首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The removal of seeded coliphage f2 and indigenous enteroviruses from primary and secondary wastewaters applied by spray irrigation to sandy loam and silt loam soils in field test cells was examined. The amount of f2 recovered from 170-cm-deep soil percolate samples taken over a 53-day period never exceeded 0.1% of applied virus levels and was usually below detection limits. Indigenous enterovirus levels in percolate waters also constituted only a small portion of those found in the wastewaters. At 10 days after seeding, f2 virus was present throughout the soil column but tended to accumulate around the soil core middepths. Coliphage f2 disappeared from the soil surface regions at a high rate, and by 53 days very little virus could be detected within the length of the soil columns. Sterilized soil core segments from different depths were studied to determine their virus adsorption capabilities when suspended in either wastewater, test cell percolate water, or distilled water containing divalent cations. The adsorptive capacity of Windsor and Charlton soils for poliovirus 1 and coliphage f2 increased greatly with the soil sample depth until leveling off at the midcore depths. Soil suspended in wastewater had the least virus adsorption capability for all depths studied.  相似文献   

2.
The removal of seeded coliphage f2 and indigenous enteroviruses from primary and secondary wastewaters applied by spray irrigation to sandy loam and silt loam soils in field test cells was examined. The amount of f2 recovered from 170-cm-deep soil percolate samples taken over a 53-day period never exceeded 0.1% of applied virus levels and was usually below detection limits. Indigenous enterovirus levels in percolate waters also constituted only a small portion of those found in the wastewaters. At 10 days after seeding, f2 virus was present throughout the soil column but tended to accumulate around the soil core middepths. Coliphage f2 disappeared from the soil surface regions at a high rate, and by 53 days very little virus could be detected within the length of the soil columns. Sterilized soil core segments from different depths were studied to determine their virus adsorption capabilities when suspended in either wastewater, test cell percolate water, or distilled water containing divalent cations. The adsorptive capacity of Windsor and Charlton soils for poliovirus 1 and coliphage f2 increased greatly with the soil sample depth until leveling off at the midcore depths. Soil suspended in wastewater had the least virus adsorption capability for all depths studied.  相似文献   

3.
城市污水生态工程土地处理系统是一个多功能、多目标的净化污水,保护水体实现废水资源化的适用技术系列。如果条件合适,设计合理,科学运行和管理得当,它能对发展经济和保护环境起到积极的作用。应当指出,优先有机污染物及其生态环境问题可能成为推广应用生态工程土地处理系统的一个限制因素。本文从理论与实践的结合上论述净化功能、生态效应和生态风险评价等一系列复杂的基本性问题,主要目的是为制定生态工程土地处理系统优先有机污染物的调控对策提供科学依据。  相似文献   

4.
Anaerobic digestion and wastewater treatment systems   总被引:19,自引:0,他引:19  
Upflow Anaerobic Sludge Bed (UASB) wastewater (pre-)treatment systems represent a proven sustainable technology for a wide range of very different industrial effluents, including those containing toxic/inhibitory compounds. The process is also feasible for treatment of domestic wastewater with temperatures as low as 14–16° C and likely even lower. Compared to conventional aerobic treatment systems the anaerobic treatment process merely offers advantages. This especially is true for the rate of start-up. The available insight in anaerobic sludge immobilization (i.e. granulation) and growth of granular anaerobic sludge in many respects suffices for practice. In anaerobic treatment the immobilization of balanced microbial communities is essential, because the concentration of intermediates then can be kept sufficiently low.So far ignored factors like the death and decay rate of organisms are of eminent importance for the quality of immobilized anaerobic sludge. Taking these factors into account, it can be shown that there does not exist any need for phase separation when treating non- or slightly acidified wastewaters. Phase separation even is detrimental in case the acidogenic organisms are not removed from the effluent of the acidogenic reactor, because they deteriorate the settleability of granular sludge and also negatively affect the formation and growth of granular sludge. The growing insight in the role of factors like nutrients and trace elements, the effect of metabolic intermediates and end products opens excellent prospects for process control, e.g. for the anaerobic treatment of wastewaters containing mainly methanol.Anaerobic wastewater treatment can also profitably be applied in the thermophilic and psychrophilic temperature range. Moreover, thermophilic anaerobic sludge can be used under mesophilic conditions.The Expanded Granular Sludge Bed (EGSB) system particularly offers big practical potentials, e.g. for very low strength wastewaters (COD 1 g/l) and at temperatures as low as 10° C. In EGSB-systems virtually all the retained sludge is employed, while compared to UASB-systems also a substantially bigger fraction of the immobilized organisms (inside the granules) participates in the process, because an extraordinary high substrate affinity prevails in these systems. It looks necessary to reconsider theories for mass transfer in immobilized anaerobic biomass.Instead of phasing the digestion process, staging of the anaerobic reactors should be applied. In this way mixing up of the sludge can be significantly reduced and a plug flow is promoted. A staged process will provide a higher treatment efficiency and a higher process stability. This especially applies for thermophilic systems.  相似文献   

5.
Bacterial metabolism determines the effectiveness of biological treatment of wastewater. Therefore, it is important to define the relations between the species structure and the performance of full-scale installations. Although there is much laboratory data on microbial consortia, our understanding of dependencies between the microbial structure and operational parameters of full-scale wastewater treatment plants (WWTP) is limited. This mini-review presents the types of microbial consortia in WWTP. Information is given on extracellular polymeric substances production as factor that is key for formation of spatial structures of microorganisms. Additionally, we discuss data on microbial groups including nitrifiers, denitrifiers, Anammox bacteria, and phosphate- and glycogen-accumulating bacteria in full-scale aerobic systems that was obtained with the use of molecular techniques, including high-throughput sequencing, to shed light on dependencies between the microbial ecology of biomass and the overall efficiency and functional stability of wastewater treatment systems. Sludge bulking in WWTPs is addressed, as well as the microbial composition of consortia involved in antibiotic and micropollutant removal.  相似文献   

6.
为了科学、定量地评价污水土地处理生态工程的综合效益,运用层次分析法(AHP),提出了评价指标体系、指标权重和综合效益计算方法.应用此方法对霍林河森林型慢速渗滤土地处理工程的综合效益进行了分析与评价.结果表明,霍林河森林型慢速渗滤土地处理工程的综合效益值CE=0.64,属于中级生态经济系统,而且具有良好的环境效益和社会效益.  相似文献   

7.
Virus and bacteria removal from wastewater by land treatment.   总被引:12,自引:12,他引:0       下载免费PDF全文
Secondary sewage effluent and renovated water from four wells at the Flushing Meadows Wastewater Renovation Project near Phoenix, Arizona, in operation since 1967, were assayed approximately every 2 months in 1974 for viruses and enteric bacteria during flooding periods. No viruses of Salmonella sp. were detected in any renovated well water samples, and the numbers of fecal coliforms, fecal streptococci, and total bacteria were decreased by about 99.9% in the renovated well waters after the wastewater was filtered through about 9 m of soil.  相似文献   

8.
Water hyacinth (Eichhornia crassipes), duckweed (Spirodela sp. andLemna sp.), water pennywort (Hydrocotyle ranunculoides), and kudzu (Pueraria lobata) were anaerobically fermented using an anaerobic filter technique that reduced the total digestion time from 90 d to an average of 23 d and produced 0.14-0.22 m3 CH4/kg (dry weight) (2.3-3.6 ft3/lb) from mature filters for the 3 aquatic species. Kudzu required an average digestion time of 33 d and produced an average of 0.21 m3 CH4/kg (dry weight) (3.4 ft3/lb). The anaerobic filter provided a large surface area for the anaerobic bacteria to establish and maintain an optimal balance of facultative, acid-forming, and methane-producing bacteria. Consequently the efficiency of the process was greatly improved over prior batch fermentations.  相似文献   

9.
污水渗滤湿地处理系统技术的研究进展   总被引:9,自引:2,他引:7  
由于渗滤湿地污水处理系统具有很高的净化效率和相对较低的基建投资和处理成本,目前正渐渐在许多国家得到较为广泛的应用.本文简要论述了渗滤湿地的构造与渗滤介质、N和P的去除过程与净化机理、技术性能、现行的设计方法、运行与调控机制、土壤堵塞问题与解决途径、垂直流与水平流人工湿地处理系统的组合及其在不同类型废水处理中的应用等.最后,探讨了这一技术的研究发展方向.  相似文献   

10.
Biofilm formation and adherence properties of 13 bacterial strains commonly found in wastewater treatment systems were studied in pure and mixed cultures using a crystal violet microtiter plate assay. Four different culture media were used, wastewater, acetate medium, glucose medium and diluted nutrient broth. The medium composition strongly affected biofilm formation. All strains were able to form pure culture biofilms within 24 h in at least one of the tested culture media and three strains were able to form biofilm in all four culture media, namely Acinetobacter calcoaceticus ATCC 23055, Comamonas denitrificans 123 and Pseudomonas aeruginosa MBL 0199. The adherence properties assessed were initial adherence, cell surface hydrophobicity, and production of amyloid fibers and extracellular polymeric substances. The growth of dual-strain biofilms showed that five organisms formed biofilm with all 13 strains while seven formed no or only weak biofilm when cocultured. In dual-strain cultures, strains with different properties were able to complement each other, giving synergistic effects. Strongest biofilm formation was observed when a mixture of all 13 bacteria were grown together. These results on attachment and biofilm formation can serve as a tool for the design of tailored systems for the degradation of municipal and industrial wastewater.  相似文献   

11.
Land application of pre-treated wastewater is increasingly practiced to achieve both treatment and beneficial reuse of applied effluent. Vegetation is an important component of these systems, affecting hydraulic loading and nutrient uptake and hence treatment efficiency. This work investigated the effect of plant species (Acacia cyanophylla, Eucalyptus camaldulensis, Populus nigra and Arundo donax), on water requirements, nutrient removal, water use efficiency (WUE) and biomass production in land treatment systems (LTS) in which pre-treated wastewater was applied at rates to meet crop evapotranspiration. Vegetation had a strong effect on all the parameters monitored during this trial. A. cyanophylla produced the greatest amount of biomass and showed the highest irrigation requirements and WUE, followed by E. camaldulensis, A. donax and P. nigra. In addition, A. cyanophylla and A. donax achieved a higher leaf-N content compared to other species. As a result of the differences in tissue nutrient content and biomass, A. cyanophylla accumulated 23, 20, and 70% more N in hypergeous biomass than E. camaldulensis, A. donax and P. nigra, respectively. A. cyanophylla and E. camaldulensis accumulated 57 and 53% respectively more P than did P. nigra and A. donax. Therefore substantial improvement of the performance of the LTS in terms of nutrient removal can be achieved through the selection of appropriate plant species. Despite the enhanced growth rates observed in the study nutrient recovery by vegetation did not exceed 31 and 35% of the applied N and P, respectively. The relatively low percentages of removal are attributed to increased concentration of nutrients in effluent and the high ET rates prevailing in the study area. These findings suggest that additional practices are required to mitigate environmental impacts arising from excessive nutrient loads when effluent is applied at rates to meet crop water requirements.  相似文献   

12.
Caulobacters are generally assumed to be found only in environments of low organic content; however, we readily isolated strains from a variety of sewage treatment system designs and locations, and 33 distinct strains were characterized. Most were morphologically similar, having the crescent-shaped cell body, short stalk, and hexagonally packed, paracrystalline surface (S) layer characteristic of several Caulobacter crescentus laboratory strains. Upon closer examination, they were distinguishable on the basis of protein band profiles on polyacrylamide gel electrophoresis, gross colony characteristics, or holdfast composition or by DNA restriction fragment length polymorphism analysis with flagellin and S-layer gene probes. Most of the isolates contained one or more high-molecular-weight plasmids and were resistant to a number of antibiotics, characteristics generally not shared with caulobacters isolated from other sources. Six of the 33 strains were retained because they did not fit the typical isolate profile; these strains are overrepresented in our collection compared with their relative proportion in wastewater treatment systems. By colony hybridization and restriction fragment length polymorphism analysis, all of these and one typical isolate showed less homology than the others to the surface array gene of a laboratory strain (C. crescentus CB15), and three hybridized less strongly with the flagellin gene from the same strain. In sum, although the strains were distinguishable, caulobacters from the wastewater treatment systems we examined were relatively homogenous, were similar to characterized laboratory strains, and, with exceptions, could probably be reliably detected as a group by gene probes derived from C. crescentus strains.  相似文献   

13.
Caulobacters are generally assumed to be found only in environments of low organic content; however, we readily isolated strains from a variety of sewage treatment system designs and locations, and 33 distinct strains were characterized. Most were morphologically similar, having the crescent-shaped cell body, short stalk, and hexagonally packed, paracrystalline surface (S) layer characteristic of several Caulobacter crescentus laboratory strains. Upon closer examination, they were distinguishable on the basis of protein band profiles on polyacrylamide gel electrophoresis, gross colony characteristics, or holdfast composition or by DNA restriction fragment length polymorphism analysis with flagellin and S-layer gene probes. Most of the isolates contained one or more high-molecular-weight plasmids and were resistant to a number of antibiotics, characteristics generally not shared with caulobacters isolated from other sources. Six of the 33 strains were retained because they did not fit the typical isolate profile; these strains are overrepresented in our collection compared with their relative proportion in wastewater treatment systems. By colony hybridization and restriction fragment length polymorphism analysis, all of these and one typical isolate showed less homology than the others to the surface array gene of a laboratory strain (C. crescentus CB15), and three hybridized less strongly with the flagellin gene from the same strain. In sum, although the strains were distinguishable, caulobacters from the wastewater treatment systems we examined were relatively homogenous, were similar to characterized laboratory strains, and, with exceptions, could probably be reliably detected as a group by gene probes derived from C. crescentus strains.  相似文献   

14.
Nitrification plays a significant role in the global nitrogen cycle. Ammonia oxidation, the first step of nitrification, is performed in wastewater treatment by both ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA). Most previous studies focused on their distribution in natural environments. In this study we qualified and quantified AOB, AOA, total bacteria, and total archaea in six different wastewater treatment systems (WTSs) using clone library and real-time PCR techniques. The results revealed that wastewater quality was an essential factor for the distribution of AOB and AOA in aerobic reactors. Although both AOB and AOA were present in all samples and contributed to nitrification simultaneously, AOB were the dominant nitrifiers in the three industrial WTSs, whereas AOA were dominant in the three domestic WTSs. This indicates AOA may be more sensitive to some toxic compounds than AOB. In addition, the dominant groups of AOB in the industrial WTSs were Nitrosomonas and Nitrosospira; the composition of AOA in the domestic WTSs was very similar, possibly due to the same source of raw sewage.  相似文献   

15.
16.
To determine if there is a core microbial community in the microbial populations of different wastewater treatment plants (WWTPs) and to investigate the effects of wastewater characteristics, operational parameters, and geographic locations on microbial communities, activated sludge samples were collected from 14 wastewater treatment systems located in 4 cities in China. High-throughput pyrosequencing was used to examine the 16S rRNA genes of bacteria in the wastewater treatment systems. Our results showed that there were 60 genera of bacterial populations commonly shared by all 14 samples, including Ferruginibacter, Prosthecobacter, Zoogloea, Subdivision 3 genera incertae sedis, Gp4, Gp6, etc., indicating that there is a core microbial community in the microbial populations of WWTPs at different geographic locations. The canonical correspondence analysis (CCA) results showed that the bacterial community variance correlated most strongly with water temperature, conductivity, pH, and dissolved oxygen (DO) content. Variance partitioning analyses suggested that wastewater characteristics had the greatest contribution to the bacterial community variance, explaining 25.7% of the variance of bacterial communities independently, followed by operational parameters (23.9%) and geographic location (14.7%). Results of this study provided insights into the bacterial community structure and diversity in geographically distributed WWTPs and discerned the relationships between bacterial community and environmental variables in WWTPs.  相似文献   

17.
为了科学、定量地评价污水土地处理生态工程的综合效益,运用层次分析法(AHP),提出了评价指标体系、指标权重和综合效益计算方法.应用此方法对霍林河森林型慢速渗滤土地处理工程的综合效益进行了分析与评价.结果表明,霍林河森林型慢速渗滤土地处理工程的综合效益值CE=0.64,属于中级生态经济系统,而且具有良好的环境效益和社会效益  相似文献   

18.
Performances of single-stage and two-stage sequencing batch reactor (SBR) systems were investigated for treating dairy wastewater. A single-stage SBR system was tested with 10,000 mg/l chemical oxygen demand (COD) influent at three hydraulic retention times (HRTs) of 1, 2, and 3 days and 20,000 mg/l COD influent at four HRTs of 1, 2, 3, and 4 days. A 1-day HRT was found sufficient for treating 10,000-mg/l COD wastewater, with the removal efficiency of 80.2% COD, 63.4% total solids, 66.2% volatile solids, 75% total Kjeldahl nitrogen, and 38.3% total nitrogen from the liquid effluent. Two-day HRT was believed sufficient for treating 20,000-mg/l COD dairy wastewater if complete ammonia oxidation is not desired. However, 4-day HRT needs to be used for achieving complete ammonia oxidation. A two-stage system consisting of an SBR and a complete-mix biofilm reactor was capable of achieving complete ammonia oxidation and comparable carbon, solids, and nitrogen removal while using at least 1/3 less HRT as compared to the single SBR system.  相似文献   

19.
20.
人工湿地污水处理工艺设计关键及生态学问题   总被引:24,自引:2,他引:24  
人工湿地污水处理系统是一种经济高效的污水生态处理技术方式.然而,湿地污水处理技术在性能上仍须有待发展与完善,尤其需要对其处理工艺参数进行不断改进和系统优化.本文针对人工湿地污水处理工程中有关水力停留时间、水传导因素、表面负荷率和工程构筑物设计等技术参数,概括性地剖析、探讨了国内外人工湿地污水处理工艺的设计关键及其主要技术内涵,给出了一些重要的优化模型与最佳数值;与此同时,分析、提出了利用生态学方法克服人工湿地工程运行中所涉及的野生生物管理与蚊蝇控制等问题。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号