首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Characterization of overall ceramide species in human stratum corneum   总被引:1,自引:0,他引:1  
Ceramides (CERs) in human stratum corneum (SC) play physicochemical roles in determining barrier and water-holding functions of the skin, and specific species might be closely related to the regulation of keratinization, together with other CER-related lipids. Structures of those diverse CER species, however, have not been comprehensively revealed. The aim of this study was to characterize overall CER species in the SC. First, we constructed 3D multi-mass chromatograms of the overall CER species, based on normal-phase liquid chromatography (NPLC) connected to electrospray ionization-mass spectrometry (ESI-MS) using a gradient elution system and a postcolumn addition of a volatile salt-containing polar solvent. The CERs targeted from the 3D chromatograms were structurally analyzed using NPLC-ESI-tandem mass spectrometry (MS/MS), which resulted in the identification of 342 CER species in the inner forearm SC. This led to the discovery of a new CER class consisting of alpha-hydroxy fatty acid and dihydrosphingosine moieties, in addition to the 10 classes generally known. The results also revealed that those CERs contain long-chain (more than C(18))-containing sphingoids and a great number of isobaric species. These novel results will contribute not only to physiochemical research on CERs in the SC but also to lipidomics approaches to CERs in the skin.  相似文献   

2.
Ceramides (CERs), cholesterol, and free fatty acids (FFAs) are the main lipid classes in human stratum corneum (SC, outermost skin layer), but no studies report on the detailed analysis of these classes in a single platform. The primary aims of this study were to 1) develop an LC/MS method for (semi-)quantitative analysis of all main lipid classes present in human SC; and 2) use this method to study in detail the lipid profiles of human skin substitutes and compare them to human SC lipids. By applying two injections of 10 μl, the developed method detects all major SC lipids using RPLC and negative ion mode APCI-MS for detection of FFAs, and NPLC using positive ion mode APCI-MS to analyze CERs and cholesterol. Validation showed this lipid platform to be robust, reproducible, sensitive, and fast. The method was successfully applied on ex vivo human SC, human SC obtained from tape strips and human skin substitutes (porcine SC and human skin equivalents). In conjunction with FFA profiles, clear differences in CER profiles were observed between these different SC sources. Human skin equivalents more closely mimic the lipid composition of human stratum corneum than porcine skin does, although noticeable differences are still present. These differences gave biologically relevant information on some of the enzymes that are probably involved in SC lipid processing. For future research, this provides an excellent method for (semi-)quantitative, ‘high-throughput’ profiling of SC lipids and can be used to advance the understanding of skin lipids and the biological processes involved.  相似文献   

3.
Understanding the lipid arrangement within the skin’s outermost layer, the stratum corneum (SC), is important for advancing knowledge on the skin barrier function. The SC lipid matrix consists of ceramides (CERs), cholesterol, and free fatty acids, which form unique crystalline lamellar phases, referred to as the long periodicity phase (LPP) and short periodicity phases. As the SC lipid composition is complex, lipid model systems that mimic the properties of native SC are used to study the SC lipid organization and molecular arrangement. In previous studies, such lipid models were used to determine the molecular organization in the trilayer structure of the LPP unit cell. The aim of this study was to examine the location of CER N-(tetracosanoyl)-phytosphingosine (CER NP) in the unit cell of this lamellar phase and compare its position with CER N-(tetracosanoyl)-sphingosine (CER NS). We selected CER NP as it is the most prevalent CER subclass in the human SC, and its location in the LPP is not known. Our neutron diffraction results demonstrate that the acyl chain of CER NP was positioned in the central part of the trilayer structure, with a fraction also present in the outer layers, the same location as determined for the acyl chain of CER NS. In addition, our Fourier transformed infrared spectroscopy results are in agreement with this molecular arrangement, suggesting a linear arrangement for the CER NS and CER NP. These findings provide more detailed insight into the lipid organization in the SC lipid matrix.  相似文献   

4.
The barrier function of the skin is provided by the stratum corneum (SC), the outermost layer of the skin. Ceramides (CERs), cholesterol (CHOL) and free fatty acids (FFAs) are present in SC and form highly ordered crystalline lipid lamellae. These lamellae are crucial for a proper skin barrier function. In the present study, Fourier transform infrared spectroscopy was used to examine the lipid organization of mixtures prepared from synthetic CERs with CHOL and FFAs. The conformational ordering and lateral packing of these mixtures showed great similarities to the lipid organization in SC and lipid mixtures prepared with native CERs. Therefore, mixtures with synthetic CERs serve as an excellent tool for studying the effect of molecular architecture of CER subclasses on the lipid phase behavior. In SC the number of OH-groups in the head groups of CER subclasses varies. Furthermore, acylCERs with a linoleic acid chemically bound to a long acyl chain are also identified. The present study revealed that CER head group architecture affects the lateral packing and conformational ordering of the CER:CHOL:FFA mixtures. Furthermore, while the majority of the lipids form a crystalline packing, the linoleate moiety of the acylCERs participates in a “pseudo fluid” phase.  相似文献   

5.
An ultraperformance LC (UPLC) method for the separation of different lipid molecular species and lipid isomers using a stationary phase incorporating charged surface hybrid (CSH) technology is described. The resulting enhanced separation possibilities of the method are demonstrated using standards and human plasma extracts. Lipids were extracted from human plasma samples with the Bligh and Dyer method. Separation of lipids was achieved on a 100 × 2.1 mm inner diameter CSH C18 column using gradient elution with aqueous-acetonitrile-isopropanol mobile phases containing 10 mM ammonium formate/0.1% formic acid buffers at a flow rate of 0.4 ml/min. A UPLC run time of 20 min was routinely used, and a shorter method with a 10 min run time is also described. The method shows extremely stable retention times when human plasma extracts and a variety of biofluids or tissues are analyzed [intra-assay relative standard deviation (RSD) <0.385% and <0.451% for 20 and 10 min gradients, respectively (n = 5); interassay RSD <0.673% and <0.763% for 20 and 10 min gradients, respectively (n = 30)]. The UPLC system was coupled to a hybrid quadrupole orthogonal acceleration time-of-flight mass spectrometer, equipped with a traveling wave ion-mobility cell. Besides demonstrating the separation for different lipids using the chromatographic method, we demonstrate the use of the ion-mobility MS platform for the structural elucidation of lipids. The method can now be used to elucidate structures of a wide variety of lipids in biological samples of different matrices.  相似文献   

6.
The lipids in the uppermost layer of the skin, the stratum corneum (SC), play an important role in the skin barrier function. The three main subclasses in the SC lipid matrix are ceramides (CER), cholesterol, and free fatty acids. In inflammatory skin diseases, such as atopic dermatitis and psoriasis, the SC lipid composition is modulated compared to the composition in healthy SC. One of the main alterations is the molar ratio between the concentration of CER N-(tetracosanoyl)-sphingosine (CER NS) and CER N-(tetracosanoyl)-phytosphingosine (CER NP), which correlated with an impaired skin barrier function. In the present study, we investigated the impact of varying the CER NS:CER NP ratios on the lipid organization, lipid arrangement, and barrier functionality in SC lipid model systems. The results indicate that a higher CER NS:CER NP ratio as observed in diseased skin did not alter the lipid organization or lipid arrangement in the long periodicity phase encountered in SC. The trans-epidermal water loss, an indication of the barrier functionality, was significantly higher for the CER NS:CER NP 2:1 model (mimicking the ratio in inflammatory skin diseases) compared to the CER NS:CER NP 1:2 ratio (in healthy skin). These findings provide a more detailed insight into the lipid organization in both healthy and diseased skin and suggest that in vivo the molar ratio between CER NS:CER NP contributes to barrier impairment as well but might not be the main factor.  相似文献   

7.
The increasing role played by liquid chromatography‐mass spectrometry (LC‐MS)‐based proteomics in biological discovery has led to a growing need for quality control (QC) on the LC‐MS systems. While numerous quality control tools have been developed to track the performance of LC‐MS systems based on a pre‐defined set of performance factors (e.g., mass error, retention time), the precise influence and contribution of the performance factors and their generalization property to different biological samples are not as well characterized. Here, a web‐based application (QCMAP) is developed for interactive diagnosis and prediction of the performance of LC‐MS systems across different biological sample types. Leveraging on a standardized HeLa cell sample run as QC within a multi‐user facility, predictive models are trained on a panel of commonly used performance factors to pinpoint the precise conditions to a (un)satisfactory performance in three LC‐MS systems. It is demonstrated that the learned model can be applied to predict LC‐MS system performance for brain samples generated from an independent study. By compiling these predictive models into our web‐application, QCMAP allows users to benchmark the performance of their LC‐MS systems using their own samples and identify key factors for instrument optimization. QCMAP is freely available from: http://shiny.maths.usyd.edu.au/QCMAP/ .  相似文献   

8.
In proteomics, more than 100,000 peptides are generated from the digestion of human cell lysates. Proteome samples have a broad dynamic range in protein abundance; therefore, it is critical to optimize various parameters of LC–ESI–MS/MS to comprehensively identify these peptides. However, there are many parameters for LC–ESI–MS/MS analysis. In this study, we applied definitive screening design to simultaneously optimize 14 parameters in the operation of monolithic capillary LC–ESI–MS/MS to increase the number of identified proteins and/or the average peak area of MS1. The simultaneous optimization enabled the determination of two-factor interactions between LC and MS. Finally, we found two parameter sets of monolithic capillary LC–ESI–MS/MS that increased the number of identified proteins by 8.1% or the average peak area of MS1 by 67%. The definitive screening design would be highly useful for high-throughput analysis of the best parameter set in LC–ESI–MS/MS systems.  相似文献   

9.
The lipid lamellae in the stratum corneum (SC) play a key role in the barrier function of the skin. The major lipids are ceramides (CER), cholesterol (CHOL) and free fatty acids (FFA). In pig SC at least six subclasses of ceramides (referred to as CER 1, 2-6) are present. Recently it was shown that in mixtures of isolated pig SC ceramides (referred to as CER(1-6)) and CHOL two lamellar phases are formed, which mimic SC lipid organisation very closely [J.A. Bouwstra et al., 1996, J. Lipid Res. 37, 999-1011] [1]. Since the CER composition in SC originating from different sources/donors often varies, information on the effect of variations in CER composition on the SC lipid organisation is important. The results of the present study with mixtures of CHOL including two different CER mixtures that lack CER 6 (CER(1-5) mixtures) revealed that at an equimolar molar ratio their lipid organisation was similar to that of the equimolar CHOL:CER(1-6) and CHOL:CER(1,2) mixtures, described previously. These observations suggest that at an equimolar CHOL:CER ratio the lipid organisation is remarkably insensitive toward a change in the CER composition. Similar observations have been made with equimolar CHOL:CER:FFA mixtures. The situation is different when the CHOL:CER molar ratio varies. While in the CHOL:CER(1-6) mixture the lamellar organisation hardly changed with varying molar ratio from 0.4 to 2, the lamellar organisation in the CHOL:CER(1-5) mixtures appeared to be more sensitive to a change in the relative CHOL content, especially concerning the changes in the periodicities of the lamellar phases. In summary, these findings clearly indicate that at an equimolar CHOL:CER molar ratio the lamellar organisation is least sensitive to a variation in CER composition, while at a reduced CHOL:CER molar ratio the CER composition plays a more prominent role in the lamellar phases. This observation may have an implication for the in vivo situation when both the CER composition and the CHOL:CER molar ratio change simultaneously.  相似文献   

10.
An online, two-dimensional (2D) liquid chromatography (LC) quadrupole time-of-flight mass spectrometry (QToF-MS) method was developed for lipid profiling of rat peritoneal surface layers, in which the lipid classes and species could be simultaneously separated in one injection with a significantly increased sensitivity. Different lipid classes were separated on a normal-phase column in the first dimension and lipid molecular species were separated on a reversed-phase column in the second dimension, so that the ion suppression effects were reduced while the detection sensitivity was improved. Identified were 721 endogenous lipid species from 12 lipid classes, in which 415 structures were confirmed using tandem mass spectra, and the other 306 lipid molecular species were identified by accurate masses. The linearity, limit of detection, and repeatability were all satisfactory. The method was applied to the investigation of the lipid changes in rat peritoneal surface layer after peritoneal dialysis, and 32 potential lipid biomarkers were identified, as their concentrations in the dosed group were 2.2–12.5 times of those in the control group. The results revealed that this 2D LC-MS system was a promising tool for lipid profiling of complex biological samples.  相似文献   

11.
This work aims to combine chromatographic retention, high mass resolution and accuracy, MS/MS spectra, and a package for automated identification and quantitation of lipid species in one platform for lipidomic analysis. The instrumental setup elaborated comprises reversed-phase HPLC coupled to a Fourier transform ion cyclotron resonance mass spectrometer (LTQ-FT), and Lipid Data Analyzer (LDA) software. Data analysis for lipid species quantification in this platform is based on retention time, mass resolution of 200,000, and mass accuracy below 2 ppm. In addition, automatically generated MS/MS spectra provide structural information at molecular level. This LC/MS technology allows analyzing complex biological samples in a quantitative manner as shown here paradigmatically for murine lipid droplets having a huge surplus of triacylglycerol species. Chromatographic preseparation of the bulk lipid class alleviates the problem of ion suppression of lipid species from other classes. Extension of 1D to 2D chromatography is possible, yet time consuming. The platform affords unambiguous detection of lipid species as low as 0.1‰ within major lipid classes. Taken together, a novel lipidomic LC/MS platform based on chromatographic retention, high mass resolution and accuracy, MS/MS analysis, and quantitation software enables analysis of complex samples as demonstrated for lipid droplets.  相似文献   

12.
The lipid matrix in stratum corneum (SC) plays a key role in the barrier function of the mammalian skin. The major lipids are ceramides (CER), cholesterol (CHOL) and free fatty acids (FFA). Especially the unique-structured omega-acylceramide CER[EOS] is regarded to be essential for skin barrier properties by inducing the formation of a long-periodicity phase of 130 angstroms (LPP). In the present study, the arrangement of CER[EOS], either mixed with CER[AP] and CHOL or with CER[AP], CHOL and palmitic acid (PA), inside a SC lipid model membrane has been studied for the first time by neutron diffraction. For a mixed CER[EOS]/CER[AP]/CHOL membrane in a partly dehydrated state, the internal membrane nanostructure, i.e. the neutron scattering length density profile in the direction normal to the surface, was obtained by Fourier synthesis from the experimental diffraction patterns. The membrane repeat distance is equal to that of the formerly used SC lipid model system composed of CER[AP]/CHOL/PA/ChS. By comparing both the neutron scattering length density profiles, a possible arrangement of synthetic long-chain CER[EOS] molecules inside a SC lipid model matrix is suggested. The analysis of the internal membrane nanostructure implies that one CER[EOS] molecule penetrates from one membrane layer into an adjacent layer. A 130 angstroms periodicity phase could not be observed under experimental conditions, either in CER/CHOL mixtures or in CER/CHOL/FFA mixture. CER[EOS] can be arranged inside a phase with a repeat unit of 45.2 angstroms which is predominately formed by short-chain CER[AP] with distinct polarity.  相似文献   

13.
It is now apparent that each of the known, naturally occurring polyphosphoinositides, the phosphatidylinositol monophosphates (PtdIns3P, PtdIns4P, PtdIns5P), phosphatidylinositol bisphosphates [PtdIns(3,4)P(2), PtdIns(3,5)P(2), PtdIns(4,5)P(2)], and phosphatidylinositol trisphosphate [PtdIns(3,4,5)P(3)], have distinct roles in regulating many cellular events, including intracellular signaling, migration, and vesicular trafficking. Traditional identification techniques require [(32)P]inorganic phosphate or [(3)H]inositol radiolabeling, acidified lipid extraction, deacylation, and ion-exchange head group separation, which are time-consuming and not suitable for samples in which radiolabeling is impractical, thus greatly restricting the study of these lipids in many physiologically relevant systems. Thus, we have developed a novel, high-efficiency, buffered citrate extraction methodology to minimize acid-induced phosphoinositide degradation, together with a high-sensitivity liquid chromatography-mass spectrometry (LC-MS) protocol using an acetonitrile-chloroform-methanol-water-ethylamine gradient with a microbore silica column that enables the identification and quantification of all phosphoinositides in a sample. The liquid chromatograph is sufficient to resolve PtdInsP(3) and PtdInsP(2) regioisomers; however, the PtdInsP regioisomers require a combination of LC and diagnostic fragmentation to MS(3). Data are presented using this approach for the analysis of phosphoinositides in human platelet and yeast samples.  相似文献   

14.
Sensitive method for chemical analysis of free cholesterol (FC) and cholesterol esters (CE) was developed. Mouse arteries were dissected and placed in chloroform-methanol without tissue grinding. Extracts underwent hydrolysis of cholesteryl esters and derivatization of cholesterol followed by liquid chromatography/mass spectrometry (LC/MS/MS) analysis. We demonstrated that FC and CE could be quantitatively extracted without tissue grinding and that lipid extraction simultaneously worked for tissue fixation. Delipidated tissues can be embedded in paraffin, sectioned, and stained. Microscopic images obtained from delipidated arteries have not revealed any structural alterations. Delipidation was associated with excellent antigen preservation compatible with traditional immunohistochemical procedures. In ApoE(-/-) mice, LC/MS/MS revealed early antiatherosclerotic effects of dual PPARalpha,gamma agonist LY465606 in brachiocephalic arteries of mice treated for 4 weeks and in ligated carotid arteries of animals treated for 2 weeks. Reduction in CE and FC accumulation in atherosclerotic lesions was associated with the reduction of lesion size. Thus, a combination of LC/MS/MS measurements of CE and FC followed by histology and immunohistochemistry of the same tissue provides novel methodology for sensitive and comprehensive analysis of experimental atherosclerotic lesions.  相似文献   

15.
Ex vivo regenerated stratum corneum (SC) after tape-stripping can be used as a model to study the barrier function of compromised skin. Yet, details about how close the regenerated SC model mimics the lipid properties (e.g. lipid composition and lipid ordering) of the in vivo situation are not known. Here, we examined using a comprehensive ceramide analysis whether human ex vivo regenerated SC showed similar lipid properties as human in vivo regenerated SC. Both in vivo and ex vivo regenerated SC had an altered ceramide subclass composition, with increased percentages of sphingosine-based subclass and decreased percentages of phytosphingosine-based subclass ceramides, a reduced mean ceramide chain length, and a higher percentage of unsaturated ceramides. Overall, regenerated SC ex vivo showed more pronounced but similar changes compared to the in vivo response. One of the purposes of these models is to use them to mimic compromised skin of inflammatory skin diseases. The altered lipid properties in regenerated SC were comparable to those observed in several inflammatory skin diseases, which makes them a valuable model for the barrier properties in inflammatory skin diseases.  相似文献   

16.
In the outermost layer of the skin, the stratum corneum (SC), ceramides form a diverse and essential pool of lipids. Due to their diversity and the limited availability of synthetic standards it is challenging to quantitatively analyse all SC ceramides independently. We aim to perform a detailed analysis of ceramides on SC harvested from in vivo and ex vivo skin, therefore, a LC/MS method was developed in which all steps from sample acquisition until data analysis were examined and optimized. Improving extraction efficiency of ceramides resulted in an increase in efficiency from 71.5% to 99.3%. It was shown that sample harvesting by tape-stripping in vivo was accurate and precise. A full scan MS method was developed, compatible with all sample types, enabling simultaneously qualitative and quantitative data analysis. A novel three dimensional response model was constructed to quantify all detected ceramides from full scan data using a limited amount of synthetic ceramides. The application is demonstrated on various SC sample types. When ex vivo SC was regenerated during human skin culture, increases are observed in the amount of the ceramide sphingosine subclasses, in mono unsaturated ceramides (which have an cis-double bond in the acyl chain), and ceramides with a short C34 carbon chain (ceramides with a total carbon chain of 34 carbon atoms), compared with native human skin. These changes in ceramide levels are also often encountered in diseased skin.  相似文献   

17.
The lipid lamellae present in the outermost layer of the skin, the stratum corneum (SC), form the main barrier for diffusion of molecules across the skin. The main lipid classes in SC are cholesterol (CHOL), free fatty acids (FFA) and at least nine classes of ceramides (CER), referred to as CER1 to CER9. In the present study the phase behaviour of four synthetic CER, either single or mixed with CHOL or CHOL and FFA, has been studied using small and wide angle X-ray diffraction. The lipid mixtures showed complex phase behaviour with coexistence of several phases. The results further revealed that the presence of synthetic CER1 as well as a proper composition of the other CER in the mixture were crucial for the formation of a phase with a long periodicity, characteristic for SC lipid phase behaviour. Only a mixture containing synthetic CER1 and CER3, CHOL and FFA showed similar phase behaviour to that of SC.  相似文献   

18.
We have developed an online analytical method that combines A431 cell membrane chromatography (A431/CMC) with high performance liquid chromatography and mass spectrometry (LC/MS) for identifying active components from Radix Caulophylli acting on human EGFR. Retention fractions on A431/CMC model were captured onto an enrichment column and the components were directly analyzed by combining a 10-port column switcher with an LC/MS system for separation and preliminary identification. Using Sorafenib tosylate as a positive control, taspine and caulophine from Radix Caulophylli were identified as the active molecules which could act on the EGFR. This A431/CMC-online-LC/MS method can be applied for screening active components acting on EGFR from traditional Chinese medicines exemplified by Radix Caulophylli and will be of great utility in drug discovery using natural medicinal herbs as a source of novel compounds.  相似文献   

19.
Hexahydrophthalic anhydride (HHPA) is a highly sensitizing industrial chemical that is known to covalently bind to endogenous proteins. The aim of this study was to determine the binding sites of HHPA to human serum albumin (HSA). Conjugates between HSA and HHPA, at two different molar ratios, were synthesized under physiological conditions. The conjugates were digested with trypsin and Pronase E to obtain specific peptides and amino acids, which were separated by liquid chromatography (LC). Fractions containing modified peptides were detected through quantification of hydrolysable HHPA using LC coupled to a triple quadrupole mass spectrometer with electrospray ionization. Modified residues in albumin were identified by sequence analyses using nanoelectrospray quadrupole time-of-flight mass spectrometry. A total of 36 HHPA adducts were found in the HSA-HHPA conjugate with 10 times molar excess of added HHPA. In the conjugate with a molar ratio of 1:0.1 of added HHPA, seven HHPA adducts were found bound to Lys137 (domain IB), Lys190, Lys199 and Lys212 (domain IIA), Lys351 (domain IIB), and Lys432 and Lys436 (domain IIIA). Moreover, several of these adducted albumin peptides were detected in nasal lavage fluid from one volunteer exposed to HHPA. The binding sites of HHPA to HSA have been determined, thus identifying potential allergenic chemical structures. This knowledge generates the possibility of developing methods for the biological monitoring of HHPA exposure by analysing tryptic peptides including these binding sites.  相似文献   

20.
One of the key challenges in lipidomics is to quantify lipidomes of interest, as it is practically impossible to collect all authentic materials covering the targeted lipidomes. For diverse ceramides (CER) in human stratum corneum (SC) that play important physicochemical roles in the skin, we developed a novel method for quantification of the overall CER species by improving our previously reported profiling technique using normal-phase liquid chromatog­raphy-electrospray ionization-mass spectrometry (NPLC-ESI-MS). The use of simultaneous selected ion monitoring measurement of as many as 182 kinds of molecular-related ions enables the highly sensitive detection of the overall CER species, as they can be analyzed in only one SC-stripped tape as small as 5 mm × 10 mm. To comprehensively quantify CERs, including those not available as authentic species, we designed a procedure to estimate their levels using relative responses of representative authentic species covering the species targeted, considering the systematic error based on intra-/inter-day analyses. The CER levels obtained by this method were comparable to those determined by conventional thin-layer chromatography (TLC), which guarantees the validity of this method. This method opens lipidomics approaches for CERs in the SC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号