首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Zhang J  Liu WL  Tang DC  Chen L  Wang M  Pack SD  Zhuang Z  Rodgers GP 《Gene》2002,283(1-2):83-93
We have cloned a novel hematopoietic granulocyte colony-stimulating factor (G-CSF)-induced olfactomedin-related glycoprotein, termed hGC-1 (human G-CSF-stimulated clone-1). mRNA differential display was used in conjunction with a modified two-phase liquid culture system. Cultures were enriched for early precursors of erythroid, myeloid, and megakaryocytic lineages, which were isolated after induction with erythropoietin, G-CSF, and thrombopoietin, respectively. RNA from the enriched cells was subjected to differential display analysis to identify lineage-specific expressed genes. One clone specifically induced by G-CSF, hGC-1, was characterized. The 2861 bp cDNA clone of hGC-1 contained an open reading frame of 1530 nucleotides, translating into a protein of 510 amino acids with a signal peptide and six N-linked glycosylation motifs. The protein sequence of hGC-1 showed it to be a glycoprotein of the olfactomedin family, which includes olfactomedin, TIGR, Noelin-2 and latrophilin-1. Olfactomedin-like genes show characteristic tissue-restricted patterns of expression; the specific tissues expressing these genes differ among the family members. hGC-1 was strongly expressed in the prostate, small intestine, and colon, moderately expressed in the bone marrow and stomach, and not detectable in other tissues. In vitro translation and ex vivo expression showed hGC-1 to be an N-linked glycoprotein. The hGC-1 gene locus mapped to chromosome 13q14.3. Together, our findings indicate that hGC-1 is primarily expressed as an extracellular olfactomedin-related glycoprotein during normal myeloid-specific lineage differentiation, suggesting the possibility of a matrix-related function for hGC-1 in differentiation.  相似文献   

3.
4.
In this study, lectin-conjugated gold nanoparticles (GNPs) were prepared by standard biotin-streptavidin chemistry. The lectin-conjugated GNPs can be used as an indicator for studying the interaction of lectin with glycosyl complex on living cellular surfaces due to the high affinity of the lectin with saccharides. The interactions of two well-known lectins (Ricinus communis agglutinin and concanavalin A) and three different cell lines (HeLa, 293, and 293T) were selected here to establish this assay. Highly binding affinity of R. communis agglutinin with cells was demonstrated by conventional microscopic and UV-visible spectroscopic studies. In addition, the binding process can be inhibited by galactose, giving further proof of the binding mechanism.  相似文献   

5.
The nonclassical class I MHC molecule HLA-G is selectively expressed on extravillous cytotrophoblast cells at the maternal-fetal interface during pregnancy. HLA-G can inhibit the killing mediated by NK cells via interaction with the inhibitory NK cell receptor, leukocyte Ig-like receptor-1 (LIR-1). Comparison of the sequence of the HLA-G molecule to other class I MHC proteins revealed two unique cysteine residues located in positions 42 and 147. Mutating these cysteine residues resulted in a dramatic decrease in LIR-1 Ig binding. Accordingly, the mutated HLA-G transfectants were less effective in the inhibition of NK killing and RBL/LIR-1 induced serotonin release. Immunoprecipitation experiments demonstrated the involvement of the cysteine residues in the formation of HLA-G protein oligomers on the cell surface. The cysteine residue located at position 42 is shown to be critical for the expression of such complexes. These oligomers, unique among the class I MHC proteins, probably bind to LIR-1 with increased avidity, resulting in an enhanced inhibitory function of LIR-1 and an impaired killing function of NK cells.  相似文献   

6.
SPEC1 and SPEC2 are structurally similar Cdc42-binding proteins of 79 and 84 amino acid residues, respectively. We investigated the role of SPEC2 in T cell function due to its high mRNA expression in lymphocytes. Western blot analysis revealed abundant SPEC2 protein in lymphocytes, which in glutathione S-transferase-capture experiments specifically interacted with only GTP-bound Cdc42. Immunofluorescence experiments revealed that the SPEC2 protein was diffusely localized in the cytoplasm and at the cell membrane in unstimulated Jurkat T cells and Raji B cells. Recruitment of SPEC2 within Jurkat T cells to the antigen-presenting cell interface occurred following incubation with staphylococcal enterotoxin E superantigen-loaded B cells and colocalized there with F-actin and Cdc42. T cell receptor (TCR) activation studies using anti-CD3 antibody-coated polystyrene beads showed that SPEC2 was recruited to the site of bead contact, which was not observed with anti-major histocompatibility complex antibody-coated beads. Accumulation of SPEC2 following TCR engagement occurred as early as 5 min, before obvious F-actin accumulation. Biochemical studies with Jurkat T cells demonstrated that N-terminal cysteine residues in SPEC2 were palmitoylated. Overexpression studies of the related SPEC1 showed that it also was recruited to the activated TCR. Mutational analysis revealed that localization of SPEC1 to the TCR required two N-terminal cysteine residues. Furthermore, a SPEC1 Cdc42 Rac-interacting binding mutant, containing an intact N terminus but defective in Cdc42 binding, completely blocked F-actin accumulation at the activated TCR. Taken together these results suggest that SPECs may play important roles in Cdc42-mediated F-actin accumulation at the immunological synapse.  相似文献   

7.
Association with β2-microglobulin and binding a ligand are necessary conditions for cell surface expression of the antigen presenting molecules. MHC class I-related protein, MR1, is suggested to have an antigen presentation function, nevertheless the physiological ligand(s) is (are) still to be determined. In the present study, by characterising the subcellular deportment of human MR1 transfectants, we have shown its differential mobilisation. Our results demonstrated a preferential association of MR1 with β2-microglobulin in MHC class I-deficient B cell lines. Furthermore, we have evidenced diminished expression of classical MHC class I molecules in human MR1-transfected 293T cells, showing a possible interaction between MR1 and classical MHC class I molecules.  相似文献   

8.
Previous studies have shown that NAD(P)H:quinone oxidoreductase 1 (NQO1) plays an important role in the detoxification of menadione (2-methyl-1,4-naphthoquinone, also known as vitamin K3). However, menadiol (2-methyl-1,4-naphthalenediol) formed from menadione by NQO1-mediated reduction continues to be an unstable substance, which undergoes the reformation of menadione with concomitant formation of reactive oxygen species (ROS). Hence, we focused on the roles of phase II enzymes, with particular attention to UDP-glucuronosyltransferases (UGTs), in the detoxification process of menadione. In this study, we established an HEK293 cell line stably expressing NQO1 (HEK293/NQO1) and HEK293/NQO1 cell lines with doxycycline (DOX)-regulated expression of UGT1A6 (HEK293/NQO1/UGT1A6) and UGT1A10 (HEK293/NQO1/UGT1A10), and evaluated the role of NQO1 and UGTs against menadione-induced cytotoxicity. Our results differed from those of previous studies. HEK293/NQO1 was the most sensitive cell line to menadione cytotoxicity among cell lines established in this study. These phenomena were also observed in HEK293/NQO1/UGT1A6 and HEK293/NQO1/UGT1A10 cells in which the expression of UGT was suppressed by DOX treatment. On the contrary, HEK293/NQO1/UGT1A6 and HEK293/NQO1/UGT1A10 cells without DOX treatment were resistant to menadione-induced cytotoxicity. These results demonstrated that NQO1 is not a detoxification enzyme for menadione and that UGT-mediated glucuronidation of menadiol is the most important detoxification process.  相似文献   

9.
Recombinant human α-galactosidase A (rhαGal) is a homodimeric glycoprotein deficient in Fabry disease, a lysosomal storage disorder. In this study, each cysteine residue in rhαGal was replaced with serine to understand the role each cysteine plays in the enzyme structure, function, and stability. Conditioned media from transfected HEK293 cells were assayed for rhαGal expression and enzymatic activity. Activity was only detected in the wild type control and in mutants substituting the free cysteine residues (C90S, C174S, and the C90S/C174S). Cysteine-to-serine substitutions at the other sites lead to the loss of expression and/or activity, consistent with their involvement in the disulfide bonds found in the crystal structure. Purification and further characterization confirmed that the C90S, C174S, and the C90S/C174S mutants are enzymatically active, structurally intact and thermodynamically stable as measured by circular dichroism and thermal denaturation. The purified inactive C142S mutant appeared to have lost part of its alpha-helix secondary structure and had a lower apparent melting temperature. Saturation mutagenesis study on Cys90 and Cys174 resulted in partial loss of activity for Cys174 mutants but multiple mutants at Cys90 with up to 87% higher enzymatic activity (C90T) compared to wild type, suggesting that the two free cysteines play differential roles and that the activity of the enzyme can be modulated by side chain interactions of the free Cys residues. These results enhanced our understanding of rhαGal structure and function, particularly the critical roles that cysteines play in structure, stability, and enzymatic activity.  相似文献   

10.
Mutations in the PARKIN (PARK2) gene have been found in the majority of early-onset familial Parkinson's disease (PD) patients with autosomal recessive juvenile parkinsonism (ARJP). Parkin protein functions as an ubiquitin (E3) ligase that targets specific proteins for degradation in the 26S proteasome. Here, based on a mass spectrometry analysis of the human dopaminergic neuroblastoma-derived cell line SH-SY5Y that over-expresses parkin, we found that parkin may suppress cofilin phosphorylation. LIM Kinase 1 (LIMK1) is the upstream protein that phosphorylates cofilin, an actin depolymerizing protein. Thus, we postulated a possible connection between parkin and LIMK1. Our studies in other cell lines, using co-transfection assays, demonstrated that LIMK1 and parkin bind each other. LIMK1 also interacted with previously known parkin interactors Hsp70 and CHIP. Parkin enhanced LIMK1-ubiquitination in the human neuroblastoma-derived BE(2)-M17 cell line, but not in the human embryonic kidney-derived HEK293 cell line. In fact, parkin-over-expression reduced the level of LIMK1-induced phosphocofilin in the BE(2)-M17 cells but not in the HEK293 cells. Additionally, in simian kidney-derived COS-7 cells, parkin-over-expression reduced LIMK1-induced actin filament accumulation. LIMK1 in cultured cells regulates parkin reversibly: LIMK1 did not phosphorylate parkin but LIMK1 overexpression reduced parkin self-ubiquitination in vitro and in HEK293 cells. Furthermore, in the cells co-transfected with parkin and p38, LIMK1 significantly decreased p38-ubiquitination by parkin. These findings demonstrate a cell-type dependent functional interaction between parkin and LIMK1 and provide new evidence that links parkin and LIMK1 in the pathogenesis of familial PD.  相似文献   

11.
Arsenic inhibits DNA repair and enhances the genotoxicity of DNA-damaging agents such as benzo[a]pyrene and ultraviolet radiation. Arsenic interaction with DNA repair proteins containing functional zinc finger motifs is one proposed mechanism to account for these observations. Here, we report that arsenite binds to both CCHC DNA-binding zinc fingers of the DNA repair protein PARP-1 (poly(ADP-ribose) polymerase-1). Furthermore, trivalent arsenite coordinated with all three cysteine residues as demonstrated by MS/MS. MALDI-TOF-MS analysis of peptides harboring site-directed substitutions of cysteine with histidine residues within the PARP-1 zinc finger revealed that arsenite bound to peptides containing three or four cysteine residues, but not to peptides with two cysteines, demonstrating arsenite binding selectivity. This finding was not unique to PARP-1; arsenite did not bind to a peptide representing the CCHH zinc finger of the DNA repair protein aprataxin, but did bind to an aprataxin peptide mutated to a CCHC zinc finger. To investigate the impact of arsenite on PARP-1 zinc finger function, we measured the zinc content and DNA-binding capacity of PARP-1 immunoprecipitated from arsenite-exposed cells. PARP-1 zinc content and DNA binding were decreased by 76 and 80%, respectively, compared with protein isolated from untreated cells. We observed comparable decreases in zinc content for XPA (xeroderma pigmentosum group A) protein (CCCC zinc finger), but not SP-1 (specificity protein-1) or aprataxin (CCHH zinc finger). These findings demonstrate that PARP-1 is a direct molecular target of arsenite and that arsenite interacts selectively with zinc finger motifs containing three or more cysteine residues.  相似文献   

12.

Background

N-terminal fragments of mutant huntingtin (htt) that terminate between residues 90–115, termed cleavage product A or 1 (cp-A/1), form intracellular and intranuclear inclusion bodies in the brains of patients with Huntington''s disease (HD). These fragments appear to be proteolytic products of the full-length protein. Here, we use an HEK293 cell culture model to investigate huntingtin proteolytic processing; previous studies of these cells have demonstrated cleavage of htt to cp-A/1 like htt fragments.

Results

Recombinant N-terminal htt fragments, terminating at residue 171 (also referred to as cp-B/2 like), were efficiently cleaved to produce cp-A/1 whereas fragments representing endogenous caspase, calpain, and metalloproteinase cleavage products, terminating between residues 400–600, were inefficiently cleaved. Using cysteine-labeling techniques and antibody binding mapping, we localized the C-terminus of the cp-A/1 fragments produced by HEK293 cells to sequences minimally limited by cysteine 105 and an antibody epitope composed of residues 115–124. A combination of genetic and pharmacologic approaches to inhibit potential proteases, including γ-secretase and calpain, proved ineffective in preventing production of cp-A/1.

Conclusions

Our findings indicate that HEK293 cells express a protease that is capable of efficiently cleaving cp-B/2 like fragments of htt with normal or expanded glutamine repeats. For reasons that remain unclear, this protease cleaves longer htt fragments, with normal or expanded glutamine expansions, much less efficiently. The protease in HEK293 cells that is capable of generating a cp-A/1 like htt fragment may be a novel protease with a high preference for a cp-B/2-like htt fragment as substrate.  相似文献   

13.
ATP-binding cassette transporter A1 (ABCA1), the defective molecule in Tangier disease, mediates the apoAI-dependent efflux of excess cholesterol from cells. We recently showed that ABCA1 proteolysis by calpain was dependent on a PEST sequence in the cytoplasmic region of ABCA1 and was reversed by apoA-I interaction with ABCA1. We show here that phosphorylation of ABCA1 in HEK293 cells was reduced by 63 +/- 2.4% after removal of the PEST sequence (ABCA1delPEST) or by incubation of cells with apoAI (58 +/- 3.3%). By contrast, ABCA1delPEST showed no further decrease of phosphorylation upon apoAI treatment. To assess the hypothesis that PEST sequence phosphorylation could regulate ABCA1 calpain proteolysis, we mutagenized S/T residues in the PEST sequence and identified Thr-1286 and Thr-1305 as constitutively phosphorylated residues. The ABCA1-T1286A/T1305A mutant was not degraded by calpain and was not further stabilized upon apoA-I treatment. The T1286A/T1305A mutant showed a 3.1-fold increase in cell surface expression and a 2.3-fold increase of apoAI-mediated cholesterol efflux compared with wild type ABCA1. In conclusion, we propose a mechanism of regulation of ABCA1 cell surface expression and function in which the interaction with apoA-I results in dephosphorylation of the ABCA1 PEST sequence and thereby inhibits calpain degradation leading to an increase of ABCA1 cell surface expression.  相似文献   

14.
Hydrogels have strong application prospects for drug delivery, tissue engineering and cell therapy because of their excellent biocompatibility and abundant availability as scaffolds for drugs and cells. In this study, we created hybrid hydrogels based on a genetically modified tax interactive protein-1 (TIP1) by introducing two or four cysteine residues in the primary structure of TIP1. The introduced cysteine residues were crosslinked with a four-armed poly (ethylene glycol) having their arm ends capped with maleimide residues (4-armed-PEG-Mal) to form hydrogels. In one form of the genetically modification, we incorporated a peptide sequence ‘GRGDSP’ to introduce bioactivity to the protein, and the resultant hydrogel could provide an excellent environment for a three dimensional cell culture of AD293 cells. The AD293 cells continued to divide and displayed a polyhedron or spindle-shape during the 3-day culture period. Besides, AD293 cells could be easily separated from the cell-gel constructs for future large-scale culture after being cultured for 3 days and treating hydrogel with trypsinase. This work significantly expands the toolbox of recombinant proteins for hydrogel formation, and we believe that our hydrogel will be of considerable interest to those working in cell therapy and controlled drug delivery.  相似文献   

15.
T-cadherin is a 95kDa glycoprotein member of the cadherin family of adhesion molecules attached to the extracellular surface of the cell membrane through a glycosyl-phosphatidylinositol (GPI)-anchor. Whether a T-cadherin ectodomain apical targeting signal or the GPI-anchor itself targets this protein to the apical membrane is not known. Chimeras of the reporter EGFP and T-cadherin have demonstrated that a minimal construct consisting of the C-terminal 25 amino acids including the N690 (omega-site) of T-cadherin was sufficient to GPI-anchor the EGFP protein. However, efficient GPI-anchor with minimal secretion of the protein required an additional 5 residues (omega-1 to omega-5). The GPI-anchored chimeras fractionated to the Triton X-100 detergent insoluble fraction and were released to the cell culture supernatant by phosphoinositide-specific phospho-lipase C digestion. When expressed in MDCK cells, all GPI-anchored chimeras targeted to the basolateral membrane, while the T/N-chimera and the wild-type T-cadherin targeted to the apical membrane. Therefore, T-cadherin is an example of another rare GPI-anchored protein where the anchor itself is not sufficient for apical targeting in MDCK cells.  相似文献   

16.
Cadherins are a family of cell-cell adhesion molecules which play a central role in controlling morphogenetic movements during development. Cadherin function is regulated by its association with the actin containing cytoskeleton, an association mediated by a complex of cytoplasmic proteins, the catenins: alpha, beta, and gamma. Phosphorylated tyrosine residues on beta-catenin are correlated with loss of cadherin function. Consistent with this, we find that only nontyrosine phosphorylated beta-catenin is associated with N-cadherin in E10 chick retina tissue. Moreover, we demonstrate that a PTP1B-like tyrosine phosphatase associates with N-cadherin and may function as a regulatory switch controlling cadherin function by dephosphorylating beta-catenin, thereby maintaining cells in an adhesion-competent state. The PTP1B-like phosphatase is itself tyrosine phosphorylated. Moreover, both direct binding experiments performed with phosphorylated and dephosphorylated molecules, and treatment of cells with tyrosine kinase inhibitors indicate that the interaction of the PTP1B-like phosphatase with N-cadherin depends on its tyrosine phosphorylation. Concomitant with the tyrosine kinase inhibitor-induced loss of the PTP1B-like phosphatase from its association with N-cadherin, phosphorylated tyrosine residues are retained on beta-catenin, the association of N- cadherin with the actin containing cytoskeleton is lost and N-cadherin- mediated cell adhesion is prevented. Tyrosine phosphatase inhibitors also result in the accumulation of phosphorylated tyrosine residues on beta-catenin, loss of the association of N-cadherin with the actin- containing cytoskeleton, and prevent N-cadherin mediated adhesion, presumably by directly blocking the function of the PTP1B-like phosphatase. We previously showed that the binding of two ligands to the cell surface N-acetylgalactosaminylphosphotransferase (GalNAcPTase), the monoclonal antibody 1B11 and a proteoglycan with a 250-kD core protein, results in the accumulation of phosphorylated tyrosine residues on beta-catenin, uncoupling of N-cadherin from its association with the actin containing cytoskeleton, and loss of N- cadherin function. We now report that binding of these ligands to the GalNAcPTase results in the absence of the PTP1B-like phosphatase from its association with N-cadherin as well as the loss of the tyrosine kinase and tyrosine phosphatase activities that otherwise co- precipitate with N-cadherin. Control antibodies and proteoglycans have no such effect. This effect is similar to that observed with tyrosine kinase inhibitors, suggesting that the GalNAcPTase/proteoglycan interaction inhibits a tyrosine kinase, thereby preventing the phosphorylation of the PTP1B-like phosphatase, and its association with N-cadherin. Taken together these data indicate that a PTP1B-like tyrosine phosphatase can regulate N-cadherin function through its ability to dephosphorylate beta-catenin and that the association of the phosphatase with N-cadherin is regulated via the interaction of the GalNAcPTase with its proteoglycan ligand. In this manner the GalNAcPTase-proteoglycan interaction may play a major role in morphogenetic cell and tissue interactions during development.  相似文献   

17.
转录因子XBP1的融合表达、纯化及多克隆抗体的制备   总被引:4,自引:0,他引:4  
人X盒结合蛋白 1(XBP 1)为一种转录因子 ,与多种肿瘤的发生、发展有密切关系 .XBP 1有2种剪切形式 ,即XBP 1S和XBP 1U .将这 2种剪切形式中的一段相同编码序列 (编码 82~ 14 7位氨基酸 )重组于谷胱甘肽S转移酶 (GST)融合蛋白表达载体pGEX KG中 ,构建成重组质粒pGST XBP 1(82~ 14 7位氨基酸 ) .将该重组质粒转化E .coliDH5α后 ,表达GST XBP 1(82~ 14 7位氨基酸 )融合蛋白 ,经谷胱甘肽 Sepharose 4B亲和层析获得纯化的融合蛋白 .用此融合蛋白免疫家兔制备多克隆抗体 .利用制备的抗体分别用Western印迹和免疫细胞化学检测XBP 1的 2种剪切形式在哺乳动物细胞中的表达 .结果表明 ,该抗体对XBP 1的 2种剪切形式均具有反应原性 ,效价高 ,特异性好 ,可以用于进一步研究XBP 1的功能  相似文献   

18.
The glycoprotein component in rat brain reacting most strongly with Galanthus nivalis agglutinin (GNA) on western blots migrates as an 85-kDa band. GNA identifies mannose-rich oligosaccharides because it is highly specific for terminal alpha-mannose residues. After purification of this 85-kDa glycoprotein band by chromatography on GNA-agarose and preparative gel electrophoresis, binding of other lectins demonstrated the presence of fucose and a trace of galactose, but no sialic acid. Treatment with N-Glycanase or endoglycosidase H produced a 65-kDa band, indicating that it consisted of about one-fourth N-linked oligomannosidic carbohydrate moieties. High-performance anion-exchange chromatography and fluorescence-assisted carbohydrate electrophoresis indicated that the major carbohydrate moiety is a heptasaccharide with the structure Manalpha1-6(Manalpha1-3)Manalpha1-6(Manalpha1-3) Manbeta1-4Glc-NAcbeta1-4GlcNAc (Man5GlcNAc2). Determination of amino acid sequences of peptides produced by endoproteinase digestion demonstrated that this 85-kDa mannose-rich glycoprotein component contained the SHP substrate-1 for phosphotyrosine phosphatases and at least one other member of the signal-regulatory protein (SIRP) family. The unusually high content of oligomannosidic carbohydrate moieties on these receptor-like members of the immunoglobulin superfamily in neural tissue could be of functional significance for intercellular adhesion or signaling.  相似文献   

19.

Background

MicroRNAs are modifiers of gene expression, acting to reduce translation through either translational repression or mRNA cleavage. Recently, it has been shown that some microRNAs can act to promote or suppress cell transformation, with miR-17-92 described as the first oncogenic microRNA. The association of miR-17-92 encoded microRNAs with a surprisingly broad range of cancers not only underlines the clinical significance of this locus, but also suggests that miR-17-92 may regulate fundamental biological processes, and for these reasons miR-17-92 has been considered as a therapeutic target.

Results

In this study, we show that miR-17-92 is a cell cycle regulated locus, and ectopic expression of a single microRNA (miR-17-5p) is sufficient to drive a proliferative signal in HEK293T cells. For the first time, we reveal the mechanism behind this response - miR-17-5p acts specifically at the G1/S-phase cell cycle boundary, by targeting more than 20 genes involved in the transition between these phases. While both pro- and anti-proliferative genes are targeted by miR-17-5p, pro-proliferative mRNAs are specifically up-regulated by secondary and/or tertiary effects in HEK293T cells.

Conclusion

The miR-17-5p microRNA is able to act as both an oncogene and a tumor suppressor in different cellular contexts; our model of competing positive and negative signals can explain both of these activities. The coordinated suppression of proliferation-inhibitors allows miR-17-5p to efficiently de-couple negative regulators of the MAPK (mitogen activated protein kinase) signaling cascade, promoting growth in HEK293T cells. Additionally, we have demonstrated the utility of a systems biology approach as a unique and rapid approach to uncover microRNA function.  相似文献   

20.
九次跨膜超家族蛋白成员1(transmembrane 9 superfamily protein member 1,TM9SF1)在进化过程中高度保守,在人体组织和多种细胞系广泛表达。目前,关于该蛋白质的功能研究十分有限和初步。本研究采用慢病毒介导的TM9SF1表达系统,研究了重组TM9SF1蛋白的生化特点及其对细胞生长的调控作用。慢病毒感染的293T全细胞裂解液的蛋白质免疫印迹结果揭示,TM9SF1蛋白具有表观分子质量约为70 kD的单体及寡聚体两种主要形式;在室温及加热37℃时蛋白质相对稳定,随变性温度升高(56 ℃以上)逐渐失去其稳定性。CCK8法显示,与慢病毒空载体感染的293T细胞比较,TM9SF1慢病毒表达载体感染的293T细胞在感染2 d后增殖明显减缓(P<0.001)。Western印迹结果证明,过表达TM9SF1引起LC3Ⅱ表达明显上调,LC3Ⅱ/LC3Ⅰ比例升高,说明TM9SF1可引起293T细胞发生自噬。荧光实时定量PCR结果显示,过表达TM9SF1的293T细胞内质网应激标志分子CHOP、GADD34和XBP1(S)表达水平是对照细胞的3~4倍,提示发生了内质网应激反应。以上结果提示,TM9SF1具有抑制293T细胞生长的功能,该功能可能与其引起的内质网应激和自噬有关。这一结论将进一步加深对TM9SF1在细胞生长调控中的功能的认识。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号