首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Journal of molecular biology》2019,431(21):4217-4228
The influenza A virus (IAV), a respiratory pathogen for humans, poses serious medical and economic challenges to global healthcare systems. The IAV genome, consisting of eight single-stranded viral RNA segments, is incorporated into virions by a complex process known as genome packaging. Specific RNA sequences within the viral RNA segments serve as signals that are necessary for genome packaging. Although efficient packaging is a prerequisite for viral infectivity, many of the mechanistic details about this process are still missing. In this review, we discuss the recent advances toward the understanding of IAV genome packaging and focus on the RNA features that play a role in this process.  相似文献   

2.
The design of drugs for treatment of virus infections and the exploitation of viruses as drugs for treatment of diseases could be made more successful by understanding the molecular mechanisms of virus-specific events. The process of assembly, and more specifically packaging of the genome into a capsid, is an obligatory step leading to future infections. To enhance our understanding of the molecular mechanism of packaging, it is necessary to characterize the viral components necessary for the event. In the case of adenovirus, sequences between nucleotides 200 and 400 at the left end of the genome are essential for packaging. This region contains a series of redundant bipartite sequences, termed A repeats, that function in packaging. Synthetic packaging sequences made of multimers of a single A repeat substitute for the authentic adenovirus packaging domain. A repeats are binding sites for the CCAAT displacement protein and the viral protein IVa2. Several lines of evidence implicate these proteins in the packaging process. It was not known, however, whether other cis-acting elements play a role in the packaging process as well. We utilized an in vivo approach to address the role of the inverted terminal repeats and the covalently linked terminal proteins in packaging of the adenovirus genome. Our results show that these elements are not necessary for efficient packaging of the viral genome. A significant implication of these results applicable to gene therapy vector design is that the linkage of the adenovirus packaging domain to heterologous DNA sequences should suffice for targeting to the viral capsid.  相似文献   

3.
Sequences required for efficient packaging of human immunodeficiency virus type 1 (HIV-1) genome RNA into virus particles were identified. Deletion of 19 base pairs between the 5' long terminal repeat and the gag gene initiation codon of HIV-1 resulted in a virus markedly attenuated for replication in human T lymphocytes. The mutant virus was characterized by nearly wild-type ability to encode viral proteins and to produce virion particles. The mutant virions exhibited a significant reduction in the content of HIV-1-specific RNA. These results identify an important component of the HIV-1 packaging signal.  相似文献   

4.
The (+) single-stranded RNA (ssRNA) of the L-A virus is the species packaged to form new viral particles. Empty L-A viral particles specifically bind viral (+) ssRNA, and a sequence 400 bases from the 3' end is necessary for this activity. We show that its stem-loop structure, the A residue protruding from the stem, and the loop sequence are all important for the binding, and that this 34 base region is sufficient for the binding. M1, a satellite virus of L-A, has a similar structure on its (+) strand that is likewise sufficient for the binding. Heterologous RNA with the binding sequence from L-A or M1, when expressed in vivo, was packaged in L-A viral particles. Thus, the sites necessary to bind to empty particles are encapsidation signals for the L-A virus. Since the pol domain of the 180 kd minor coat protein appears to be responsible for the binding, this result suggests that the RNA polymerase molecule recognizes the viral genome for packaging.  相似文献   

5.
The M2 integral membrane protein encoded by influenza A virus possesses an ion channel activity that is required for efficient virus entry into host cells. The role of the M2 protein cytoplasmic tail in virus replication was examined by generating influenza A viruses encoding M2 proteins with truncated C termini. Deletion of 28 amino acids (M2Stop70) resulted in a virus that produced fourfold-fewer particles but >1,000-fold-fewer infectious particles than wild-type virus. Expression of the full-length M2 protein in trans restored the replication of the M2 truncated virus. Although the M2Stop70 virus particles were similar to wild-type virus in morphology, the M2Stop70 virions contained reduced amounts of viral nucleoprotein and genomic RNA, indicating a defect in vRNP packaging. The data presented indicate the M2 cytoplasmic tail plays a role in infectious virus production by coordinating the efficient packaging of genome segments into influenza virus particles.  相似文献   

6.
APOBEC3G (APO3G) is a host cytidine deaminase that is incorporated into human immunodeficiency virus type 1 (HIV-1) particles. We report here that viral RNA promotes stable association of APO3G with HIV-1 nucleoprotein complexes (NPC). A target sequence located within the 5′-untranslated region of the HIV-1 RNA was identified to be necessary and sufficient for efficient APO3G packaging. Fine mapping revealed a sequence normally involved in viral genomic RNA dimerization and Gag binding to be important for APO3G packaging and association with viral NPC. Our data suggest that packaging of APO3G into HIV-1 NPC is enhanced by viral RNA.  相似文献   

7.
8.
Venezuelan equine encephalitis virus (VEEV) is a reemerging virus that causes a severe and often fatal disease in equids and humans. In spite of a continuous public health threat, to date, no vaccines or antiviral drugs have been developed for human use. Experimental vaccines demonstrate either poor efficiency or severe adverse effects. In this study, we developed a new strategy of alphavirus modification aimed at making these viruses capable of replication and efficient induction of the immune response without causing a progressive infection, which might lead to disease development. To achieve this, we developed a pseudoinfectious virus (PIV) version of VEEV. VEE PIV mimics natural viral infection in that it efficiently replicates its genome, expresses all of the viral structural proteins, and releases viral particles at levels similar to those found in wild-type VEEV-infected cells. However, the mutations introduced into the capsid protein make this protein almost incapable of packaging the PIV genome, and most of the released virions lack genetic material and do not produce a spreading infection. Thus, VEE PIV mimics viral infection in terms of antigen production but is safer due to its inability to incorporate the viral genome into released virions. These genome-free virions are referred to as virus-like particles (VLPs). Importantly, the capsid-specific mutations introduced make the PIV a very strong inducer of the innate immune response and add self-adjuvant characteristics to the designed virus. This unique strategy of virus modification can be applied for vaccine development against other alphaviruses.  相似文献   

9.
Viruses have to encapsidate their own genomes during the assembly process. For most RNA viruses, there are sequences within the viral RNA and virion proteins needed for high efficiency of genome encapsidation. However, the roles of host proteins in this process are not understood. Here we find that the cellular DEAD-box RNA helicase DDX6 is required for efficient genome packaging of foamy virus, a spumaretrovirus. After infection, a significant amount of DDX6, normally concentrated in P bodies and stress granules, re-localizes to the pericentriolar site where viral RNAs and Gag capsid proteins are concentrated and capsids are assembled. Knockdown of DDX6 by siRNA leads to a decreased level of viral nucleic acids in extracellular particles, although viral protein expression, capsid assembly and release, and accumulation of viral RNA and Gag protein at the assembly site are little affected. DDX6 does not interact stably with Gag proteins nor is it incorporated into particles. However, we find that the ATPase/helicase motif of DDX6 is essential for viral replication. This suggests that the ATP hydrolysis and/or the RNA unwinding activities of DDX6 function in moderating the viral RNA conformation and/or viral RNA-Gag ribonucleoprotein complex in a transient manner to facilitate incorporation of the viral RNA into particles. These results reveal a unique role for a highly conserved cellular protein of RNA metabolism in specifically re-locating to the site of viral assembly for its function as a catalyst in retroviral RNA packaging.  相似文献   

10.
A duck hepatitis B virus (DHBV) genome cloned from a domestic duck from the People's Republic of China has been sequenced and exhibits no variation in sequences known to be important in viral replication or generation of gene products. Intrahepatic transfection of a dimer of this viral genome into ducklings did not result in viremia or any sign of virus infection, indicating that the genome was defective. Functional analysis of this mutant genome, performed by transfecting the DNA into a chicken hepatoma cell line capable of replicating wild-type virus, indicated that viral RNA is not encapsidated. However, virus core protein is made and can assemble into particles in the absence of encapsidation of viral nucleic acid. Using genetic approaches, it was determined that a change of cysteine to tyrosine in position 711 in the polymerase (P) gene C terminus led to this RNA-packaging defect. By site-directed mutagenesis, it was found that while substitution of Cys-711 with tryptophan also abolished packaging, substitution with methionine did not affect packaging or viral replication. Therefore, Cys-711, which is conserved in all published sequences of DHBV, may not be involved in a disulfide bridge structure essential to viral RNA packaging or replication. Our results, showing that a missense mutation in the region of the DHBV polymerase protein thought to be primarily the RNase H domain results in packaging deficiency, support the previous findings that multiple regions of the complex hepadnaviral polymerase protein may be required for viral RNA packaging.  相似文献   

11.
Reovirus replication occurs in the cytoplasm of the host cell, in virally induced mini‐organelles called virus factories. On the basis of the serotype of the virus, the virus factories can manifest as filamentous (type 1 Lang strain) or globular structures (type 3 Dearing strain). The filamentous factories morphology is dependent on the microtubule cytoskeleton; however, the exact function of the microtubule network in virus replication remains unknown. Using a combination of fluorescent microscopy, electron microscopy, and tomography of high‐pressure frozen and freeze‐substituted cells, we determined the ultrastructural organisation of reovirus factories. Cells infected with the reovirus microtubule‐dependent strain display paracrystalline arrays of progeny virions resulting from their tiered organisation around microtubule filaments. On the contrary, in cells infected with the microtubule‐independent strain, progeny virions lacked organisation. Conversely to the microtubule‐dependent strain, around half of the viral particles present in these viral factories did not contain genomes (genome‐less particles). Complementarily, interference with the microtubule filaments in cells infected with the microtubule‐dependent strain resulted in a significant increase of genome‐less particle number. This decrease of genome packaging efficiency could be rescued by rerouting viral factories on the actin cytoskeleton. These findings demonstrate that the scaffolding properties of the microtubule, and not biochemical nature of tubulin, are critical determinants for reovirus efficient genome packaging. This work establishes, for the first time, a functional correlation between ultrastructural organisation of reovirus factories with genome packaging efficiency and provides novel information on how viruses coordinate assembly of progeny particles.  相似文献   

12.
The molecular mechanism for packaging of the adenovirus (Ad) genome into the capsid is likely similar to that of DNA bacteriophages and herpesviruses-the insertion of viral DNA through a portal structure into a preformed prohead driven by an ATP-hydrolyzing molecular machine. It is speculated that the IVa2 protein of adenovirus is the ATPase providing the power stroke of the packaging machinery. Purified IVa2 binds ATP in vitro and, along with a second Ad protein, the L4 22-kilodalton protein (L4-22K), binds specifically to sequences in the Ad genome that are essential for packaging. The efficiency of binding of these proteins in vitro was correlated with the efficiency of packaging in vivo. By utilizing a virus unable to express IVa2, pm8002, it was reported that IVa2 plays a role in assembly of the empty virion. We wanted to address the question of whether the ATP binding, and hence the putative ATPase activity, of IVa2 was required for its role in virus assembly. Our results show that ATPase activity was not required for the assembly of empty virus particles. In addition, we present evidence that particles were assembled in the absence of IVa2 by using two viruses null for IVa2-a deletion mutant virus, ΔIVa2, and the previously described mutant virus, pm8002. Empty virus particles produced by these IVa2 mutant viruses did not contain detectable viral DNA. We conclude that the major role of IVa2 is in viral DNA packaging. A characterization of the empty particles obtained from the IVa2 mutant viruses compared to wild-type empty particles is presented.  相似文献   

13.
Packaging signals in alphaviruses.   总被引:8,自引:8,他引:0       下载免费PDF全文
Alphaviruses synthesize large amounts of both genomic and subgenomic RNA in infected cells, but usually only the genomic RNA is packaged. This implies the existence of an encapsidation or packaging signal which would be responsible for selectivity. Previously, we had identified a region of the Sindbis virus genome that interacts specifically with the viral capsid protein. This 132-nucleotide (nt) fragment lies within the coding region of the nsP1 gene (nt 945 to 1076). We proposed that the 132-mer is important for capsid recognition and initiates the formation of the viral nucleocapsid. To study the encapsidation of Sindbis virus RNAs in infected cells, we designed a new assay that uses the self-replicating Sindbis virus genomes (replicons) which lack the viral structural protein genes and contain heterologous sequences under the control of the subgenomic RNA promoter. These replicons can be packaged into viral particles by using defective helper RNAs that contain the structural protein genes (P. Bredenbeek, I. Frolov, C. M. Rice, and S. Schlesinger, J. Virol. 67:6439-6446, 1993). Insertion of the 132-mer into the subgenomic RNA significantly increased the packaging of this RNA into viral particles. We have used this assay and defective helpers that contain the structural protein genes of Ross River virus (RRV) to investigate the location of the encapsidation signal in the RRV genome. Our results show that there are several fragments that could act as packaging signals. They are all located in a different region of the genome than the signal for the Sindbis virus genome. For RRV, the strongest packaging signal lies between nt 2761 and 3062 in the nsP2 gene. This is the same region that was proposed to contain the packaging signal for Semliki Forest virus genomic RNA.  相似文献   

14.
Yu SS  Kim JM  Kim S 《Journal of virology》2000,74(18):8775-8780
We have identified a previously unknown nucleotide sequence important for the packaging of murine leukemia virus. This nucleotide sequence is located downstream from the stop codon of the env gene but does not overlap the polypurine tract. Deletion of 17 bp from this region resulted in a more than 10-fold decrease in viral titer. Consistent with this result, the deletion mutant showed a 20- to 30-fold drop in the amount of virion RNA in the culture supernatant. The total amount of virion protein in the culture supernatant was comparable for the deletion mutant and the parental virus, suggesting that the mutant construct could release the empty viral particles. These results suggested that the packaging signal sequence might be present at the two extreme sites of the viral genome, one in the region around the splice donor sequence downstream from the 5' long terminal repeat (LTR) and the other immediately upstream from the 3' LTR. Implications for gene therapy, especially in regard to construction of retroviral vectors and packaging constructs, are discussed.  相似文献   

15.
16.
Lassa virus is an enveloped virus with glycoprotein spikes on its surface. It contains an RNA ambisense genome that encodes the glycoprotein precursor GP-C, the nucleoprotein NP, the polymerase L, and the Z protein. Here we demonstrate that the Lassa virus Z protein (i). is abundant in viral particles, (ii). is strongly membrane associated, (iii). is sufficient in the absence of all other viral proteins to release enveloped particles, and (iv). contains two late domains, PTAP and PPXY, necessary for the release of virus-like particles. Our data provide evidence that Z is the Lassa virus matrix protein that is the driving force for virus particle release.  相似文献   

17.
Alphaviruses are a group of small, enveloped viruses which are widely distributed on all continents. In infected cells, alphaviruses display remarkable specificity in RNA packaging by encapsidating only their genomic RNA while avoiding packaging of the more abundant viral subgenomic (SG), cellular messenger and transfer RNAs into released virions. In this work, we demonstrate that in spite of evolution in geographically isolated areas and accumulation of considerable diversity in the nonstructural and structural genes, many alphaviruses belonging to different serocomplexes harbor RNA packaging signals (PSs) which contain the same structural and functional elements. Their characteristic features are as follows. (i) Sindbis, eastern, western, and Venezuelan equine encephalitis and most likely many other alphaviruses, except those belonging to the Semliki Forest virus (SFV) clade, have PSs which can be recognized by the capsid proteins of heterologous alphaviruses. (ii) The PS consists of 4 to 6 stem-loop RNA structures bearing conserved GGG sequences located at the base of the loop. These short motifs are integral elements of the PS and can function even in the artificially designed PS. (iii) Mutagenesis of the entire PS or simply the GGG sequences has strong negative effects on viral genome packaging and leads to release of viral particles containing mostly SG RNAs. (iv) Packaging of RNA appears to be determined to some extent by the number of GGG-containing stem-loops, and more than one stem-loop is required for efficient RNA encapsidation. (v) Viruses of the SFV clade are the exception to the general rule. They contain PSs in the nsP2 gene, but their capsid protein retains the ability to use the nsP1-specific PS of other alphaviruses. These new discoveries regarding alphavirus PS structure and function provide an opportunity for the development of virus variants, which are irreversibly attenuated in terms of production of infectious virus but release high levels of genome-free virions.  相似文献   

18.
To identify RNA and protein sequences involved in packaging of human immunodeficiency virus type 1 (HIV-1), various mutations were introduced into the viral genome. Portions of the human immunodeficiency virus type 1 genome between the first splice donor site and the gag initiation codon were deleted to investigate the RNA packaging site (psi). Point mutations that alter cysteine residues in one or both zinc finger motifs of p7, a cleavage product of the gag precursor, were created to study the role of the gag zinc fingers in packaging. The psi site mutants and the gag mutants exhibited similar phenotypes. Cells transfected with the mutant genomes, while expressing normal levels of human immunodeficiency virus type 1 RNA and proteins, produced viral particles that were normal in protein content but lacked detectable viral RNA. These mutant virions were unable to productively infect cells. The combination of human immunodeficiency virus type 1 packaging mutations should minimize fortuitous assembly of infectious virus and may provide a means to produce noninfectious particles for candidate vaccines.  相似文献   

19.
Preferential RNA packaging in coronaviruses involves the recognition of viral genomic RNA, a crucial process for viral particle morphogenesis mediated by RNA-specific sequences, known as packaging signals. An essential packaging signal component of transmissible gastroenteritis coronavirus (TGEV) has been further delimited to the first 598 nucleotides (nt) from the 5′ end of its RNA genome, by using recombinant viruses transcribing subgenomic mRNA that included potential packaging signals. The integrity of the entire sequence domain was necessary because deletion of any of the five structural motifs defined within this region abrogated specific packaging of this viral RNA. One of these RNA motifs was the stem-loop SL5, a highly conserved motif in coronaviruses located at nucleotide positions 106 to 136. Partial deletion or point mutations within this motif also abrogated packaging. Using TGEV-derived defective minigenomes replicated in trans by a helper virus, we have shown that TGEV RNA packaging is a replication-independent process. Furthermore, the last 494 nt of the genomic 3′ end were not essential for packaging, although this region increased packaging efficiency. TGEV RNA sequences identified as necessary for viral genome packaging were not sufficient to direct packaging of a heterologous sequence derived from the green fluorescent protein gene. These results indicated that TGEV genome packaging is a complex process involving many factors in addition to the identified RNA packaging signal. The identification of well-defined RNA motifs within the TGEV RNA genome that are essential for packaging will be useful for designing packaging-deficient biosafe coronavirus-derived vectors and providing new targets for antiviral therapies.  相似文献   

20.
HIV-2, a human pathogen that causes acquired immunodeficiency syndrome, is distinct from the more prevalent HIV-1 in several features including its evolutionary history and certain aspects of viral replication. Like other retroviruses, HIV-2 packages two copies of full-length viral RNA during virus assembly and efficient genome encapsidation is mediated by the viral protein Gag. We sought to define cis-acting elements in the HIV-2 genome that are important for the encapsidation of full-length RNA into viral particles. Based on previous studies of murine leukemia virus and HIV-1, we hypothesized that unpaired guanosines in the 5′ untranslated region (UTR) play an important role in Gag:RNA interactions leading to genome packaging. To test our hypothesis, we targeted 18 guanosines located in 9 sites within the HIV-2 5′ UTR and performed substitution analyses. We found that mutating as few as three guanosines significantly reduce RNA packaging efficiency. However, not all guanosines examined have the same effect; instead, a hierarchical order exists wherein a primary site, a secondary site, and three tertiary sites are identified. Additionally, there are functional overlaps in these sites and mutations of more than one site can act synergistically to cause genome packaging defects. These studies demonstrate the importance of specific guanosines in HIV-2 5′UTR in mediating genome packaging. Our results also demonstrate an interchangeable and hierarchical nature of guanosine-containing sites, which was not previously established, thereby revealing key insights into the replication mechanisms of HIV-2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号