首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
S Y Lan  M J Smerdon 《Biochemistry》1985,24(26):7771-7783
We have investigated the distribution in nucleosome core DNA of nucleotides incorporated by excision repair synthesis occurring immediately after UV irradiation in human cells. We show that the differences previously observed for whole nuclei between the DNase I digestion profiles of repaired DNA (following its refolding into a nucleosome structure) and bulk DNA are obtained for isolated nucleosome core particles. Analysis of the differences obtained indicates that they could reflect a significant difference in the level of repair-incorporated nucleotides at different sites within the core DNA region. To test this possibility directly, we have used exonuclease III digestion of very homogeneous sized core particle DNA to "map" the distribution of repair synthesis in these regions. Our results indicate that in a significant fraction of the nucleosomes the 5' and 3' ends of the core DNA are markedly enhanced in repair-incorporated nucleotides relative to the central region of the core particle. A best fit analysis indicates that a good approximation of the data is obtained for a distribution where the core DNA is uniformly labeled from the 5' end to position 62 and from position 114 to the 3' end, with the 52-base central region being devoid of repair-incorporated nucleotides. This distribution accounts for all of the quantitative differences observed previously between repaired DNA and bulk DNA following the rapid phase of nucleosome rearrangement when it is assumed that linker DNA and the core DNA ends are repaired with equal efficiency and the nucleosome structure of newly repaired DNA is identical with that of bulk chromatin. Furthermore, the 52-base central region that is devoid of repair synthesis contains the lowest frequency cutting sites for DNase I in vitro, as well as the only "internal" locations where two (rather than one) histones interact with a 10-base segment of each DNA strand.  相似文献   

2.
The human base excision repair machinery must locate and repair DNA base damage present in chromatin, of which the nucleosome core particle is the basic repeating unit. Here, we have utilized fragments of the Lytechinus variegatus 5S rRNA gene containing site-specific U:A base pairs to investigate the base excision repair pathway in reconstituted nucleosome core particles in vitro. The human uracil-DNA glycosylases, UNG2 and SMUG1, were able to remove uracil from nucleosomes. Efficiency of uracil excision from nucleosomes was reduced 3- to 9-fold when compared with naked DNA, and was essentially uniform along the length of the DNA substrate irrespective of rotational position on the core particle. Furthermore, we demonstrate that the excision repair pathway of an abasic site can be reconstituted on core particles using the known repair enzymes, AP-endonuclease 1, DNA polymerase beta and DNA ligase III. Thus, base excision repair can proceed in nucleosome core particles in vitro, but the repair efficiency is limited by the reduced activity of the uracil-DNA glycosylases and DNA polymerase beta on nucleosome cores.  相似文献   

3.
Order of assembly of human DNA repair excision nuclease.   总被引:21,自引:0,他引:21  
Human excision nuclease removes DNA damage by concerted dual incisions bracketing the lesion. The dual incisions are accomplished by sequential and partly overlapping actions of six repair factors, RPA, XPA, XPC, TFIIH, XPG, and XPF.ERCC1. Of these, RPA, XPA, and XPC have specific binding affinity for damaged DNA. To learn about the role of these three proteins in damage recognition and the order of assembly of the excision nuclease, we measured the binding affinities of XPA, RPA, and XPC to a DNA fragment containing a single (6-4) photoproduct and determined the rate of damage excision under a variety of reaction conditions. We found that XPC has the highest affinity to DNA and that RPA has the highest selectivity for damaged DNA. Under experimental conditions conducive to binding of either XPA + RPA or XPC to damaged DNA, the rate of damage removal was about 5-fold faster for reactions in which XPA + RPA was the first damage recognition factor presented to DNA compared with reactions in which XPC was the first protein that had the opportunity to bind to DNA. We conclude that RPA and XPA are the initial damage sensing factors of human excision nuclease.  相似文献   

4.
To investigate the role of chromatin remodeling in nucleotide excision repair, we prepared mononucleosomes with a 200-bp duplex containing an acetylaminofluorene-guanine (AAF-G) adduct at a single site. DNase I footprinting revealed a well-phased nucleosome structure with the AAF-G adduct near the center of twofold symmetry of the nucleosome core. This mononucleosome substrate was used to examine the effect of the SWI/SNF remodeling complex on the activity of human excision nuclease reconstituted from six purified excision repair factors. We found that the three repair factors implicated in damage recognition, RPA, XPA, and XPC, stimulate the remodeling activity of SWI/SNF, which in turn stimulates the removal of the AAF-G adduct from the nucleosome core by the excision nuclease. This is the first demonstration of the stimulation of nucleotide excision repair of a lesion in the nucleosome core by a chromatin-remodeling factor and contrasts with the ACF remodeling factor, which stimulates the removal of lesions from internucleosomal linker regions but not from the nucleosome core.  相似文献   

5.
Human nucleotide excision repair is initiated by six repair factors (XPA, RPA, XPC-HR23B, TFIIH, XPF-ERCC1, and XPG) which sequentially assemble at sites of DNA damage and effect excision of damage-containing oligonucleotides. We here describe the molecular anatomy of the human excision nuclease assembled at the site of a psoralen-adducted thymine. Three polypeptides, primarily positioned 5' to the damage, are in close physical proximity to the psoralen lesion and thus are cross-linked to the damaged DNA: these proteins are RPA70, RPA32, and the XPD subunit of TFIIH. While both XPA and XPC bind damaged DNA and are required for XPD cross-linking to the psoralen-adducted base, neither XPA nor XPC is cross-linked to the psoralen adduct. The presence of other repair factors, in particular TFIIH, alters the mode of RPA binding and the position of its subunits relative to the psoralen lesion. Based on these results, we propose that RPA70 makes the initial contact with psoralen-damaged DNA but that within preincision complexes, it is RPA32 and XPD that are in close contact with the lesion.  相似文献   

6.
Nora Goosen 《DNA Repair》2010,9(5):593-596
Damage detection during nucleotide excision repair requires the action of multiple proteins that probe the DNA for different parameters like disruption of basepairing, DNA bendability and presence of chemical modifications. In a recent study it has been shown that two of these probing events can be spatially separated on the DNA. Upon initial binding of the XPC protein to a region with disrupted basepairing a complex of XPC, TFIIH and XPA is translocated to a CPD lesion even when this chemical modification is located up to 160 nucleotides from the mispaired region.  相似文献   

7.
《Molecular cell》2022,82(7):1343-1358.e8
  1. Download : Download high-res image (178KB)
  2. Download : Download full-size image
  相似文献   

8.
9.
8-Oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodGuo) is a biomarker of oxidative DNA damage and can be repaired by hOGG1 and APE1 via the base excision repair (BER) pathway. In this work, we studied coordinated BER of 8-oxodGuo by hOGG1 and APE1 in nucleosome core particles and found that histones transiently formed DNA-protein cross-links (DPCs) with active repair intermediates such as 3′-phospho-α,β-unsaturated aldehyde (PUA) and 5′-deoxyribosephosphate (dRP). The effects of histone participation could be beneficial or deleterious to the BER process, depending on the circumstances. In the absence of APE1, histones enhanced the AP lyase activity of hOGG1 by cross-linking with 3′-PUA. However, the formed histone-PUA DPCs hampered the subsequent repair process. In the presence of APE1, both the AP lyase activity of hOGG1 and the formation of histone-PUA DPCs were suppressed. In this case, histones could catalyse removal of the 5′-dRP by transiently cross-linking with the active intermediate. That is, histones promoted the repair by acting as 5′-dRP lyases. Our findings demonstrate that histones participate in multiple steps of 8-oxodGuo repair in nucleosome core particles, highlighting the diverse roles that histones may play during DNA repair in eukaryotic cells.  相似文献   

10.
11.
Mammalian cells repair apurinic/apyrimidinic (AP) sites in DNA by two distinct pathways: a polymerase beta (pol beta)-dependent, short- (one nucleotide) patch base excision repair (BER) pathway, which is the major route, and a PCNA-dependent, long- (several nucleotide) patch BER pathway. The ability of a cell-free lysate prepared from asexual Plasmodium falciparum malaria parasites to remove uracil and repair AP sites in a variety of DNA substrates was investigated. We found that the lysate contained uracil DNA glycosylase, AP endonuclease, DNA polymerase, flap endonuclease, and DNA ligase activities. This cell-free lysate effectively repaired a regular or synthetic AP site on a covalently closed circular (ccc) duplex plasmid molecule or a long (382 bp), linear duplex DNA fragment, or a regular or reduced AP site in short (28 bp), duplex oligonucleotides. Repair of the AP sites in the various DNA substrates involved a long-patch BER pathway. This biology is different from mammalian cells, yeast, Xenopus, and Escherichia coli, which predominantly repair AP sites by a one-nucleotide patch BER pathway. The apparent absence of a short-patch BER pathway in P. falciparum may provide opportunities to develop antimalarial chemotherapeutic strategies for selectively damaging the parasites in vivo and will allow the characterization of the long-patch BER pathway without having to knock-out or inactivate a short-patch BER pathway, which is necessary in mammalian cells.  相似文献   

12.
Dip R  Camenisch U  Naegeli H 《DNA Repair》2004,3(11):1409-1423
Using only a limited repertoire of recognition subunits, the nucleotide excision repair (NER) system is able to detect a nearly infinite variety of bulky DNA lesions. This extraordinary substrate versatility has generally been ascribed to an indirect readout mechanism, whereby particular distortions of the double helix, induced by a damaged nucleotide, provide the molecular determinants not only for lesion recognition but also for subsequent verification or demarcation processes. Here, we discuss the evidence in support of a bipartite mechanism of substrate discrimination that is initiated by the detection of thermodynamically unstable base pairs followed by direct localization of the lesion through an enzymatic proofreading activity. This bipartite discrimination mechanism is part of a dynamic reaction cycle that confers high levels of selectivity to avoid futile repair events on undamaged DNA and also protect the intact complementary strand from inappropriate cleavage.  相似文献   

13.
Nucleotide excision repair (NER) is the most versatile and universal pathway of DNA repair that is capable of repairing virtually any damages other than a double strand break (DSB). This pathway has been shown to be inducible in several systems. However, question of a threshold and the nature of the damage that can signal induction of this pathway remain poorly understood. In this study it has been shown that prior exposure to very low doses of osmium tetroxide enhanced the survival of wild type Saccharomyces cerevisiae when the cells were challenged with UV light. Moreover, it was also found that osmium tetroxide treated rad3 mutants did not show enhanced survival indicating an involvement of nucleotide excision repair in the enhanced survival. To probe this further the actual removal of pyrimidine dimers by the treated and control cells was studied. Osmium tetroxide treated cells removed pyrimidine dimers more efficiently as compared to control cells. This was confirmed by measuring the in vitro repair synthesis in cell free extracts prepared from control and primed cells. It was found that the uptake of active 32P was significantly higher in the plasmid substrates incubated with extracts of primed cells. This induction is dependent on de novo synthesis of proteins as cycloheximide treatment abrogated this response. The nature of induced repair was found to be essentially error free. Study conclusively shows that NER is an inducible pathway in Saccharomyces cerevisiae and its induction is dependent on exposure to a threshold of a genotoxic stress.  相似文献   

14.
5,6-Dihydroxy-5,6-dihydrothymine (thymine glycol) and 7,8-dihydro-8-oxo-2′-deoxyguanosine (8-oxodG) are major DNA damage lesions produced by endogenous oxidative stress, as well as inflicted by carcinogens and ionizing radiation. The processing of Tg:G mismatch and 8-oxodG in close proximity of each other in a bistranded clustered environment in DNA oligomer duplexes as well as in a nucleosome core particle (NCP) model are reported here. The processing of the lesions was evaluated by purified enzyme cocktails of hNTH1 and hOGG1 as well as with a HeLa cell extract. Interestingly, the yield of double-strand breaks (DSBs) resulting from the processing of the bistranded lesions are appreciably lower when the DNA is treated with the HeLa cell extract compared with the relevant purified enzyme cocktail in both models. Clustered bistranded lesions become more repair refractive when reconstituted as an NCP. This indicates a complex interplay between the repair enzymes that influence the processing of the bistranded cluster damage positively to avoid the formation of DSBs under cellular conditions. In addition to position and orientation of the lesions, the type of the lesions in the cluster environment in DNA along with the relative abundance of the lesion-specific enzymes in the cells strongly prevents the processing of the oxidized nucleobases.  相似文献   

15.
Oxidized pyrimidines in DNA are removed by a distinct base excision repair pathway initiated by the DNA glycosylase--AP lyase hNth1 in human cells. We have reconstituted this single-residue replacement pathway with recombinant proteins, including the AP endonuclease HAP1/APE, DNA polymerase beta, and DNA ligase III-XRCC1 heterodimer. With these proteins, the nucleotide excision repair enzyme XPG serves as a cofactor for the efficient function of hNth1. XPG protein promotes binding of hNth1 to damaged DNA. The stimulation of hNth1 activity is retained in XPG catalytic site mutants inactive in nucleotide excision repair. The data support the model that development of Cockayne syndrome in XP-G patients is related to inefficient excision of endogenous oxidative DNA damage.  相似文献   

16.
Nucleotide excision repair is a general repair system that eliminates many dissimilar lesions from DNA. In an effort to understand substrate determinants of this repair system, we tested DNAs with minor backbone modifications using the ultrasensitive excision assay. We found that a phosphorothioate and a methylphosphonate were excised with low efficiency. Surprisingly, we also found that fragments of 23-28 nucleotides and of 12-13 nucleotides characteristic of human and Escherichia coli excision repair, respectively, were removed from undamaged DNA at a significant rate. Considering the relative abundance of undamaged DNA in comparison to damaged DNA in the course of the life of an organism, we conclude that, in general, excision from and resynthesis of undamaged DNA may exceed the excision and resynthesis caused by DNA damage. As resynthesis is invariably associated with mutations, we propose that gratuitous repair may be an important source of spontaneous mutations.  相似文献   

17.
We investigated expression patterns of DNA repair genes such as the CPD photolyase, UV-DDB1, CSB, PCNA, RPA32 and FEN-1 genes by northern hybridization analysis and in situ hybridization using a higher plant, rice (Oryza sativa L. cv. Nipponbare). We found that all the genes tested were expressed in tissues rich in proliferating cells, but only CPD photolyase was expressed in non-proliferating tissue such as the mature leaves and elongation zone of root. The removal of DNA damage, cyclobutane pyrimidine dimers and (6–4) photoproducts, in both mature leaves and the root apical meristem (RAM) was observed after UV irradiation under light. In the dark, DNA damage in mature leaves was not repaired efficiently, but that in the RAM was removed rapidly. Using a rice 22K custom oligo DNA microarray, we compared global gene expression patterns in the shoot apical meristem (SAM) and mature leaves. Most of the excision repair genes were more strongly expressed in SAM. These results suggested that photoreactivation is the major DNA repair pathway for the major UV-induced damage in non-proliferating cells, while both photoreactivation and excision repair are active in proliferating cells.  相似文献   

18.
DNA repair within nucleosome cores of UV-irradiated human cells   总被引:2,自引:0,他引:2  
K A Jensen  M J Smerdon 《Biochemistry》1990,29(20):4773-4782
We have compared the distributions of repair synthesis and pyrimidine dimers (PD) in nucleosome core DNA during the early (fast) repair phase and the late (slow) repair phase of UV-irradiated human fibroblasts. As shown previously [Lan, S. Y., & Smerdon, M. J. (1985) Biochemistry 24, 7771-7783], repair synthesis is nonuniform in nucleosome core particles during the fast repair phase, and the distribution curve can be approximated by a model where repair synthesis occurs preferentially in the 5' and 3' end regions. In this report, we show that, during the slow repair phase, [3H]dThd-labeled repair patches are much more uniformly distributed in core DNA, although they appear to be preferentially located in sequences degraded slowly by exonuclease III. This change in distribution cannot be explained by an increase in patch size during slow repair, since the size of these patches actually decreases to about half the size measured during the fast repair phase. Furthermore, PD mapping within core DNA at the single-nucleotide level demonstrated that, at least within the 30-130-base region from the 5' end, there is little (or no) selective removal of PD during the fast repair phase. However, the nonuniform distribution of repair synthesis obtained during fast repair throughout most of the core DNA region (approximately 40-146 bases) is accounted for by the nonuniform distribution of PD in core DNA. The near-uniform distribution of repair synthesis observed during slow repair may result from more extensive nucleosome rearrangement and/or nucleosome modification during this phase.  相似文献   

19.
DNA damage recognition during nucleotide excision repair in mammalian cells   总被引:13,自引:0,他引:13  
Wood RD 《Biochimie》1999,81(1-2):39-44
For the bulk of mammalian DNA, the core protein factors needed for damage recognition and incision during nucleotide excision repair (NER) are the XPA protein, the heterotrimeric RPA protein, the 6 to 9-subunit TFIIH, the XPC-hHR23B complex, the XPG nuclease, and the ERCC1-XPF nuclease. With varying efficiencies, NER can repair a very wide range of DNA adducts, from bulky helical distortions to subtle modifications on sugar residues. Several of the NER factors have an affinity for damaged DNA. The strongest binding factor appears to be XPC-hHR23B but preferential binding to damage is also a property of XPA, RPA, and components of TFIIH. It appears that in order to be repaired by NER, an adduct in DNA must have two features: it must create a helical distortion, and there must be a change in DNA chemistry. Initial recognition of the distortion is the most likely function for XPC-hHR23B and perhaps XPA and RPA, whereas TFIIH is well-suited to locate the damaged DNA strand by locating altered DNA chemistry that blocks translocation of the XPB and XPD components.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号