首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The expression of soluble recombinant transglutaminase (TGase) has proven to be a challenge for many research groups. Herein, we report a complementary method for the expression, in BL21(DE3) Escherichia coli, of recombinant human tissue transglutaminase (hTG2) whose solubility is enhanced through N-terminal fusion to glutathione S-transferase (GST). Moreover, we report the cleavage of the GST tag using PreScission? Protease (PSP) and purification of hTG2 in its untagged form, distinctively suitable for subsequent studies of its remarkable conformational equilibrium. The effects of co-solvents and storage conditions on stability of purified hTG2 are also reported. Furthermore, we demonstrate for the first time the use of a convenient chromogenic assay to measure the activity of the human enzyme. The utility of this assay was demonstrated in the measurement of the kinetic parameters of a wide variety of substrates and inhibitors of both hTG2 and the extensively studied guinea pig liver TGase. Finally, comparison of these results provides further evidence for the functional similarity of the two enzymes.  相似文献   

2.
Tissue transglutaminase purified from guinea pig livers has a very broad substrate specificity in comparison with other members of the transglutaminase family and therefore is useful for substrate analogue kinetic studies. Modifications made in our laboratory to the standard purification protocol (J. E. Folk and S. I. Chung, 1985, Methods Enzymol. 113, 358-364) have yielded a 28% increase in specific activity and 55% increase in overall yield, while reducing the number of steps to the purification. Herein we report some of the highest yields and specific activities for guinea pig liver transglutaminase found in the literature, as well as the use of lyophilization as a solution to the long-standing problem of enzyme stability during storage.  相似文献   

3.
Transglutaminase (TGase) is an enzyme that catalyzes both isopeptide cross-linking and incorporation of primary amines into proteins. Eight TGases have been identified in humans, and each of these TGases has a unique tissue distribution and physiological significance. Although several assays for TGase enzymatic activity have been reported, it has been difficult to establish an assay for discriminating each of these different TGase activities. Using a random peptide library, we recently identified the preferred substrate sequences for three major TGases: TGase 1, TGase 2, and factor XIII. In this study, we use these substrates in specific tests for measuring the activities of TGase 1 and factor XIII.  相似文献   

4.
Transglutaminase (TGase) is an enzyme that catalyzes acyl transfer reactions between primary amines and Gln residues in proteins or peptides. Substrate specificities of TGase, Ca2+-independent microbial transglutaminase (MTGase), and Ca2+-dependent tissue type transglutaminase from guinea pig liver (GTGase) and fish, Red sea bream (Pagrus major), liver (FTGase), for acyl donors were investigated using synthetic peptides containing Gln residues and Gln analogues with different lengths of side chain. MTGase dose not recognize the Gln analogues as a substrate and has strict substrate specificities toward L-Gln. Substrate peptides with a variety of sequences around the Gln residue, GXXQXXG (X=G, A, S, L, V, F, Y, R, N, E, L) were synthesized and used as acyl donors. As an acyl acceptor, the fluorescent reagent monodancyl cadaverine was used and the reactions analyzed with RP-HPLC. Substitution of the C-terminal of a Gln residue with a hydrophobic amino acid accelerated the reaction by GTGase and FTGase. N-terminal substitution of Gln residues had similar effects on the reaction by MTGase.  相似文献   

5.
Herein we report the design of a direct and continuous fluorometric assay for determining tissue transglutaminase (TGase) activity. The progress of the TGase-catalyzed reaction of 4-(N-carbobenzoxy-l-phenylalanylamino)-butyric acid coumarin-7-yl ester was monitored as an increase of fluorescence (lambda(exc) 330 nm, lambda(em) 460 nm) due to the release of 7-hydroxycoumarin. Using this assay, we determined the K(m) of two acceptor substrates, N-acetyl-L-lysine methyl ester and aminoacetonitrile. We also determined the K(m) of 4-(N-carbobenzoxy-L-phenylalanylamino)-butyric acid coumarin-7-yl ester for its TGase-mediated hydrolysis and for its enzymatic reaction with the acyl acceptor substrates N-acetyl-L-lysine methyl ester and aminoacetonitrile. We ascertained that the fluorescent substrate was selective toward tissue TGase by testing it with different enzymes, namely microbial transglutaminase (mTGase), Factor XIIIa, papain, and gamma-glutamyl transpeptidase. 4-(N-carbobenzoxyglycinylamino)-butyric acid coumarin-7-yl ester, lacking the benzyl side chain, was also found to be an efficient fluorogenic substrate of tissue TGase. Finally, we have shown that this method is applicable to 96-well microtiter plate format.  相似文献   

6.
Tissue transglutaminase (TGase 2) belongs to the multigene transglutaminase family of Ca2+-dependent protein cross-linking enzymes. Based on the transamidation activity of TGase 2, a novel colorimetric assay has been developed using covalently coupled spermine to carboxy-substituted polystyrene plates and biotinylated pepT26, an excellent acyl-donor substrate, highly specific for TGase 2. The assay is based on the incorporation of the gamma-carboxamide of glutamine of pepT26 into the immobilized spermine. The amount of biotinylated pepT26 bound to the plate, as measured by the activity of streptavidin-peroxidase, is directly proportional to the TGase activity. The colorimetric procedure showed a good correlation (r = 0.995) with the commonly used radiometric filter paper method for TGase2, and provides linear dose-response curves over a wide range of hrTGase2 concentrations (2.5-40 μU/ml). In addition, the assay shows higher sensitivity when compared with our previous TG-colorimetric test (more than 50-fold increase) and other existing assays. PepT26 displays strong reactivity with TGase 2, and no reactivity with TGases 1, 3, and FXIII. The procedure constitutes a rapid, TG2-specific, sensitive, and nonisotopic method for the measurement of TGase 2 activity in as low as 4 ng of hrTGase 2 and purified guinea pig liver transglutaminase, and 1.25 μg of guinea pig liver extracts.  相似文献   

7.
A large number of substrate proteins for tissue transglutaminase (TGase 2) have been identified in vivo and in vitro. Preference in primary sequence or secondary structure around the reactive glutamine residues in the substrate governs the reactivity for TGase 2. We established a screening system to identify preferable sequence as a glutamine-donor substrate using a phage-displayed peptide library. The results showed that several peptide sequences have higher reactivity and specificity to TGase 2 than those of preferable sequences previously reported. By analysis of the most reactive 12-amino acid sequence, T26 (HQSYVDPWMLDH), residues crucial to the enzymatic reaction were investigated. The following review summarizes the screening system and also the preference in substrate sequences that were obtained by this method and those previously reported.  相似文献   

8.
Transglutaminase (TGase) is an enzyme that catalyzes acyl transfer reactions between primary amines and Gln residues in proteins or peptides. Substrate specificities of TGase, Ca2+-independent microbial transglutaminase (MTGase), and Ca2+-dependent tissue type transglutaminase from guinea pig liver (GTGase) and fish, Red sea bream (Pagrus major), liver (FTGase), for acyl donors were investigated using synthetic peptides containing Gln residues and Gln analogues with different lengths of side chain. MTGase dose not recognize the Gln analogues as a substrate and has strict substrate specificities toward L-Gln. Substrate peptides with a variety of sequences around the Gln residue, GXXQXXG (X=G, A, S, L, V, F, Y, R, N, E, L) were synthesized and used as acyl donors. As an acyl acceptor, the fluorescent reagent monodancyl cadaverine was used and the reactions analyzed with RP-HPLC. Substitution of the C-terminal of a Gln residue with a hydrophobic amino acid accelerated the reaction by GTGase and FTGase. N-terminal substitution of Gln residues had similar effects on the reaction by MTGase.  相似文献   

9.
Transglutaminase (TGase) is a family of enzymes that catalyzes cross-linking reaction between glutamine- and lysine residue of substrate proteins in several mammalian biological events. Substrate proteins for TGase and their physiological relevance have been still in research, continuously expanding. In this study, we have established a novel screening system that enables identification of cDNA sequence encoding favorable primary structure as a substrate for tissue-type transglutaminase (TGase 2), a multifunctional and ubiquitously expressing isozyme. By the screening, we identified several T7 phage clones that displayed substrate peptides for TGase 2 as a translated product from human brain cDNA library. Among the selected clones, the C-terminal region of IKAP, IkappaB kinase complex associated protein, appeared as a highly reactive substrate sequence for TGase 2. This system will open possibility of rapid identification of substrate sequences for transglutaminases at a genetic level.  相似文献   

10.
Homogenate transglutaminase (TGase)-specific activity of guinea pig peritoneal macrophages was measured under a variety of conditions that stimulate or activate macrophages. Resident peritoneal macrophages had low levels of TGase as compared with oil-elicited inflammatory macrophages, which showed 30- to 100-fold greater enzyme activity. Immunofluorescent staining with specific antibody to purified enzyme showed a corresponding increase in staining intensity in subpopulations of inflammatory macrophages. Stimulation of macrophages with bacterial endotoxin, lymphokine, or Lotus tetragonolobus lectin resulted in increased TGase-specific activity. Cystamine, an inhibitor of the enzyme, reduced TGase activity, reduced lymphokine-mediated migration inhibition, and inhibited Fc-mediated phagocytosis. The substrate inhibitors, methylamine and dansylcadaverine, also inhibited Fc-dependent phagocytosis. These results suggest a possible role for TGase in macrophage activation and in receptor-dependent phagocytosis.  相似文献   

11.
Culture of mouse resident peritoneal macrophages (PM) in serum-containing medium causes a rapid and marked induction of the enzyme tissue transglutaminase (tissue TGase). Coculture of PM with amphotericin B (AmpB) inhibited the serum-induced expression and accumulation of tissue TGase. The AmpB-mediated inhibition of tissue TGase was specific and was due to inhibition of enzyme synthesis. The serum-dependent induction of tissue TGase was inhibited in a dose-dependent fashion, and a complete inhibition was observed at 1.5 microgram/ml dose of AmpB. The inhibition was reversible; however, the time of recovery depended on the dose and time of exposure of the cells to AmpB. The present studies suggest that AmpB-mediated inhibition of tissue TGase is due to inhibition of the uptake of serum retinoids by PM.  相似文献   

12.
Since transglutaminase (TGase) have been widely used in industry, mass production of the enzyme is especially necessary. The mature TGase gene from Streptomyces fradiae was cloned into pET21a and overexpressed in Escherichia coli BL21(DE3). The recombinant TGase was formed as inclusion bodies, and its content was as high as 55% of the total protein content. The insoluble fractions were separated from cellular debris by centrifugation and solubilized with 8 M urea. With an on-column refolding procedure based on cation SP Fast Flow chromatography with dual-gradient, the active TGase protein was recovered efficiently from inclusion bodies. The final purified product was 95% pure detected by SDS-PAGE. Under appropriate experimental conditions, the protein yield and specific activity of the TGase were up to 53% and 21 U/mg, respectively. Furthermore, the refolded recombinant protein demonstrated nearly identical ability to polymerized BSA compared with that of native TGase. One hundred and five milligrams of refolded TGase protein was obtained from 3.2g wet weight cells in the 400 ml cell culture.  相似文献   

13.
Mammalian transglutaminase (TGase) catalyzes covalent cross-linking of peptide-bound lysine residues or incorporation of primary amines to limited glutamine residues in substrate proteins. Using an unbiased M13 phage display random peptide library, we developed a screening system to elucidate primary structures surrounding reactive glutamine residue(s) that are preferred by TGase. Screening was performed by selecting phage clones expressing peptides that incorporated biotin-labeled primary amine by the catalytic reactions of TGase 2 and activated Factor XIII (Factor XIIIa). We identified several amino acid sequences that were preferred as glutamine donor substrates, most of which have a marked tendency for individual TGases: TGase 2, QxPphiD(P), QxPphi, and QxxphiDP; Factor XIIIa, QxxphixWP (where x and phi represent a non-conserved and a hydrophobic amino acid, respectively). We further confirmed that the sequences were favored for transamidation using modified glutathione S-transferase (GST) for recombinant peptide-GST fusion proteins. Most of the fusion proteins exhibited a considerable increase in incorporation of primary amines over that of modified GST alone. Furthermore, we identified the amino acid sequences that demonstrated higher specificity and inhibitory activity in the cross-linking reactions by TGase 2 and Factor XIIIa.  相似文献   

14.
A tissue-type transglutaminase (TGase) was purified from liver tissue of the red sea bream, Pagrus major, by ion-exchange chromatography and heparin-Sepharose affinity chromatography. Its activity was assessed using a fluorometric assay to measure the incorporation of monodansylcadaverine into N,N′-dimethyl casein. The molecular mass of purified TGase was estimated to be 78kDa by SDS–polyacrylamide gel electrophoresis. The enzyme required Ca2+ to express its activity, although 10 mM Sr2+ also activated the enzyme fully. TGase activity was maximal at pH 9.0–9.5, and the enzyme was strongly inhibited by sulfhydryl reagents. The purified enzyme catalyzed the cross-linking of myosin heavy chain obtained from Alaska pollack, resulting in gelation of an actomyosin solution. The partial amino acid sequence of this fish TGase showed divisionally significant similarity to TGase from guinea pig liver.  相似文献   

15.
Transglutaminases (EC 2.3.2.13) catalyze the formation of epsilon-(gamma-glutamyl)lysine cross-links and the substitution of primary amines for the gamma-carboxamide groups of protein bound glutamine residues, and are involved in many biological phenomena. Transglutaminase reactions are also applicable in applied enzymology. Here, we established an expression system of recombinant mammalian tissue-type transglutaminase with high productivity. Overexpression of guinea pig liver transglutaminase in Escherichia coli, using a plasmid pET21-d, mostly resulted in the accumulation of insoluble and inactive enzyme protein. By the expression culture at lower temperatures (25 and 18 degrees C), however, a fraction of the soluble and active enzyme protein slightly increased. Co-overexpression of a molecular chaperone system (DnaK-DnaJ-GrpE) and/or a folding catalyst (trigger factor) improved the solubility of the recombinant enzyme produced in E. coli cells. The specific activity, the affinity to the amine substrate, and the sensitivity to the calcium activation and GTP inhibition of the purified soluble recombinant enzyme were lower than those of the natural liver enzyme. These results indicated that co-overexpression of folding modulators tested improved the solubility of the overproduced recombinant mammalian tissue-type transglutaminase, but the catalytic properties of the soluble recombinant enzyme were not exactly the same as those of the natural enzyme.  相似文献   

16.
Tissue transglutaminase (TGase) has been implicated in a number of cellular processes and disease states, where the enzymatic actions of TGase may serve in both, cell survival and apoptosis. To date, the precise functional properties of TGase in cell survival or cell death mechanisms still remain elusive. TGase-mediated cross-linking has been reported to account for the formation of insoluble lesions in conformational diseases. We report here that TGase induces intramolecular cross-linking of β-amyloid peptide (Aβ), resulting in structural changes of monomeric Aβ. Using high resolution mass spectrometry (MS) of cross-linked Aβ peptides, we observed a shift in mass, which is, presumably associated with the loss of NH3 due to enzymatic transamidation activity and hence intramolecular peptide cross-linking. We have observed that a large population of Aβ monomers contained an 0.984 Da increase in mass at a glutamine residue, indicating that glutamine 15 serves as an indispensable substrate in TGase-mediated deamidation to glutamate 15. We provide strong analytical evidence on TGase-mediated Aβ peptide dimerization, through covalent intermolecular cross-linking and hence the formation of Aβ1-40 dimers. Our in depth analyses indicate that TGase-induced post-translational modifications of Aβ peptide may serve as an important seed for aggregation.  相似文献   

17.
The loss of transglutaminase 1 enzyme (TGase 1) activity causes lamellar ichthyosis. Recessive X-linked ichthyosis (XI) results from accumulation of excess cholesterol 3-sulfate (CSO(4)) in the epidermis but the pathomechanism how elevated epidermal CSO(4) causes ichthyosis is largely unknown. Here we provide evidence that XI is also a consequence of TGase 1 dysfunction. TGase 1 is a key component of barrier formation in keratinocytes: it participates in the cross-linking of cell envelope (CE) structural proteins, and also forms the lipid bound envelope by esterification of long chain omega-hydroxyceramides onto CE proteins. Using involucrin and an epidermal omega-hydroxyceramide analog as substrates, kinetic analyses revealed that at membrane concentrations above 4 mol %, CSO(4) caused a marked and dose-dependent inhibitory effect on isopeptide and ester bond formation. Sequencing of tryptic peptides from TGase 1-reacted involucrin showed a large increase in deamidation of substrate glutamines. We hypothesize that supraphysiological levels of CSO(4) in keratinocyte membranes distort the structure of TGase 1 and facilitate the access of water into its active site causing hydrolysis of substrate glutamine residues. Our findings provide further evidence for the pivotal role of the TGase 1 enzyme in CE formation.  相似文献   

18.
Transglutaminase 1 (TGase 1) is an essential enzyme for cornified envelope formation in stratified squamous epithelia. This enzyme catalyzes the cross-linking of glutamine and lysine residues in structural proteins in differentiating keratinocytes. To gain insight into the preferred substrate structure of TGase 1, we used a phage-displayed random peptide library to screen primary amino acid sequences that are preferentially selected by human TGase 1. The peptides selected as glutamine donor substrate exhibited a marked tendency in primary structure, conforming to the sequence: QxK/RpsixxxWP (where x and psi represent non-conserved and hydrophobic amino acids, respectively). Using glutathione S-transferase (GST) fusion proteins of the selected peptides, we identified several sequences as preferred substrates and confirmed that they were isozyme-specific. We generated GST-fused alanine mutants of the most reactive sequence (K5) to determine the residues that were critical for reactivity. Even in peptide form, K5 appeared to have high and specific reactivity as substrate. In situ analysis of mouse skin sections using fluorescence-conjugated K5 peptide resulted in detection of TGase 1 activity with high sensitivity, but no signal was detected in a TGase 1-null mouse. In conclusion, we were successful in generating a novel substrate peptide for sensitive detection of endogenous TGase 1 activity in the skin.  相似文献   

19.
Studies have revealed in plant chloroplasts, mitochondria, cell walls, and cytoplasm the existence of transglutaminase (TGase) activities, similar to those known in animals and prokaryotes having mainly structural roles, but no protein has been associated to this type of activity in plants. A recent computational analysis has shown in Arabidopsis the presence of a gene, AtPng1p, which encodes a putative N-glycanase. AtPng1p contains the Cys-His-Asp triad present in the TGase catalytic domain. AtPng1p is a single gene expressed ubiquitously in the plant but at low levels in all light-assayed conditions. The recombinant AtPng1p protein could be immuno-detected using animal TGase antibodies. Furthermore, western-blot analysis using antibodies raised against the recombinant AtPng1p protein have lead to its detection in microsomal fraction. The purified protein links polyamines-spermine (Spm) > spermidine (Spd) > putrescine (Put)-and biotin-cadaverine to dimethylcasein in a calcium-dependent manner. Analyses of the gamma-glutamyl-derivatives revealed that the formation of covalent linkages between proteins and polyamines occurs via the transamidation of gamma-glutamyl residues of the substrate, confirming that the AtPng1p gene product acts as a TGase. The Ca(2+)- and GTP-dependent cross-linking activity of the AtPng1p protein can be visualized by the polymerization of bovine serum albumine, obtained, like the commercial TGase, at basic pH and in the presence of dithiotreitol. To our knowledge, this is the first reported plant protein, characterized at molecular level, showing TGase activity, as all its parameters analyzed so far agree with those typically exhibited by the animal TGases.  相似文献   

20.
Galphah (transglutaminase type II; tissue transglutaminase) is a bifunctional enzyme with transglutaminase (TGase) and guanosine triphosphatase (GTPase) activities. The GTPase function of Galphah is involved in hormonal signaling and cell growth while the TGase function plays an important role in apoptosis and in cross-linking extracellular and intracellular proteins. To analyze the regulation of these dual enzymatic activities we examined their calcium-dependence and thermal stability in enzymes from several cardiac sources (mouse heart, and normal, ischemic and dilated cardiomyopathic human hearts). The GTP binding activity of Galphah was markedly inhibited by Ca2+ whereas the TGase activity was strongly stimulated, suggesting that Ca2+ acts as a regulator, switching Galphah from a GTPase to a TGase. The TGase function of Galphah of both mouse and human hearts was more thermostable in the presence of Ca2+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号