首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tetzlaff CN  You Z  Cane DE  Takamatsu S  Omura S  Ikeda H 《Biochemistry》2006,45(19):6179-6186
Streptomyces avermitilis, an industrial organism responsible for the production of the anthelminthic avermectins, harbors a 13.4 kb gene cluster containing 13 unidirectionally transcribed open reading frames corresponding to the apparent biosynthetic operon for the sesquiterpene antibiotic pentalenolactone. The advanced intermediate pentalenolactone F, along with the shunt metabolite pentalenic acid, could be isolated from cultures of S. avermitilis, thereby establishing that the pentalenolactone biosynthetic pathway is functional in S. avermitilis. Deletion of the entire 13.4 kb cluster from S. avermitilis abolished formation of pentalenolactone metabolites, while transfer of the intact cluster to the pentalenolactone nonproducer Streptomyces lividans 1326 resulted in production of pentalenic acid. Direct evidence for the biochemical function of the individual biosynthetic genes came from expression of the ptlA gene (SAV2998) in Escherichia coli. Assay of the resultant protein established that PtlA is a pentalenene synthase, catalyzing the cyclization of farnesyl diphosphate to pentalenene, the parent hydrocarbon of the pentalenolactone family of metabolites. The most upstream gene in the cluster, gap1 (SAV2990), was shown to correspond to the pentalenolactone resistance gene, based on expression in E. coli and demonstration that the resulting glyceraldehyde-3-phosphate dehydrogenase, the normal target of pentalenolactone, was insensitive to the antibiotic. Furthermore, a second GAPDH isozyme (gap2, SAV6296) has been expressed in E. coli and shown to be inactivated by pentalenolactone.  相似文献   

2.
The genus Streptomyces produces about two-thirds of naturally occurring antibiotics and a wide array of other secondary metabolites, including antihelminthic agents, antitumor agents, antifungal agents, and herbicides. The newly completed genome sequence of the avermectin-producing bacterium Streptomyces avermitilis contains 33 cytochromes p450 (CYPs), many more than the 18 observed in Streptomyces coelicolor A3(2). Some of the likely metabolic functions are reported together with their genomic location and bioinformatic analysis. Seven entirely new CYP families were found together with close homologues of some forms observed in S. coelicolor A3(2). The presence of unusual CYP forms associated with conservons is revealed and of these, CYP157 forms in both S. avermitilis and S. coelicolor A3(2) deviate from the previously accepted rule for an EXXR motif within the K-helix of CYPs. Amongst this range of CYPs are forms associated with avermectin, filipin, geosmin, and pentalenolactone biosynthesis as well as unknown pathways of secondary metabolism.  相似文献   

3.
A second cluster of genes encoding the E1 alpha, E1 beta, and E2 subunits of branched-chain alpha-keto acid dehydrogenase (BCDH), bkdFGH, has been cloned and characterized from Streptomyces avermitilis, the soil microorganism which produces anthelmintic avermectins. Open reading frame 1 (ORF1) (bkdF, encoding E1 alpha), would encode a polypeptide of 44,394 Da (406 amino acids). The putative start codon of the incompletely sequenced ORF2 (bkdG, encoding E1 beta) is located 83 bp downstream from the end of ORF1. The deduced amino acid sequence of bkdF resembled the corresponding E1 alpha subunit of several prokaryotic and eukaryotic BCDH complexes. An S. avermitilis bkd mutant constructed by deletion of a genomic region comprising the 5' end of bkdF is also described. The mutant exhibited a typical Bkd- phenotype: it lacked E1 BCDH activity and had lost the ability to grow on solid minimal medium containing isoleucine, leucine, and valine as sole carbon sources. Since BCDH provides an alpha-branched-chain fatty acid starter unit, either S(+)-alpha-methylbutyryl coenzyme A or isobutyryl coenzyme A, which is essential to initiate the synthesis of the avermectin polyketide backbone in S. avermitilis, the disrupted mutant cannot make the natural avermectins in a medium lacking both S(+)-alpha-methylbutyrate and isobutyrate. Supplementation with either one of these compounds restores production of the corresponding natural avermectins, while supplementation of the medium with alternative fatty acids results in the formation of novel avermectins. These results verify that the BCDH-catalyzed reaction of branched-chain amino acid catabolism constitutes a crucial step to provide fatty acid precursors for antibiotic biosynthesis in S. avermitilis.  相似文献   

4.
A 1.5-kb genomic fragment isolated from Streptomyces avermitilis that directs the synthesis of a brown pigment in Escherichia coli was characterized. Since pigment production in recombinant E. coli was enhanced by the addition of tyrosine to the medium, it had been inferred that the cloned DNA might be associated with melanin biosynthesis. Hybridization studies, however, showed that the pigment gene isolated from S. avermitilis was unrelated to the Streptomyces antibioticus melC2 determinant, which is the prototype of melanin genes in Streptomyces spp. Sequence analysis of the 1.5-kb DNA that caused pigment production revealed a single open reading frame encoding a protein of 41.6 kDa (380 amino acids) that resembled several prokaryotic and eukaryotic 4-hydroxyphenylpyruvate dioxygenases (HPDs). When this open reading frame was overexpressed in E. coli, a protein of about 41 kDa was detected. This E. coli clone produced homogentisic acid (HGA), which is the expected product of the oxidation of 4-hydroxyphenylpyruvate catalyzed by an HPD, and also a brown pigment with characteristics similar to the pigment observed in the urine of alkaptonuric patients. Alkaptonuria is a genetic disease in which inability to metabolize HGA leads to increasing concentrations of this acid in urine, followed by oxidation and polymerization of HGA to an ochronotic pigment. Similarly, the production of ochronotic-like pigment in the recombinant E. coli clone overexpressing the S. avermitilis gene encoding HPD is likely to be due to the spontaneous oxidation and polymerization of the HGA accumulated in the medium by this clone.  相似文献   

5.
AfsKav is a eukaryotic-type serine/threonine protein kinase, required for sporulation and avermectin production in Streptomyces avermitilis. In terms of their ability to complement SJW4001 (DeltaafsK-av), afsK-av mutants T165A and T168A were not functional, whereas mutants T165D and T168D retained their ability, indicating that Thr-165 and Thr-168 are the phosphorylation sites required for the role of AfsKav. Expression of the S-adenosylmethione synthetase gene promoted avermectin production in the wild-type S. avermitilis, yet not in the mutant harboring T168D or T165D, demonstrating that tandem phosphorylation on Thr-165 and Thr-168 in AfsKav is the mechanism modulating avermectin production in response to S-adenosylmethione accumulation in S. avermitilis.  相似文献   

6.
Pentalenolactone (PL), an antibiotic produced by Streptomyces arenae, is a potent inhibitor of glyceraldehyde-3-phosphate dehydrogenase (GAPDH). The producer strain contains different isoforms of GAPDH: a PL-sensitive enzyme on nonproduction media and a PL-insensitive enzyme on production media. After induction of PL synthesis, the sensitive GAPDH disappears parallel to the disappearance of its activity, as shown by Western (immunoblot) hybridization. The two isoenzymes exhibit little immunological cross-reactivity and differ in size, amino acid composition, and several amino acid residues of their amino termini. Two different types of plasmids from a S. arenae genomic library, named pBRPLR1 and pBRPLR2, were cloned in Escherichia coli by selection for enhanced PL resistance. Both contain a GAPDH structural gene. Plasmid pBRPLR1 increases E. coli PL tolerance 7-fold, and plasmid pBRPLR2 increases it 30-fold. GAPDH from pBRPLR1 transformants shows biphasic PL inactivation kinetics. These cells contain PL-sensitive GAPDH from both E. coli and S. arenae. GAPDH from pBRPLR2 transformants tolerates higher PL concentrations than either E. coli or S. arenae PL-sensitive GAPDH but is less resistant than S. arenae PL-insensitive GAPDH. Nondenaturing polyacrylamide electrophoresis showed this GAPDH to be a hybrid of E. coli and S. arenae PL-insensitive GAPDH. The hybrid enzyme could be purified to homogeneity. Induction of the lacZ promoter of pUC subclones of both GAPDH genes had only a small effect on raising the level of intracellular GAPDH.  相似文献   

7.
The cytochrome P450 monooxygenase Ema1 from Streptomyces tubercidicus R-922 and its homologs from closely related Streptomyces strains are able to catalyze the regioselective oxidation of avermectin into 4"-oxo-avermectin, a key intermediate in the manufacture of the agriculturally important insecticide emamectin benzoate (V. Jungmann, I. Molnár, P. E. Hammer, D. S. Hill, R. Zirkle, T. G. Buckel, D. Buckel, J. M. Ligon, and J. P. Pachlatko, Appl. Environ. Microbiol. 71:6968-6976, 2005). The gene for Ema1 has been expressed in Streptomyces lividans, Streptomyces avermitilis, and solvent-tolerant Pseudomonas putida strains using different promoters and vectors to provide biocatalytically competent cells. Replacing the extremely rare TTA codon with the more frequent CTG codon to encode Leu4 in Ema1 increased the biocatalytic activities of S. lividans strains producing this enzyme. Ferredoxins and ferredoxin reductases were also cloned from Streptomyces coelicolor and biocatalytic Streptomyces strains and tested in ema1 coexpression systems to optimize the electron transport towards Ema1.  相似文献   

8.
An integration vector for gene analysis in Streptomyces has been constructed. This vector replicates in Escherichia coli, and integrates into Streptomyces by homologous recombination between a cloned fragment and the genome. To overcome methylation-specific restriction barriers, an E. coli mutant triply defective in DNA methylation was constructed as a source for the integration plasmids. The frequency of integration of pVE616 derivatives into the Streptomyces avermitilis genome was proportional to the size of the cloned DNA. Derivatives of pVE616, containing fragments from pVE650, a plasmid with a 24-kb insert of S. avermitilis DNA, were used in complementation analyses of seven S. avermitilis mutants defective in glycosylation of avermectin (Av). Three complementation groups, located in a 7-kb region, were identified. Derivatives of pVE616, containing fragments from the 18-kb of DNA adjacent to the glycosylation region, were integrated into an Av producer. Av produced from the integrants was substantially reduced, indicating that the 18 kb also encodes gene products which are involved in Av biosynthesis.  相似文献   

9.
Streptomyces avermitilis has the ability to synthesize a diffusible, brown, melanin-like pigment, a common property among many Streptomyces species. A region of the S. avermitilis chromosome involved in the production of this pigment was cloned in Escherichia coli. Production of the brown pigment was attained in E. coli, and is optimal when medium is supplemented with copper ions, tyrosine and IPTG. The cloned S. avermitilis pigment-producing DNA fragment is under the control of the lac promoter carried in the E. coli vector. The gene involved in pigment production could be used as a tool to analyse gene expression in S. avermitilis, and as an alternative cloning marker in Streptomyces-Escherichia coli vectors.  相似文献   

10.
11.
A cluster of genes encoding the E1 alpha, E1 beta, and E2 subunits of branched-chain alpha-keto acid dehydrogenase (BCDH) of Streptomyces avermitilis has been cloned and sequenced. Open reading frame 1 (ORF1) (E1 alpha), 1,146 nucleotides long, would encode a polypeptide of 40,969 Da (381 amino acids). ORF2 (E1 beta), 1,005 nucleotides long, would encode a polypeptide of 35,577 Da (334 amino acids). The intergenic distance between ORF1 and ORF2 is 73 bp. The putative ATG start codon of the incomplete ORF3 (E2) overlaps the stop codon of ORF2. Computer-aided searches showed that the deduced products of ORF1 and ORF2 resembled the corresponding E1 subunit (alpha or beta) of several prokaryotic and eukaryotic BCDH complexes. When these ORFs were overexpressed in Escherichia coli, proteins of about 41 and 34 kDa, which are the approximate masses of the predicted S. avermitilis ORF1 and ORF2 products, respectively, were detected. In addition, specific E1 [alpha beta] BCDH activity was detected in E. coli cells carrying the S. avermitilis ORF1 (E1 alpha) and ORF2 (E1 beta) coexpressed under the control of the T7 promoter.  相似文献   

12.
Streptomyces exfoliatus F3-2 produced an extracellular enzyme that converted levan, a beta-2,6-linked fructan, into levanbiose. The enzyme was purified 50-fold from culture supernatant to give a single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The molecular weights of this enzyme were 54,000 by SDS-PAGE and 60,000 by gel filtration, suggesting the monomeric structure of the enzyme. The isoelectric point of the enzyme was determined to be 4.7. The optimal pH and temperature of the enzyme for levan degradation were pH 5.5 and 60 degrees C, respectively. The enzyme was stable in the pH range 3.5 to 8.0 and also up to 50 degrees C. The enzyme gave levanbiose as a major degradation product from levan in an exo-acting manner. It was also found that this enzyme catalyzed hydrolysis of such fructooligosaccharides as 1-kestose, nystose, and 1-fructosylnystose by liberating fructose. Thus, this enzyme appeared to hydrolyze not only beta-2,6-linkage of levan, but also beta-2,1-linkage of fructooligosaccharides. From these data, the enzyme from S. exfoliatus F3-2 was identified as a novel 2,6-beta-D-fructan 6-levanbiohydrolase (EC 3.2.1.64).  相似文献   

13.
宋圆圆  黄珂  石木标  陈敏  曾任森 《生态学杂志》2012,23(10):2728-2736
链霉菌属是绝大多数已知抗生素和一些重要活性物质的产生菌,它对高等植物是否具有化感作用尚缺乏研究. 从土壤中分离获得7个放线菌菌株,研究其对植物幼苗生长的抑制作用.结果表明: 链霉菌6803菌株在固体和液体发酵培养时均强烈抑制油菜根和稗草根的生长, 其液体发酵液的5倍稀释液对油菜和稗草苗生长的抑制分别达到60.7%和61.3%. 常规形态与生理生化试验表明,该菌株属于链霉菌属金色类群; 16S rRNA基因序列分析表明,该菌株为沙场链霉菌,基因序列相似性达到99.28%. 此菌株经过80~100 s紫外线照射筛选出的正突变菌株UV8024和UV100-2的10倍稀释发酵液对油菜幼苗生长的抑制作用比原始菌株分别提高了37.5%和38.1%, 经过1%硫酸二乙酯诱变50 min筛选出的正突变菌株D507的10倍稀释发酵液对油菜幼苗生长的抑制作用比原始菌株提高了29.8%. 链霉菌6803菌株对高等植物具有化感作用, 并可通过诱变育种提高其化感潜力.  相似文献   

14.
The gene encoding a 2,6-beta-D-fructan 6-levanbiohydrolase (LF2ase) (EC 3.2.1.64) that converts levan into levanbiose was cloned from the genomic DNA of Streptomyces exfoliatus F3-2. The gene encoded a signal peptide of 37 amino acids and a mature protein of 482 amino acids with a total length of 1560 bp and was successfully expressed in Escherichia coli. The similarities of primary structure were observed with levanases from Clostridium acetobutylicum, Bacillus subtilis, B. stearothermophilus (51.0-54.3%) and with LF2ase from Microbacterium levaniformans (53.9%). The enzyme from S. exfoliatus F3-2 shared the conserved six domains and the completely conserved five amino acid residues with family 32 glycosyl hydrolases, which include levanase, inulinase, and invertase. These observations led to the conclusion that the enzyme belongs to family 32 glycosyl hydrolases.  相似文献   

15.
Pentalenolactone (1) is an antibiotic that has been isolated from many species of Streptomyces. The putative dehydrogenase encoded by the ptlF gene (SAV2993) found within the Streptomyces avermitilis pentalenolactone gene cluster was cloned and overexpressed in Escherichia coli. PtlF, which belongs to the short-chain dehydrogenase/oxidoreductase superfamily, was shown to catalyze the oxidation of 1-deoxy-11beta-hydroxypentalenic acid (9) to 1-deoxy-11-oxopentalenic acid (10), a new intermediate of the pentalenolactone biosynthetic pathway. The methyl ester of 10 was characterized by NMR, GC-MS and high resolution mass spectrometry. PtlF exhibited a 150-fold preference for beta-NAD(+) over beta-NADP(+). PtlF had a pH optimum of 8.0 in the physiological pH range, while a significant activity enhancement was observed from pH 9.0 to 11.3. At pH 8.0, PtlF had a k(cat) of 0.65+/-0.03 s(-1), with a K(m) for 9 of 6.5+/-1.5 microM and K(m) for NAD(+) of 25+/-3 microM.  相似文献   

16.
In the course of our screening program for anti-Mycobacterium bovis bacillus Calmette-Guérin (BCG) and anti-Mycobacterium tuberculosis H37Rv (MTB H37Rv) agents from our marine natural product library, a newly isolated actinomycete strain, designated as MS449, was picked out for further investigation. The strain MS449, isolated from a sediment sample collected from South China Sea, produced actinomycin X(2) and actinomycin D in substantial quantities, which showed strong inhibition of BCG and MTB H37Rv. The structures of actinomycins were elucidated by nuclear magnetic resonance and mass spectrometric analysis. The strain MS449 was taxonomically characterized on the basis of morphological and phenotypic characteristics, genotypic data, and phylogenetic analysis. The 16S rRNA gene sequence of the strain was determined and a database search indicated that the strain was closely associated with the type strain of Streptomyces avermitilis (99.7?% 16S rRNA gene similarity). S. avermitilis has not been previously reported to produce actinomycins. The marine-derived strain of Streptomyces sp. MS449 produced notably higher quantities of actinomycin X(2) (1.92?mg/ml) and actinomycin D (1.77?mg/ml) than previously reported actinomycins producing strains. Thus, MS449 was considered of great potential as a new industrial producing strain of actinomycin X(2) and actinomycin D.  相似文献   

17.
A natural plasmid, pSAR1, was isolated from the antibiotic producer Streptomyces arenae TU469. Its size is estimated to approx. 80 kbp by restriction analysis. pSAR1 occurs in two copy-number states differing by a factor of at least 10, depending on culture conditions. The high copy-number state is strongly correlated with the production of the antibiotic pentalenolactone. The decrease of copy numbers after change of culture conditions is completed within 1 h. These unusually rapid kinetics and the occurrence of degradational intermediates suggest the participation of specific catalytic mechanisms in copy number regulation.  相似文献   

18.
Streptomyces avermitilis contains a unique restriction system that restricts plasmid DNA containing N6-methyladenine or 5-methylcytosine. Shuttle vectors isolated from Escherichia coli RR1 or plasmids isolated from modification-proficient Streptomyces spp. cannot be directly introduced into S. avermitilis. This restriction barrier can be overcome by first transferring plasmids into Streptomyces lividans or a modification-deficient E. coli strain and then into S. avermitilis. The transformation frequency was reduced greater than 1,000-fold when plasmid DNA was modified by dam or TaqI methylases to contain N6-methyladenine or by AluI, HhaI, HphI methylases to contain 5-methylcytosine. Methyl-specific restriction appears to be common in Streptomyces spp., since either N6-methyladenine-specific or 5-methylcytosine-specific restriction was observed in seven of nine strains tested.  相似文献   

19.
Brünker P  McKinney K  Sterner O  Minas W  Bailey JE 《Gene》1999,227(2):125-135
Streptomyces arenae produces the aromatic polyketide naphthocyclinone, which exhibits activity against Gram-positive bacteria. A cosmid clone containing the putative naphthocyclinone gene cluster was isolated from a genomic library of S. arenae by hybridization with a conserved region from the actinorhodin PKS of S. coelicolor. Sequence analysis of a 5.5-kb DNA fragment, which hybridizes with the actI probe, revealed three open reading frames coding for the minimal polyketide synthase. A strong sequence similarity was found to several previously described ketosynthases, chain length factors and acyl carrier proteins from other polyketide gene clusters. An additional open reading frame downstream of the PKS genes of S. arenae showed 53% identity to act VII probably encoding an aromatase. Another open reading frame was identified in a region of 1.436 bp upstream of the PKS genes, which, however, had no similarity to known genes in the database. Approximately 8 kb upstream of the PKS genes, a DNA fragment was identified that hybridizes to an actVII--actIV specific probe coding for a cyclase and a putative regulatory protein, respectively. Disruption of the proposed naphthocyclinone gene cluster by insertion of a thiostrepton resistance gene completely abolished production of naphthocyclinones in the mutant strain, showing that indeed the naphthocyclinone gene cluster had been isolated. Heterologous expression of the minimal PKS genes in S. coelicolor CH999 in the presence of the act ketoreductase led to the production of mutactin and dehydromutactin, indicating that the S. arenae polyketide synthase forms a C-16 backbone that is subsequently dimerized to build naphthocyclinone. The functions of the proposed cyclase and aromatase were examined by coexpression with genes from different polyketide core producers.  相似文献   

20.
A Streptomyces strain UK10 was isolated from Ukrainian soil and identified by taxonomical studies as Streptomyces arenae var ukrainiana. HA-2-91 was isolated from the biomass of S. arenae var ukrainiana and is supposedly a polyene macrolide antibiotic belonging to the tetraene group. HA-2-91 showed promising antifungal activity (in vitro) against yeasts and filamentous fungi, including plant pathogens and dermatophytes and was found to be less toxic in mice than nystatin and rimocidin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号