of diabetes mellitus and diabetic complications, including diabetic nephropathy. In the setting of diabetic nephropathy, there is now evidence of the relevant contribution of pro-inflammatory cytokines, with special participation of tumor necrosis factor-α (TNF-α). This new pathogenic perspective leads to new therapeutic implications derived from modulation of inflammation and inflammatory cytokines. Experimental studies have shown the beneficial renal actions derived from TNF-α inhibition with the use of soluble TNF-α receptor fusion proteins, chimeric monoclonal antibodies and pentoxifylline (PTF). Clinical application of this strategy is nowadays limited to PTF administration, which has demonstrated significant beneficial effects in patients with diabetic nephropathy. Overall, these studies indicate that inhibition of TNF-α might be an efficacious treatment for renal disease secondary to diabetes mellitus.  相似文献   

16.
Tumor necrosis factor-alpha (TNF-) is believed to play a central role in the pathogenesis of pneumoconiosis. TNF2, a polymorphism in the TNF- gene promoter, has been associated with an increase in TNF- production and airway inflammation. To investigate the frequency of TNF2 in patients who have coal workers' pneumoconiosis (CWP) and to determine whether it is associated with development of a large opacity in CWP, we investigated the expression of the TNF2 allele in 80 patients who had CWP and in 54 healthy controls using restriction fragment length polymorphism (RFLP). Compared to controls (10.2%), the frequency of the TNF2 allele was greater in the CWP patients (20.6%). Furthermore, the TNF2 allele was very common in patients who had a large opacity (28.2%) in comparison with 13.4% in those with simple CWP. From these data, we suggest that the TNF2 allele is associated with the development of a large opacity in CWP.  相似文献   

17.
Reactive oxygen intermediates (ROIs), such as hydrogen peroxide (H2O2), have been implicated as second messengers in the activation of NF-κB by a variety of stimuli, including tumour necrosis factor-alpha (TNF-α). The aim of the present study was to examine the effects of ROIs on NF-κB activation in primary human CD3+ T lymphocytes and human peripheral blood mononuclear cells (PBMCs). For comparison purposes, Jurkat T cells (subclones JR and JE6.1) were also investigated. Cells were incubated in the presence of either H2O2 or TNF-α and nuclear proteins were extracted. NF-κB binding was assessed by electrophoretic mobility shift assays (EMSAs). The concentration of H2O2 required to activate NF-κB in human primary CD3+ T lymphocytes was as low as 1 μM. In contrast, much higher concentrations of H2O2 were required to activate NF-κB in PBMCs and in the JR subclone of Jurkat T cells. H2O2-induced NF-κB activation was not observed in the JE6.1 subclone of Jurkat T cells. NF-κB was activated by TNF-α in all four cell types tested. In PBMCs and Jurkat T cells (subclones JR and JE6.1), this activation could be inhibited by pre-treatment with the antioxidants, pyrrolidine dithiocarbamate (PDTC) and N-acetyl-l-cysteine (NAC). Our results support a role for ROIs in NF-κB-DNA binding in human primary T lymphocytes.  相似文献   

18.

Background  

Visfatin, a adipocytokine with insulin-mimetic effect, plays a role in endothelial angiogenesis. Hyperbaric oxygen (HBO) has been used in medical practice. However, the molecular mechanism of beneficial effects of HBO is poorly understood. We sought to investigate the cellular and molecular mechanisms of regulation of visfatin by HBO in human coronary arterial endothelial cells (CAECs).  相似文献   

19.
Inflammation is often accompanied by hypoxia. However, crosstalk between signalling pathways activated by inflammation and signalling events that control adaptive response to hypoxia is not fully understood. Here we show that exposure to tumour necrosis factor-α (TNF-α) activates expression of the inhibitory PAS domain protein (IPAS) to suppress the hypoxic response caused by hypoxia-inducible factor (HIF)-1 and HIF-2 in rat pheochromocytoma PC12 cells but not in human hepatoma Hep3B cells. This induction of IPAS was dependent on the nuclear factor-κB (NF-κB) pathway and attenuated hypoxic induction of HIF-1 target genes such as tyrosine hydroxylase (TH) and vascular endothelial growth factor (VEGF). HIF-dependent reporter activity in hypoxia was also decreased following TNF-α treatment. Knockdown of IPAS mRNA by small interfering RNA (siRNA) restored the TNF-α-suppressed hypoxic response. These results indicate that TNF-α is a cell-type specific suppressor of HIFs and suggest a novel crosstalk between stimulation by inflammatory mediators and HIF-dependent hypoxic response.  相似文献   

20.
Cationic liposomes have been used successfully for DNA delivery to airway cells in vitro and are being tested in human clinical trials for their efficacy in cystic fibrosis transmembrane conductance regulator (CFTR) gene delivery in cystic fibrosis patients. While cationic liposomes are effective for transfection of airway cells in culture, they have not been effectively used for gene delivery to human airway cells in vivo. Several barriers in cystic fibrosis lungs, including increased amounts of mucus, phagocytic cell activity and cytokine-rich milieu caused by inflammation, may cause inhibition of gene transfection. As presented in this paper, we examined the effects of inflammatory cytokines on cationic lipid-mediated transfection of model airway cells. The results of these experiments indicate that tumor necrosis factor (TNF)-α dramatically inhibits Lipofectin-mediated transfection efficiency of H441 cells. Addition of anti-TNF-α neutralizing antibody results in recovery of efficiency. Results of temporal studies are consistent with the concept that TNF-α reduces transfection efficiency by a mechanism(s) other than or in addition to gene expression. These results are corroborated by fluorescence microscopic experiments which demonstrate that endocytosis of lipoplex is altered in the presence of TNF-α.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号