首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Extensive tidal areas of the Recent coast of southern Tunisia are overgrown by microbial mats. Different mat types of which each are dominated by distinct and well adapted cyanobacterial species develop. Ecological response of the mat-forming microorganisms to climatological hydrological and sedimentological factors produce characteristic sedimentary structures (=microbially induced sedimentary structures). A suecession of Pleistocene rocks crops out near the lagoon El Bibane, southern Tunisia. The stratigraphic section comprises structures that we regard as fossil equivalents to those microbially induced structures we observe in the Recent coastal area. Preservation of the structures is result of lithification of the microbial mats. This we conclude from fossil filaments of cyanobacteria visible within the rock matrix. The Recent microbially induced sedimentary structures indicate facies zones within the modern tidal environment. Comparison of the Recent structures with the fossil analogues recorded in the stratigraphic section aids to identify the same distinct facies zones within the Pleistocene coastal environment also. Erosion by water currents forms step-like cliffs, and the microbial mat is undermined and ripped off piece by piece. shallows within the supratidal area are overgrown by copious microbial mats comprising structures like biolaminites and—varvites, as well as polygons of cracks. The features originate from effects triggered by seasonal variations of climate. Tufts and reticulate pattern of bulges indicate supernatant water films covering the mat surfaces. Morphologically higher parts of the Recent tidal area are overgrown by single-layered mats forming petees, induced by microbial mat growth and evaporitive pumping. The study demonstrates that microbially induced sedimentary structures can be used to reconstruct small-scaled facies zones within coastal environments. The also include hints on paleoclimatological, hydrological and sedimentological conditions.  相似文献   

2.
Assessing the role that physical processes play in restricting microbial mat distribution has been difficult due to the primary control of bioturbation in the modern ocean. To isolate and determine the physical controls on microbial mat distribution and preservation, a time in Earth’s history must be examined when bioturbation was not the primary control. This restricts the window of observation primarily to the Precambrian and Cambrian, which precede the development of typical Phanerozoic and modern levels of bioturbation. Lower Cambrian strata of the southern Great Basin, United States, record the widespread development of seafloor microbial mats in shallow shelf and nearshore settings. These microbial mats are recorded by wrinkle structures, which consist of millimeter-scale ridges and sinuous troughs that represent the former presence of a surface microbial mat. Wrinkle structures within these strata occur exclusively within heterolithic deposits of the offshore transition, i.e., between fair-weather wave base and storm wave base, and within heterolithic tidal-flat deposits. Wrinkle structures are not preserved in siltstone-dominated offshore deposits or amalgamated shoreface sandstones. The preservation of wrinkle structures within these environments is due to: (1) the development of microbial mats atop clean quartz-rich sands for growth and casting of the structures; and (2) the draping of the microbial mat by finer-grained sediment to inhibit erosion. The exclusion from offshore deposits may be due to a lack of sufficient sunlight, whereas the restriction from the shoreface is likely due to the amalgamation of proximal tempestites, resulting in the erosion of any incipient microbial mat development.  相似文献   

3.
This study concerns the formation, taphonomy, and preservation of human footprints in microbial mats of present-day tidal-flat environments. Due to differences in water content and nature of the microbial mats and the underlying sediment, a wide range of footprint morphologies was produced by the same trackmaker. Most true tracks are subjected to modification due to taphonomic processes, leading to modified true tracks. In addition to formation of biolaminites, microbial mats play a major role in the preservation of footprints on tidal flats. A footprint may be consolidated by desiccation or lithification of the mat, or by ongoing growth of the mat. The latter process may lead to the formation of overtracks. Among consolidated or (partially) lithified footprints found on present-day tidal flats, poorly defined true tracks, modified true tracks, and overtracks were most frequently encountered while unmodified and well-defined true tracks are rather rare. We suggest that modified true tracks and overtracks make up an important percentage of fossil footprints and that they may be as common as undertracks. However, making unambiguous distinctions between poorly defined true tracks, modified true tracks, undertracks, and overtracks in the fossil record will remain a difficult task, which necessitates systematic excavation of footprints combined with careful analysis of the encasing sediment.  相似文献   

4.
Wrinkle structures are sedimentary features that are produced primarily through the trapping and binding of siliciclastic sediments by mat‐forming micro‐organisms. Wrinkle structures and related sedimentary structures in the rock record are commonly interpreted to represent the stabilizing influence of cyanobacteria on sediments because cyanobacteria are known to produce similar textures and structures in modern tidal flat settings. However, other extant bacteria such as filamentous representatives of the family Beggiatoaceae can also interact with sediments to produce sedimentary features that morphologically resemble many of those associated with cyanobacteria‐dominated mats. While Beggiatoa spp. and cyanobacteria are metabolically and phylogenetically distant, genomic analyses show that the two groups share hundreds of homologous genes, likely as the result of horizontal gene transfer. The comparative genomics results described here suggest that some horizontally transferred genes may code for phenotypic traits such as filament formation, chemotaxis, and the production of extracellular polymeric substances that potentially underlie the similar biostabilizing influences of these organisms on sediments. We suggest that the ecological utility of certain basic life modes such as the construction of mats and biofilms, coupled with the lateral mobility of genes in the microbial world, introduces an element of uncertainty into the inference of specific phylogenetic origins from gross morphological features preserved in the ancient rock record.  相似文献   

5.
Jennifer D. Eoff 《Facies》2014,60(3):801-814
The Furongian (Upper Cambrian; Jiangshanian and Sunwaptan) Tunnel City Group (Lone Rock Formation and Mazomanie Formation), exposed in Wisconsin and Minnesota, represents a shallow-marine clastic environment during a time of exceptionally high sea level. Lithofacies from shoreface to transitional-offshore settings document deposition in a wave- and storm-dominated sea. Flooding of the cratonic interior was associated with formation of a condensed section and the extensive development of microbial mats. Biolamination, mat fragments, wrinkle structures, and syneresis cracks are preserved in various sandstone facies of the Lone Rock Formation, as is evidence for the cohesive behavior of sand. These microbial-induced sedimentary structures (MISS) provide unique signals of biological–physical processes that physical structures alone cannot mimic. The MISS are associated with a trilobite extinction event in the Steptoean–Sunwaptan boundary interval. This may support recent claims that Phanerozoic microbial mats were opportunistic disaster forms that flourished during periods of faunal turnover. Further investigation of stratigraphic, taphonomic, and other potential biases, however, is needed to fully test this hypothesis.  相似文献   

6.
Variations in morphology, fatty acids, pigments and cyanobacterial community composition were studied in microbial mats across intertidal flats of the arid Arabian Gulf coast. These mats experience combined extreme conditions of salinity, temperature, UV radiation and desiccation depending on their tidal position. Different mat forms were observed depending on the topology of the coast and location. The mats contained 63 fatty acids in different proportions. The increased amounts of unsaturated fatty acids (12–39%) and the trans/cis ratio (0.6–1.6%) of the cyanobacterial fatty acid n- 18:1ω9 in the higher tidal mats suggested an adaptation of the mat microorganisms to environmental stress. Chlorophyll a concentrations suggested lower cyanobacterial abundance in the higher than in the lower intertidal mats. Scytonemin concentrations were dependent on the increase in solar irradiation, salinity and desiccation. The mats showed richness in cyanobacterial species, with Microcoleus chthonoplastes and Lyngbya aestuarii morphotypes as the dominant cyanobacteria. Denaturing gradient gel electrophoresis patterns suggested shifts in the cyanobacterial community dependent on drainage efficiency and salinity from lower to higher tidal zones. We conclude that the topology of the coast and the variable extreme environmental conditions across the tidal flat determine the distribution of microbial mats as well as the presence or absence of different microorganisms.  相似文献   

7.
The supratidal–intertidal sabkha of the Al-Kharrar area, Red Sea coast, Saudi Arabia, contains the evaporite minerals gypsum, anhydrite, and halite. Microbial mats flourish adjacent to the sabkha evaporites in tidal flats and pools of the Al Kharrar lagoon. Desiccation and decay of some microbial mats in tidal flat areas have led to precipitation of gypsum and halite there. The evaporite minerals have been precipitated through displacive, inclusive, and replacive growth within mud, sand, gravelly sand, and bioclastic sediment of the sabkha. Gypsum occurs as lenticular and tabular crystals whereas anhydrite occurs as nodular (individual, mosaic, and enterolithic) and pseudomorphs of lenticular gypsum crystals that grew displacively and replacively near the surface of the sabkha. Halite exists as a diagenetic cement within the sabkha sediment, or as primary rafts and skeletal crystals in desiccated tidal pools with salinity over 220‰. Microbial mats are growing on the surface of the upper tidal flat areas and in pools at a salinity range of 80–110‰, and they lead to biostabilization of the sediment. They have induced a range of sedimentary surface structures (MISS) including gas domes, reticulate patterns, tufts, pinnacles, wrinkles, and microbial shrinkage cracks. The occurrence, abundance, and association of evaporite minerals and MISS are controlled by local environmental factors such topography of the sabkha, emergence or submergence of tidal areas, surface area of the evaporite basin, contribution of meteoric water from floods from the adjoining Red Sea Mountains, and water salinity. These factors promote the growth of the microbial mats in the winter months, and deposition of evaporite minerals during summer months. Field and petrographic data indicate that the main recharge to the sabkha area is from tidal flow and water seepage from the Al-Kharrar lagoon. The results of this study indicate that within a small sabkha area of Al-Kharrar (3?×?17 km), a large variation in evaporite mineral types and morphologies grade into and are associated with MISS due to local environmental parameters. The interpretation of this association of evaporite minerals and MISS provides useful data for understanding the mechanisms responsible for precipitation of evaporite minerals and formation of MISS.  相似文献   

8.
Bacteriohopanepolyols (BHPs) are bacterial membrane lipids that may be used as biological or environmental biomarkers. Previous studies have described the diversity, distribution, and abundance of BHPs in a variety of modern environments. However, the regulation of BHP production in polar settings is not well understood. Benthic microbial mats from ice‐covered lakes of the McMurdo Dry Valleys, Antarctica provide an opportunity to investigate the sources, physiological roles, and preservation of BHPs in high‐latitude environments. Lake Vanda is one of the most stable lakes on Earth, with microbial communities occupying specific niches along environmental gradients. We describe the influence of mat morphology and local environmental conditions on the diversity and distribution of BHPs and their biological sources in benthic microbial mats from Lake Vanda. The abundance and diversity of C‐2 methylated hopanoids (2‐MeBHP) are of particular interest, given that their stable degradation products, 2‐methylhopanes, are among the oldest and most prevalent taxonomically informative biomarkers preserved in sedimentary rocks. Furthermore, the interpretation of sedimentary 2‐methylhopanes is of great interest to the geobiology community. We identify cyanobacteria as the sole source of 2‐MeBHP in benthic microbial mats from Lake Vanda and assess the hypothesis that 2‐MeBHP are regulated in response to a particular environmental variable, namely solar irradiance.  相似文献   

9.
Populations of the multi-trichomous microbial fossil Eoschizothrix composita n.gen. et sp. are preserved in growth position in silicified stratiform stromatolites of the Gaoyuzhuang Formation, Hebei Province, northern China. The microbial fossils consist predominantly of preserved sheaths, although several specimens retain shriveled remains of trichomes within sheaths. Comparisons with modern morphological counterparts, including shape, growth habit and orientation, degradational sequences, and habitat, support the interpretation of the multi-trichomous microfossils as cyanobacteria, which acted as frame-builders of ancient stromatolites. The distribution and orientation of multi-trichomous microfossils within a synsedimentary context reveal their behavioral responses to sedimentation regime. Horizontally spread, interwoven mats formed during periods of sedimentary stasis. During periods of rapid sediment influx, the filaments assumed an upright orientation, possibly to avoid accumulating particles. This is the first record of fossil stromatolite-building multi-trichomous cyanobacterial which underscores early morphological and functional diversification in cyanobacterial evolution.  相似文献   

10.
The effects of salinity fluctuation on bacterial diversity, rates of gross photosynthesis (GP) and oxygen consumption in the light (OCL) and in the dark (OCD) were investigated in three submerged cyanobacterial mats from a transect on an intertidal flat. The transect ran 1 km inland from the low water mark along an increasingly extreme habitat with respect to salinity. The response of GP, OCL and OCD in each sample to various salinities (65 per thousand, 100 per thousand, 150 per thousand and 200 per thousand) were compared. The obtained sequences and the number of unique operational taxonomic units showed clear differences in the mats' bacterial composition. While cyanobacteria decreased from the lower to the upper tidal mat, other bacterial groups such as Chloroflexus and Cytophaga/Flavobacteria/Bacteriodetes showed an opposite pattern with the highest dominance in the middle and upper tidal mats respectively. Gross photosynthesis and OCL at the ambient salinities of the mats decreased from the lower to the upper tidal zone. All mats, regardless of their tidal location, exhibited a decrease in areal GP, OCL and OCD rates at salinities > 100 per thousand. The extent of inhibition of these processes at higher salinities suggests an increase in salt adaptation of the mats microorganisms with distance from the low water line. We conclude that the resilience of microbial mats towards different salinity regimes on intertidal flats is accompanied by adjustment of the diversity and function of their microbial communities.  相似文献   

11.
Microbial mats have arguably been the most important ecosystem on Earth over its 3.5 Gyr inhabitation. Mats have persisted as consortia for billions of years and occupy some of Earth's most hostile environments. With rare exceptions (e.g. microbial mats developed on geothermal springs at Yellowstone National Park, USA), today's mats do not exist under conditions analogous to Precambrian habitats with substantially lower oxygen and sulphate concentrations. This study uses a numerical model of a microbial mat to investigate how mat composition in the past might have differed from modern mats. We present a numerical model of mat biogeochemistry that simulates the growth of cyanobacteria (CYA), colourless sulphur bacteria (CSB), and purple sulphur bacteria (PSB), with sulphate‐reducing bacteria (SRB) and heterotrophic bacteria represented by parameterized sulphate reduction rates and heterotrophic consumption rates, respectively. Variations in the availability of light, oxygen, sulphide, and sulphate at the upper boundary of the mat are the driving forces in the model. Mats with remarkably similar biomass and chemical profiles develop in models under oxygen boundary conditions ranging from 2.5 × 10?13 to 0.25 mm and sulphate boundary concentrations ranging from 0.29 to 29 mm , designed to simulate various environments from Archean to modern. The modelled mats show little sensitivity to oxygen boundary conditions because, independent of the overlying oxygen concentrations, cyanobacterial photosynthesis creates similar O2 concentrations of 0.45–0.65 mm in the upper reaches of the mat during the photoperiod. Varying sulphate boundary conditions have more effect on the biological composition of the mat. Sulphide generated from sulphate reduction controls the magnitude and distribution of the PSB population, and plays a part in the distribution of CSB. CSB are the most sensitive species to environmental change, varying with oxygen and sulphide.  相似文献   

12.
Microfossils, stromatolites, and chemical biosignatures indicate that Earth became a biological planet more than 3.5 billion years ago, making most of life''s history microbial. Proterozoic rocks preserve a rich record of cyanobacteria, including derived forms that differentiate multiple cell types. Stromatolites, in turn, show that microbial communities covered the seafloor from tidal flats to the base of the photic zone. The Archean record is more challenging to interpret, particularly on the question of cyanobacterial antiquity, which remains to be resolved. In the late Neoproterozoic Era, increasing oxygen and radiating eukaryotes altered the biosphere, with planktonic algae gaining ecological prominence in the water column, whereas seaweeds and, eventually, animals spread across shallow seafloors. From a microbial perspective, however, animals, algae, and, later, plants simply provided new opportunities for diversification, and, to this day, microbial metabolisms remain the only essential components of biogeochemical cycles.We live on a planet that records its own history, encrypted in the physical and chemical features of sedimentary rocks (Knoll 2003). Part of this history is biological; as appreciated by every child who has visited a natural history museum, bones and shells furnish a remarkable chronicle of animal evolution, complete with dinosaurs, trilobites, and other evocative taxa. The fossil record of animals extends nearly 600 million years into the past, but comparative biology makes it clear that diverse microorganisms populated our planet long before animals first evolved. The Earth itself is >4.5 billion years old, and the known sedimentary record begins with highly metamorphosed sedimentary rocks deposited ∼3.8 billion years ago. To what extent do Earth''s older sedimentary rocks provide a direct and informative record of our planet''s deep evolutionary history?  相似文献   

13.
Stabilization of sediments by microbial mats and biofilms were studied in detail in Lake Aghormi, Siwa Oasis, Egypt. The study has shown that microbial mat assemblages, particularly filamentous cyanobacteria, with their extracellular polymeric substances (EPS) are capable of effectively stabilizing sediments. The microbial mats in the siliciclastic environments of Lake Aghormi display distinctive sedimentary structures (microbially induced sedimentary structures), including multidirected ripple marks, microbial patches, petee structures, erosional remnants and pockets, and gas domes. Scanning electron microscopy study of the sediment surface colonized by cyanobacteria revealed that filamentous types are the most effective stabilizing organisms. Filamentous cyanobacteria and their EPS construct a network, interweave depositional grains of the sediment surface, envelope the particles, and glue them together. The studied biofilm is so thick forming a spider-web structure that totally coat the particles in such a way the morphology of the particles is masked.  相似文献   

14.
Microbial mats of coexisting bacteria and archaea date back to the early Archaean: many of the major steps in early evolution probably took place within them. The earliest mats may have formed as biofilms of cooperative chemolithotrophs in hyperthermophile settings, with microbial exploitation of diversifying niches. Anoxygenic photosynthesis using bacteriochlorophyll could have allowed mats, including green gliding bacteria, to colonize anaerobic shallow-water mesothermophile habitats. Exploitation of the Calvin–Benson cycle by purple bacteria allowed diversification of microbial mats, with some organisms in more aerobic habitats, while green sulphur bacteria specialized in anaerobic niches. Cyanobacterial evolution led to more complex mats and plankton, allowing widespread colonization of the globe and the creation of further aerobic habitat. Microbial mat structure may reflect this evolutionary development in broad terms, with anaerobic lower levels occupied by archaeal and bacterial respirers, fermenters and green bacteria, while the higher levels contain aerobic purple bacteria and are dominated by cyanobacteria. A possible origin of eukaryotes is from a fusion of symbiotic partners living across a redox boundary in a mat. The geological record of Archaean mats may be present as isotopic fingerprints: with the presence of cyanobacteria, mats may have had a nearly modern structure as early as 3.5 Ga ago (1 Ga = 109 years).  相似文献   

15.
The 2.1‐billion‐year‐old (Ga) Francevillian series in Gabon hosts some of the oldest reported macroscopic fossils of various sizes and shapes, stimulating new debates on the origin, evolution and organization of early complex life. Here, we document ten representative types of exceptionally well‐preserved mat‐related structures, comprising “elephant‐skin” textures, putative macro‐tufted microbial mats, domal buildups, flat pyritized structures, discoidal microbial colonies, horizontal mat growth patterns, wrinkle structures, “kinneyia” structures, linear patterns and nodule‐like structures. A combination of petrographic analyses, scanning electron microscopy, Raman spectroscopy and organic elemental analyses of carbon‐rich laminae and microtexture, indicate a biological origin for these structures. The observed microtextures encompass oriented grains, floating silt‐sized quartz grains, concentrated heavy minerals, randomly oriented clays, wavy‐crinkly laminae and pyritized structures. Based on comparisons with modern analogues, as well as an average δ13C organic matter (Corg) composition of ?32.94 ± 1.17‰ (1 standard deviation, SD) with an outlier of ?41.26‰, we argue that the mat‐related structures contain relicts of multiple carbon pathways including heterotrophic recycling of photosynthetically derived Corg. Moreover, the relatively close association of the macroscopic fossil assemblages to the microbial mats may imply that microbial communities acted as potential benthic O2 oases linked to oxyphototrophic cyanobacterial mats and grazing grounds. In addition, the mat's presence likely improved the preservation of the oldest large colonial organisms, as they are known to strongly biostabilize sediments. Our findings highlight the oldest community assemblage of microscopic and macroscopic biota in the aftermath of the “Great Oxidation Event,” widening our understanding of biological organization during Earth's middle age.  相似文献   

16.
New structural, nutritional, and stable carbon isotope data may resolve a long-standing mystery-the biological affinities of the fossil Prototaxites, the largest organism on land during the Late Silurian to Late Devonian (420-370 Ma). The tree trunk-shaped specimens, of varying dimensions but consistent tubular anatomy, first formed prior to vascular plant dominance. Hence, Prototaxites has been proposed to represent giant algae, fungi, or lichens, despite incompatible biochemical and anatomical observations. Our comparative analyses instead indicate that Prototaxites formed from partially degraded, wind-, gravity-, or water-rolled mats of mixotrophic liverworts having fungal and cyanobacterial associates, much like the modern liverwort genus Marchantia. We propose that the fossil body is largely derived from abundant, highly degradation-resistant, tubular rhizoids of marchantioid liverworts, intermixed with tubular microbial elements. Our concept explains previously puzzling fossil features and is consistent with evidence for liverworts and microbial associates in Ordovician-Devonian deposits, extensive ancient and modern marchantioid mats, and modern associations of liverworts with cyanobacteria and diverse types of fungi. Our interpretation indicates that liverworts were important components of Devonian ecosystems, that some macrofossils and microfossils previously attributed to "nematophytes" actually represent remains of ancient liverworts, and that mixotrophy and microbial associations were features of early land plants.  相似文献   

17.
Microbialites provide a record of the interaction of microorganisms with their environment constituting a record of microbial life and environments through geologic time. Our capacity to interpret this record is limited by an incomplete understanding of the microbial, geochemical, and physical processes that influence microbialite formation and morphogenesis. The modern system Laguna Negra in Catamarca Province, Argentina contains microbialites in a zone of carbonate precipitation associated with physico-chemical gradients and variable microbial community structure, making it an ideal location to study how these processes interact to drive microbialite formation. In this study, we investigated the geospatial relationships between carbonate morphology, geochemistry, and microbial community at the macro- (decimeter) to mega- (meter) scale by combining high-resolution imagery with field observations. We mapped the distribution of carbonate morphologies and allochtonously-derived volcaniclasts and correlated these with sedimentary matrices and geochemical parameters. Our work shows that the macroscale distribution of different carbonate morphologies spatially correlates with microbial mat distributions—a result consistent with previous microscale observations. Specifically, microbialitic carbonate morphologies more commonly occur associated with microbial mats while abiotically derived carbonate morphologies were less commonly associated with microbial mats. Spatial variability in the size and abundance of mineralized structures was also observed, however, the processes controlling this variability remains unclear and likely represent a combination of microbial, geochemical, and physical processes. Likewise, the processes controlling the spatial distribution of microbial mats at Laguna Negra are also unresolved. Our results suggest that in addition to the physical drivers observed in other modern environments, variability in the spatial distribution of microbialites and other carbonate morphologies at the macro- to megascale can be controlled by microbial processes. Overall, this study provides insight into the interpretation of microbialite occurrence and distributions in the geologic record and highlights the utility of geospatial statistics to probe the controls of microbialite formation in other environments.  相似文献   

18.
The Proterozoic History and Present State of Cyanobacteria   总被引:1,自引:0,他引:1  
Sergeev  V. N.  Gerasimenko  L. M.  Zavarzin  G. A. 《Microbiology》2002,71(6):623-637
The paper delves into the main regularities of the distribution of fossil microorganisms in Precambrian rocks, beginning from the Archean Eon about 3.5 billion years ago and ending in the Cambrian Period about 0.5 billion years ago. The paper analyzes facial peculiarities in the lateral differentiation of microfossils in Proterozoic basins and the main stages of temporal changes in fossil cyanobacterial communities, which are based on the irreversible succession of physicochemical conditions on the Earth and the evolution of eukaryotic microorganisms and their incorporation into prokaryotic ecosystems. To gain insight into Proterozoic fossil record, modern stratified cyanobacterial mats built up from layers of prokaryotes are considered. The analysis of phosphatization, carbonatization, and silification processes in modern algal–bacterial communities suggests that analogous processes took place in Proterozoic microbiotas. A comparison of modern and Precambrian living forms confirms the inference that cyanobacterial communities are very conservative and have changed insignificantly both morphologically and physiologically during the past two billion years.  相似文献   

19.
The creation of a mathematical simulation model of photosynthetic microbial mats is important to our understanding of key biogeochemical cycles that may have altered the atmospheres and lithospheres of early Earth. A model is presented here as a tool to integrate empirical results from research on hypersaline mats from Baja California Sur (BCS), Mexico into a computational system that can be used to simulate biospheric inputs of trace gases to the atmosphere. The first version of our model, presented here, calculates fluxes and cycling of O(2), sulfide, and dissolved inorganic carbon (DIC) via abiotic components and via four major microbial guilds: cyanobacteria (CYA), sulfate reducing bacteria (SRB), purple sulfur bacteria (PSB) and colorless sulfur bacteria (CSB). We used generalized Monod-type equations that incorporate substrate and energy limits upon maximum rates of metabolic processes such as photosynthesis and sulfate reduction. We ran a simulation using temperature and irradiance inputs from data collected from a microbial mat in Guerrero Negro in BCS (Mexico). Model O(2), sulfide, and DIC concentration profiles and fluxes compared well with data collected in the field mats. There were some model-predicted features of biogeochemical cycling not observed in our actual measurements. For instance, large influxes and effluxes of DIC across the MBGC mat boundary may reveal previously unrecognized, but real, in situ limits on rates of biogeochemical processes. Some of the short-term variation in field-collected mat O(2) was not predicted by MBGC. This suggests a need both for more model sensitivity to small environmental fluctuations for the incorporation of a photorespiration function into the model.  相似文献   

20.
The community structure and physiological characteristics of three microbial mat communities in Byers Peninsula (Livingston Island, South Shetland Islands, Antarctica) were compared. One of the mats was located at the edge of a stream and was dominated by diatoms (with a thin basal layer of oscillatorian cyanobacteria), whereas the other two mats, located over moist soil and the bottom of a pond, respectively, were dominated by cyanobacteria throughout their vertical profiles. The predominant xanthophyll was fucoxanthin in the stream mat and myxoxanthophyll in the cyanobacteria-dominated mats. The sheath pigment scytonemin was absent in the stream mat but present in the soil and pond mats. The stream mat showed significantly lower delta13C and higher delta15N values than the other two mats. Consistent with the delta15N values, N2 fixation was negligible in the stream mat. The soil mat was the physiologically most active community. It showed rates of photosynthesis three times higher than in the other mats, and had the highest rates of ammonium uptake, nitrate uptake and N2 fixation. These observations underscore the taxonomic and physiological diversity of microbial mat communities in the maritime Antarctic region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号