首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Infection caused by noroviruses (NoVs) is one of the most important causes of acute gastroenteritis in humans worldwide. To gain insight into the epidemiology of and genetic variation in NoV strains, stool samples collected from 18 outbreaks of acute gastroenteritis in Huzhou, China, between January 2008 and December 2012 were analyzed. Samples were tested for NoVs by real-time RT-PCR. Partial sequences of the RNA- dependent RNA polymerase (RdRp) and capsid gene of the positive samples were amplified by RT-PCR, and the PCR products were sequenced and used for phylogenetic analysis. NoVs were found to be responsible of 88.8% of all nonbacterial acute gastroenteritis outbreaks in Huzhou over the last 5 years. Genogroup II outbreaks largely predominated and represented 93% of all outbreaks. A variety of genotypes were found among genogroups I and II, including GI.4, GI.8, GII.4, and GII.b. Moreover, phylogenetic analyses identified two recombinant genotypes (polymerase/capsid): GI.2/GI.6 and GII.e/GII.4 2012 Sydney. GII.4 was predominant and involved in 8/10 typed outbreaks. During the study period, GII.4 NoV variants 2006b, New Orleans 2009, and Sydney 2012 were identified. This is the first report of the detection of GII.4 New Orleans 2009 variant, GII.e/GII.4 Sydney 2012 recombinant in outbreaks of acute gastroenteritis in China.  相似文献   

2.
BackgroundNorovirus (NoV) is the major cause of acute gastroenteritis across all age groups. In particular, variants of genogroup II, genotype 4 (GII.4) have been associated with epidemics globally, occurring approximately every three years. The pandemic GII.4 variant, Sydney 2012, was first reported in early 2012 and soon became the predominant circulating NoV strain globally. Despite its broad impact, both clinically and economically, our understanding of the fundamental diversity and mechanisms by which new NoV strains emerge remains limited. In this study, we describe the molecular epidemiological trends of NoV-associated acute gastroenteritis in Australia and New Zealand between January 2013 and June 2014.MethodologyOverall, 647 NoV-positive clinical faecal samples from 409 outbreaks and 238 unlinked cases of acute gastroenteritis were examined by RT-PCR and sequencing. Phylogenetic analysis was then performed to identify NoV capsid genotypes and to establish the temporal dominance of circulating pandemic GII.4 variants. Recombinant viruses were also identified based on analysis of the ORF1/2 overlapping region.FindingsPeaks in NoV activity were observed, however the timing of these epidemics varied between different regions. Overall, GII.4 NoVs were the dominant cause of both outbreaks and cases of NoV-associated acute gastroenteritis (63.1%, n = 408/647), with Sydney 2012 being the most common GII.4 variant identified (98.8%, n = 403/408). Of the 409 reported NoV outbreaks, aged-care facilities were the most common setting in both Western Australia (87%, n = 20/23) and New Zealand (58.1%, n = 200/344) while most of the NoV outbreaks were reported from hospitals (38%, n = 16/42) in New South Wales, Australia. An analysis of a subset of non-GII.4 viruses from all locations (125/239) showed the majority (56.8%, n = 71/125) were inter-genotype recombinants. These recombinants were surprisingly diverse and could be classified into 18 distinct recombinant types, with GII.P16/GII.13 (24% of recombinants) the most common.ConclusionThis study revealed that following its emergence in 2012, GII.4 Sydney 2012 variant continued to be the predominant cause of NoV-associated acute gastroenteritis in Australia and New Zealand between 2013 and 2014.  相似文献   

3.
BackgroundNoroviruses (NoVs) are considered major causative pathogens associated with the morbidity and mortality of young children with acute gastroenteritis. However, few studies have examined NoVs causing acute diarrhea among outpatient children worldwide. This study was conducted to investigate the clinical features and molecular epidemiology of NoVs in outpatient children with acute gastroenteritis in Huzhou, China, between April 2013 and April 2014.MethodsStool specimens from 1346 outpatient children enrolled (under 5 years of age) with acute gastroenteritis were examined for NoVs by multiplex RT-PCR, and sequences of the partial capsids of NoVs were analyzed phylogenetically, while the relevant clinical data were analyzed statistically.ResultsOf 1346 specimens, 383 (28.5%, 383/1346) were positive for NoVs. The proportion of GII genotypes (26.9%) was significantly higher than that of GI genotypes (1.6%). The GII.4 genotype was the most prevalent of GII genotypes and was clustered into GII.4/Sydney (37.8%) and GII.4/2006b (62.2%), whereas GI strains were clustered into GI.1. Additionally, the younger children (12 to <24 months of age) were more susceptible to NoVs than children in other age groups, and the highest percentage of NoV infections occurred in April 2013. The diarrheal frequency (times/d) and WBC counts of the infected outpatient group with NoVs were significantly higher than were those of the uninfected outpatient group.ConclusionNoVs were confirmed to be the major viral agents responsible for acute gastroenteritis in outpatient children in Huzhou, China, and GII.4/Sydney and GII.4/2006b variants were identified as the predominant strains in this study.  相似文献   

4.
5.
Noroviruses (NoVs) are important cause of gastroenteritis in humans worldwide. Genotype GII.4 is responsible for the majority of outbreaks reported to date. This study describes, for the first time in Brazil, the circulation of NoV GII.4 variant Sydney 2012 in faecal samples collected from children aged less than or equal to eight years in Rio Branco, state of Acre, northern Brazil, during July-September 2012.  相似文献   

6.
Our norovirus (NoV) surveillance group reported a >4-fold increase in NoV infection in Japan during the winter of 2006-2007 compared to the previous winter. Because the increase was not linked to changes in the surveillance system, we suspected the emergence of new NoV GII/4 epidemic variants. To obtain information on viral changes, we conducted full-length genomic analysis. Stool specimens from 55 acute gastroenteritis patients of various ages were collected at 11 sites in Japan between May 2006 and January 2007. Direct sequencing of long PCR products revealed 37 GII/4 genome sequences. Phylogenetic study of viral genome and partial sequences showed that the two new GII/4 variants in Europe, termed 2006a and 2006b, initially coexisted as minorities in early 2006 in Japan and that 2006b alone had dominated over the resident GII/4 variants during 2006. A combination of phylogenetic and entropy analyses revealed for the first time the unique amino acid substitutions in all eight proteins of the new epidemic strains. These data and computer-assisted structural study of the NoV capsid protein are compatible with a model of antigenic drift with tuning of the structure and functions of multiple proteins for the global outgrowth of new GII/4 variants. The availability of comprehensive information on genome sequences and unique protein changes of the recent global epidemic variants will allow studies of diagnostic assays, molecular epidemiology, molecular biology, and adaptive changes of NoV in nature.  相似文献   

7.
Norovirus (NoV) is the major pathogen causing the outbreaks of the viral gastroenteritis across the world. Among the various genotypes of NoV, GII.4 is the most predominant over the past decades. GII.4 NoVs interact with the histo-blood group antigens (HBGAs) to invade the host cell, and it is believed that the receptor HBGAs may play important roles in selecting the predominate variants by the nature during the evolution of GII.4 NoVs. However, the evolution-induced changes in the HBGA-binding affinity for the GII.4 NoV variants and the mechanism behind the evolution of the NoV-HBGA interactions remain elusive. In the present work, the virus-like particles (VLPs) of the representative GII.4 NoV stains epidemic in the past decades were expressed by using the Hansenula polymorpha yeast expression platform constructed by our laboratory, and then the enzyme linked immunosorbent assay (ELISA)-based HBGA-binding assays as well as the molecular dynamics (MD) simulations combined with the molecular mechanics/generalized born surface area (MMGBSA) calculations were performed to investigate the interactions between various GII.4 strains and different types of HBGAs. The HBGA-binding assays show that for all the studied types of HBGAs, the evolution of GII.4 NoVs results in the increased NoV-HBGA binding affinities, where the early epidemic strains have the lower binding activity and the newly epidemic strains exhibit relative stronger binding intensity. Based on the MD simulation and MMGBSA calculation results, a physical mechanism that accounts for the increased HBGA-binding affinity was proposed. The evolution-involved residue mutations cause the conformational rearrangements of loop-2 (residues 390–396), which result in the narrowing of the receptor-binding pocket and thus tighten the binding of the receptor HBGAs. Our experimental and computational studies are helpful for better understanding the mechanism behind the evolution-induced increasing of HBGA-binding affinity, which may provide useful information for the drug and vaccine designs against GII.4 NoVs.  相似文献   

8.
Noroviruses (NoVs) are a leading cause of epidemic and sporadic cases of acute gastroenteritis worldwide. Oysters are well recognized as the main vectors of environmentally transmitted NoVs, and disease outbreaks linked to oyster consumption have been commonly observed. Here, to quantify the genetic diversity, temporal distribution, and circulation of oyster-related NoVs on a global scale, 1,077 oyster-related NoV sequences deposited from 1983 to 2014 were downloaded from both NCBI GenBank and the NoroNet outbreak database and were then screened for quality control. A total of 665 sequences with reliable information were obtained and were subsequently subjected to genotyping and phylogenetic analyses. The results indicated that the majority of oyster-related NoV sequences were obtained from coastal countries and regions and that the numbers of sequences in these regions were unevenly distributed. Moreover, >80% of human NoV genotypes were detected in oyster samples or oyster-related outbreaks. A higher proportion of genogroup I (GI) (34%) was observed for oyster-related sequences than for non-oyster-related outbreaks, where GII strains dominated with an overwhelming majority of >90%, indicating that the prevalences of GI and GII are different in humans and oysters. In addition, a related convergence of the circulation trend was found between oyster-related NoV sequences and human pandemic outbreaks. This suggests that oysters not only act as a vector of NoV through environmental transmission but also serve as an important reservoir of human NoVs. These results highlight the importance of oysters in the persistence and transmission of human NoVs in the environment and have important implications for the surveillance of human NoVs in oyster samples.  相似文献   

9.
Noroviruses (NoVs) are considered to be a major cause of acute nonbacterial gastroenteritis in humans. The NoV genus is genetically diverse, and genotype GII.4 has been most commonly identified worldwide in recent years. In this study we analyzed the complete capsid gene of NoV strains belonging to the less prevalent genotype GII.2. We compared a total of 36 complete capsid sequences of GII.2 sequences obtained from the GenBank (n = 5) and from outbreaks or sporadic cases that occurred in The Netherlands (n = 10) and in Osaka City, Japan (n = 21), between 1976 and 2005. Alignment of all capsid sequences did not show fixation of amino acid substitutions over time as an indication for genetic drift. In contrast, when strains previously recognized as recombinants were excluded from the alignment, genetic drift was observed. Substitutions were found at five informative sites (two in the P1 subdomain and three in the P2 subdomain), segregating strains into five genetic groups (1994 to 1997, 1999 to 2000, 2001 to 2003, 2004, and 2005). Only one amino acid position changed consistently between each group (position 345). Homology modeling of the GII.2 capsid protein showed that the five amino acids were located on the surface of the capsid and close to each other at the interface of two monomers. The data suggest that these changes were induced by selective pressure, driving virus evolution. Remarkably, this was observed only for nonrecombinant genomes, suggesting differences in behavior with recombinant strains.  相似文献   

10.
The GII.4 noroviruses (NoVs) are a single genotype that is responsible for over 50% of NoV gastroenteritis epidemics worldwide. However, GII.4 NoVs have been found to undergo antigenic drifts, likely selected by host herd immunity, which raises an issue for vaccine strategies against NoVs. We previously characterized GII.4 NoV antigenic variations and found significant levels of antigenic relatedness among different GII.4 variants. Further characterization of the genetic and antigenic relatedness of recent GII.4 variants (2008b and 2010 cluster) was performed in this study. The amino acid sequences of the receptor binding interfaces were highly conserved among all GII.4 variants from the past two decades. Using serum samples from patients enrolled in a GII.4 virus challenge study, significant cross-reactivity between major GII.4 variants from 1998 to 2012 was observed using enzyme-linked immunosorbent assays and HBGA receptor blocking assays. The overall abilities of GII.4 NoVs to bind to the A/B/H HBGAs were maintained while their binding affinities to individual ABH antigens varied. These results highlight the importance of human HBGAs in NoV evolution and how conserved antigenic types impact vaccine development against GII.4 variants.  相似文献   

11.
Norovirus (NoV) constitutes the second most common viral pathogen causing pediatric diarrhea after rotavirus. In Africa, diarrhea is a major health problem in children, and yet few studies have been performed regarding NoV. The association of histo-blood group antigens (HBGA) and susceptibility to NoV infection is well established in Caucasian populations with non-secretors being resistant to many common NoV strains. No study regarding HBGA and NoV susceptibility has yet been performed in Africa. We collected 309 stool and 208 saliva samples from diarrheal children in Ouagadougou, Burkina Faso; May 2009 to March 2010. NoV was detected using real-time PCR, and genotyped by sequencing. Saliva samples were ABO, Lewis and secretor phenotyped using in house ELISA assays. NoV was detected in 12% (n = 37) of the samples. The genotype diversity was unusually large; overall the 37 positive samples belonged to 14 genotypes. Only children <2 years of age were NoV positive and the GII.4 NoVs were more frequent in the late dry season (Jan-May). NoV infections were observed less in children with the secretor-negative phenotype or blood group A (OR 0.18; p = 0.012 and OR 0.31; p = 0.054; respectively), with two non-secretors infected with genotypes GII.7 and GII.4 respectively. Lewis-negative (Lea−b−) children, representing 32% of the study population, were susceptible to GII, but were not infected with any NoV GI. GII.4 strains preferentially infected children with blood group B whereas secretor-positive children with blood group O were infected with the largest variety of genotypes. This is the first study identifying host genetic factors associated with susceptibility to NoV in an African population, and suggests that while the non-secretor phenotype provides protection; the Lewis b antigen is not necessary for GII infection.  相似文献   

12.
13.
Norovirus (NoV) is recognised as a leading cause of gastroenteritis worldwide across all age groups. The prevalence and diversity of NoVs in many African countries is still unknown, although early sero-prevalence studies indicated widespread early infection. Reports on NoVs in Africa vary widely in terms of study duration, population groups and size, inclusion of asymptomatic controls, as well as genotyping information. This review provides an estimate of NoV prevalence and distribution of genotypes of NoVs in Africa. Inclusion criteria for the review were study duration of at least 6 months, population size of >50 and diagnosis by RT-PCR. As regions used for genotyping varied, or genotyping was not always performed, this was not considered as an inclusion criteria. A literature search containing the terms norovirus+Africa yielded 74 publications. Of these 19 studies from 14 out of the 54 countries in Africa met the inclusion criteria. Data from studies not meeting the inclusion criteria, based on sample size or short duration, were included as discussion points. The majority of studies published focused on children, under five years of age, hospitalised with acute gastroenteritis. The mean overall prevalence was 13.5% (range 0.8–25.5%) in children with gastroenteritis and 9.7% (range 7–31%) in asymptomatic controls, where tested. NoV GII.4 was the predominant genotype identified in most of the studies that presented genotyping data. Other prevalent genotypes detected included GII.3 and GII.6. In conclusion, NoV is a common pathogen in children with diarrhoea in Africa, with considerable carriage in asymptomatic children. There is however, a paucity of data on NoV infection in adults.  相似文献   

14.
Over the last fifteen years there have been five pandemics of norovirus (NoV) associated gastroenteritis, and the period of stasis between each pandemic has been progressively shortening. NoV is classified into five genogroups, which can be further classified into 25 or more different human NoV genotypes; however, only one, genogroup II genotype 4 (GII.4), is associated with pandemics. Hence, GII.4 viruses have both a higher frequency in the host population and greater epidemiological fitness. The aim of this study was to investigate if the accuracy and rate of replication are contributing to the increased epidemiological fitness of the GII.4 strains. The replication and mutation rates were determined using in vitro RNA dependent RNA polymerase (RdRp) assays, and rates of evolution were determined by bioinformatics. GII.4 strains were compared to the second most reported genotype, recombinant GII.b/GII.3, the rarely detected GII.3 and GII.7 and as a control, hepatitis C virus (HCV). The predominant GII.4 strains had a higher mutation rate and rate of evolution compared to the less frequently detected GII.b, GII.3 and GII.7 strains. Furthermore, the GII.4 lineage had on average a 1.7-fold higher rate of evolution within the capsid sequence and a greater number of non-synonymous changes compared to other NoVs, supporting the theory that it is undergoing antigenic drift at a faster rate. Interestingly, the non-synonymous mutations for all three NoV genotypes were localised to common structural residues in the capsid, indicating that these sites are likely to be under immune selection. This study supports the hypothesis that the ability of the virus to generate genetic diversity is vital for viral fitness.  相似文献   

15.
Noroviruses (NoVs) cause epidemic acute gastroenteritis, in which histo-blood group antigens (HBGAs) may play an important role in the host susceptibility. To further explore this issue, two outbreaks of acute gastroenteritis caused by a GII.4 and a GII.3 NoV, respectively, in China in 2009 were studied. Stool and saliva samples from symptomatic patients and water samples from the outbreak facilities were collected. RT-PCR showed that 23 out of 33 (GII.4 outbreak) and 12 out of 13 (GII.3outbreak) stool samples were NoV positive. For the GII.4 outbreak the NoV sequences of stool and water samples were from an identical GII.4 strain, while the same GII.3 NoV sequences were found in five stool samples from the GII.3 outbreak. The HBGA phenotypes (A, B, Lea, Leb, Lex, and Ley) of all saliva samples were determined, which revealed both secretors and nonsecretors in the symptomatic groups of the two outbreaks. In the GII.3 outbreak, type O individuals appeared less susceptible, while the type A may be more at risk of infection. However, No preference of HBGAs was observed in the GII.4 outbreak. The observation that nonsecretors were infected in both outbreaks differed from the previous results that nonsecretors are resistant to these two GII NoVs.  相似文献   

16.
Various genotypes of norovirus (NoV) (genogroup I genotype 1 [GI.1], -2, -4, -5, -8, -11, -12, and -14; GII.3, -4, -6, -7, -10, -13, -14, and -15), and sapovirus (SaV) (GI.1 and GI.2, GII.1, and GIV.1) were detected from raw sewage from April 2006 to March 2008, while limited numbers of genotypes of NoV (GI.8, GII.4, GII.6, and GII.13) and SaV (GII.3 and GIV.1) and of NoV (GII.4, GII.7, and GII.13) were detected from clinical cases and healthy children, respectively. During the winter 2006 to 2008, a large number of sporadic gastroenteritis outbreaks and many outbreaks caused by NoV GII.4 occurred among inhabitants in Toyama, Japan. The copy number of genomes of NoV GII detected from raw sewage changed in relation to the number of outbreaks. NoV strains of the same genotypes observed in both raw sewage and human specimens belonged to the same cluster by phylogenetic analysis and had almost identical nucleotide sequences among each genotype. These data suggest that NoVs and SaVs detected from raw sewage reflect the viruses circulating in the community, irrespective of symptoms, and that subclinical infections of NoV are common in Japan. Combined surveys of raw sewage with those of clinical cases help us to understand the relationship between infection of these viruses and gastroenteritis.Norovirus (NoV) and sapovirus (SaV), members of the Caliciviridae family, are considered to be a major cause of acute gastroenteritis in humans. Both NoV and SaV infect humans via the fecal-oral route and cause family or community-wide outbreaks, mainly in the winter season. NoVs are shed in feces at a level of 105 to 109 virus particles per gram during the symptomatic phase (32, 37), and viruses are continuously shed from patients after cessation of the symptoms (28, 37, 40). In addition, recent reports showed relatively high levels of shedding of the viruses from asymptomatic individuals (7, 8, 32, 37).NoVs and SaVs show high diversity in their genomes (5, 9). According to such a genetic diversity, they are classified into several genogroups (genogroup I [GI], GII, and GIV for human NoV and GI, GII, GIV, GV for human SaV) and further divided into many genotypes (NoV GI genotypes 1 to 14 [GI.1-14] and GII.1-17 and SaV GI.1-5, GII.1-6, GIV.1, and GV.1) (10, 17, 18). In 2006 to 2007, NoV GII.4 caused a large number of outbreaks of acute gastroenteritis worldwide (1, 11, 35, 43, 45). However, the other genotypes of NoV and SaV may infect humans asymptomatically and persist in the environment.Raw sewage could contain enteric viruses shed from affected people, and therefore, detectable viruses in raw sewage would reflect the actual state of the circulating viruses in the area. We previously reported that polioviruses in raw sewage and river water were isolated at the same time as oral vaccination in babies, and these isolates were derived from vaccine strains (13, 30). We also showed that the nucleotide sequences of echovirus type 13 isolated from river water were closely related to those from patients with aseptic meningitis during the outbreak in 2002 (14). For NoVs and SaVs, many epidemiological surveys have been conducted to determine the prevalence and virological properties of these viruses (42). Previous reports have shown that the nucleotide sequences of NoV strains from stools of outbreaks in nursing homes and from sewage were identical for an individual outbreak (26), and NoVs detected from gastroenteritis patients, domestic sewage, river water, and cultivated oysters in the area were related to each other (44). However, less is known about infection of the viruses with minor genotypes that are silently circulating in the population.In this study, we investigated NoVs and SaVs in raw sewage from 2006 to 2008 in Japan and compared the results with the viruses detected from clinical cases as well as healthy individuals to show the comprehensive prevalence of these viruses in the community.  相似文献   

17.
To study the molecular epidemiology of noroviruses (NoVs) in bivalves residing in freshwater rivers, we detected, quantified and phylogenetically analyzed the NoV genome in purified concentrates obtained from the gills and digestive diverticula of Corbicula fluminea in a freshwater river in Gunma Prefecture, Japan. We detected the NoV genome in 35 of the 58 C. fluminea samples. Based on our phylogenetic analysis, the NoV genome detected in the samples was classified into 4 genotypes (GI/1, GI/2, GI/3 and GI/4) in genogroup I and 5 genotypes (GII/3, GII/4, GII/5, GII/8 and GII/12) in genogroup II. The phylogenetic tree showed wide genetic diversity among the genogroups. In addition, more than 10(4) copies of the NoV genome were detected in 2 of 35 samples. These results suggest that the freshwater bivalve C. fluminea is a reservoir for NoVs, similar to seawater bivalves such as oysters.  相似文献   

18.
19.
BackgroundThe epidemiology of cases of acute gastroenteritis (AGE) of viral etiology is a relevant public health issue. Due to underreporting, the study of outbreaks is an accepted approach to investigate their epidemiology. The objective of this study was to investigate the epidemiological characteristics of AGE outbreaks due to norovirus (NoV) and sapovirus (SV) in Catalonia.ResultsA total of 101 outbreaks were registered affecting a total of 2756 persons and 12 hospitalizations (hospitalization rate: 0.8x1,000,000 persons-year); 49.5% of outbreaks were foodborne, 45.5% person to person and 5% waterborne. The distribution of outbreaks according to the setting showed a predominance of catering services (39.6%), nursing homes and long term care facilities (26.8%) and schools (11.9%). The median number of cases per outbreak was 17 (range 2–191). The total Incidence rate (IR) was 18.3 per 100,000 persons-years (95%CI: 17.6–19.0). The highest IR was in persons aged ≥65 years (43.6x100,000 (95% CI: 41.0–46.2)) (p<0.001). A total of 1065 samples were analyzed with a positivity rate of 60.8%. 98% of positive samples were NoV (GII 56.3%; GI 4.2%; GII+GI 4.2%; non- typable 33.0%). SV was identified in two person-to-person transmission outbreaks in children.ConclusionsThese results confirm the relevance of viral AGE outbreaks, both foodborne and person-to-person, especially in institutionalized persons. SV should be taken into account when investigating viral AGE outbreaks.  相似文献   

20.
【背景】诺如病毒(Norovirus,NoV)是全球范围内引起急性胃肠炎暴发的主要病原体之一,其中GII.4型通过不断变异在人群中持续存在并占据诺如病毒感染的主导地位,尤其GII.4 Sydney2012[P31]变异株自2012年出现以来在全球各地持续流行至今。【目的】制备广州地区GII.4 Sydney2012[P31]型诺如病毒毒株GZ2013-L10的病毒样颗粒(virus like particle,VLP),并系统表征其功能及免疫原性特点。【方法】从毒株GZ2013-L10中扩增ORF2基因并克隆构建重组转座载 PFastBac1-L10-ORF2,进一步转化至大肠杆菌DH10Bac构建重组杆状病毒质粒,进而在昆虫细胞sf9中表达病毒样颗粒并通过超速离心纯化,最后经透射电镜、Western blotting和受体结合实验对病毒样颗粒进行表征。此外,将免疫小鼠获得的病毒抗血清通过间接酶联免疫吸附测定(enzyme-linked immunosorbent assay,ELISA)和受体结合阻断试验进行验证。【结果】成功构建了重组杆状病毒质粒Bacmid-L10-ORF2并获得病毒样颗粒,电镜结果表明病毒样颗粒直径约为30 nm,SDS-PAGE和Western blotting显示蛋白大小约为58 kDa。受体结合实验结果显示,病毒样颗粒能与A/B/O等分泌型唾液受体及猪胃黏膜蛋白结合,而与非分泌型唾液受体均不结合。免疫小鼠获得效价为1.3×105的抗血清,但ELISA结果显示其与不同基因型诺如病毒衣壳蛋白无交叉免疫活性。此外,抗血清对同型病毒样颗粒具有受体中和阻断作用,但对不同型别病毒样颗粒(包括GII.8、GII.17和GII.3)无中和效果。【结论】本研究制备并系统表征了广州地区GZ2013-L10毒株的病毒样颗粒及其抗血清,其研究结果可为解析其流行原因以及疫苗研发提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号