首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The genus Entoloma comprises diverse trophic modes and basidiome morphologies. Although Entoloma includes some sequestrate species, their origins are not clearly understood in relation to phylogenetic position and trophic status. In this study, we collected 34 sequestrate Entoloma specimens in Japan over a 9-y period. Their identities and phylogenetic positions were determined by molecular analyses using three nuclear loci [internal transcribed spacer (ITS) and large subunit (LSU) regions of rDNA and RNA polymerase II second LSU (rpb2) gene]. Based on species delimitation of 97 % sequence matches in the ITS region, which is a suitable region for species-level identification of higher fungi, we identified four sequestrate Entoloma species. Molecular phylogenetic analyses that included all related sequences in the International Nucleotide Sequence Database revealed that the four sequestrate Entoloma species belonged to two major phylogroups. One of the phylogroups was InocephalusCyanula, which is composed only of saprotrophic species. Three of the Japanese sequestrate species, as well as three previously known sequestrate species from other regions, fell into at least two independent clades in this phylogroup, indicating multiple origins of sequestrate forms within this saprotrophic lineage. Another phylogroup, Rhodopolioid, was also shown to include a sequestrate species for the first time. Because the Rhodopolioid phylogroup is composed exclusively of mycorrhizal species (ectomycorrhizal and tuberculate mycorrhizal species), the sequestrate form may also have evolved from a mycorrhizal ancestor. Our results suggest that sequestrate basidiomes have evolved multiple times, irrespective of their trophic status in Entoloma. Finally, based on molecular and morphological characteristics, here we describe two new sequestrate Entoloma species, i.e., Entoloma prismaticum Sasaki, Kinoshita et Nara, sp. nov. and Entoloma hypogaeum Sasaki, Kinoshita et Nara, sp. nov.  相似文献   

2.
The rare sequestrate fungus Amogaster viridiglebus is known from only one collection in California where it was discovered among Populus roots. Based on sporocarp coloration and spore morphology, this sequestrate taxon was putatively considered to be an ectomycorrhizal member of the Boletales. However, no molecular data were previously available to definitively determine the closest relatives of this fungus. Here we revisit the morphology of Amogaster viridiglebus and present a phylogenetic analysis based on ITS and 28S ribosomal DNA. Our phylogeny indicates that Amogaster viridiglebus is nested in the genus Lepiota, suggesting that this rare species has a saprobic trophic mode and does not form ectomycorrhizae with plants. A new combination, L. viridigleba, is made based on these phylogenetic results.  相似文献   

3.
《Mycoscience》2014,55(1):53-62
A new species of Aspergillus and a new teleomorph for A. proliferans, both isolated from cereals in Iran, are described using morphological and molecular data. A combined sequence dataset of the ITS region, partial β-tubulin and partial calmodulin genes resolved the relationships of members of section Aspergillus largely in concordance with morphological traits of ascospores. Aspergillus osmophilus sp. nov. is differentiated from the closest species, A. xerophilus by possessing larger ascospores, conidia and associated fruiting bodies. Both species are strongly xerophilic and possess ascospores with lobate-reticulate convex surfaces. The newly discovered teleomorph for A. proliferans is characterized by delicately roughened ascospores with a shallow or distinct furrow and finely roughened to irregular equatorial crests.  相似文献   

4.
Fevansia aurantiaca is an orange-colored truffle that has been collected infrequently in the Pacific Northwest of the USA. This sequestrate, hypogeous fungus was originally thought to be related to the genera Rhizopogon or Alpova in the Boletales, but the large, inflated cells in the trama and the very pale spore mass easily segregated it from these genera. To date, no molecular phylogenetic studies have determined its closest relatives. F. aurantiaca was originally discovered in leaf litter beneath Pinaceae, leading Trappe and Castellano (Mycotaxon 75:153–179, 2000) to suggest that it is an ectomycorrhizal symbiont of various members of the Pinaceae. However, without direct ecological or phylogenetic data, it is impossible to confirm the trophic mode of this truffle species. In this study, we combined phylogenetic analysis of the ITS and 28S ribosomal DNA with data on microscopic morphology to determine that F. aurantiaca is a member of the Albatrellus ectomycorrhizal lineage (Albatrellaceae, Russulales).  相似文献   

5.
A hypogeous, sequestrate, ectomycorrhizal fungus belonging to Elaphomyces was found in a Shorea plantation at Haurbentes Research Forest, West Java, Indonesia. Elaphomyces tropicalis is described as a new species based on morphological characters and molecular phylogenetic analysis of the ITS rDNA sequence. Sequences of E. tropicalis formed a distinct clade close to E. hassiacus, and sister to E. granulatus and E. asperulus. Elaphomyces tropicalis is not closely related to the E. papillatus clade. Morphologically, E. tropicalis is similar to E. (subsect Papillati) papillatus var. striatosporus with its crested spore ornamentation, but differs by having larger ascomata and different associated hosts. Shorea selanica and S. leprosula are the presumed hosts of E. tropicalis. This is the first report of an Elaphomyces species with Shorea species thus widening the previously known Elaphomyces host range.  相似文献   

6.
Revealing the relationship between plants and root-associated fungi is very important in understanding diversity maintenance and community assembly in ecosystems. However, the community assembly of root-associated fungi of focal plant species along a subtropical plant species diversity gradient is less documented. Here, we examined root-associated fungal communities associated with five ectomycorrhizal (EM) plant species (Betula luminifera, Castanea henryi, Castanopsis fargesii, C. sclerophylla, and Quercus serrate) in a Chinese subtropical woody plant species diversity (1, 2, 4, 8, 16 and 24 species) experiment, using paired-end Illumina MiSeq sequencing of the ITS2 region. In total, we detected 1933 root-associated fungal operational taxonomic units (OTUs) at a 97% sequence similarity level. Plant identity had a significant effect on total and saprotrophic fungal OTU richness, but plant species diversity level had a significant effect on saprotrophic and pathogenic fungal OTU richness. The community composition of total, saprotrophic and EM fungi was structured by plant identity and plant species diversity level. However, the community composition of pathogenic fungi was only shaped by plant identity. This study highlights that plant identity has a stronger effect on the root-associated fungal community than plant species diversity level in a diverse subtropical forest ecosystem.  相似文献   

7.
The aim of the present study was to investigate the phylogeny and evolution of sequestrate fungi (with gastroid or partially exposed basidiomes) in relation to their gilled relatives from the Cortinariaceae (Basidiomycetes). Phylogenetic analyses of 151 ITS sequences from 77 gilled species and 37 sequestrate taxa were performed using maximum parsimony and maximum likelihood methods. Results show that sequestrate basidiome forms occur in all three major ectomycorrhizal lineages of Cortinariaceae: the clades Cortinarius, Hebeloma/Hymenogaster/Naucoria, and Descolea. However, these forms do not appear within the saprobic outgroup Gymnopilus, indicating multiple origins of sequestrate forms from ectomycorrhizal ancestors. Additionally, within the Cortinarius clade sequestrate forms have multiple origins: emergent Cortinarius spp., Thaxterogaster, Quadrispora, Protoglossum, and two Hymenogaster spp. (H. remyi, H. sublilacinus) share common ancestors with Cortinarius spp., but these sequestrate genera are not closely related to each other (with exception of Thaxterogaster and Quadrispora). Hymenogaster sensu stricto, Setchelliogaster, and Descomyces were placed in the two other major clades. Thus, sequestrate taxa evolved independently many times within brown-spored Agaricales. Furthermore, emergent, secotioid, and gastroid forms have evolved independently from each other, and so are not necessarily intermediate forms. After their establishment, these apparently morphologically stable taxa show a tendency to radiate.  相似文献   

8.
Rhizopogon (Boletales) is an ectomycorrhizal fungal genus that exhibits a strong specificity to Pinaceae. This strict association occurs almost exclusively with Pinus and Pseudotsuga, while associations with other genera in Pinaceae are inconclusive. Here, we describe Rhizopogon laricinus sp. nov. associated with Larix cajanderi distributed in northeastern Siberia, where forest fires are frequent. We confirmed the host identity by comparing rDNA internal transcribed spacer (ITS) sequences obtained from basidiomata and ectomycorrhizal root tips collected at the same sites. Morphological characteristics and molecular identification revealed that R. laricinus is a new species associated with Larix unequivocally. The molecular phylogeny based on ITS sequences placed this species sister to the subgenus Roseoli, which is specific to Pinus, and not to the Pseudotsuga-specific subgenus Villosuli. Thus, R. laricinus evolution does not correspond to host phylogeny as Larix and Pseudotsuga form a monophyletic clade. Instead, ecological traits of Rhizopogon for adapting to disturbed habitats may have driven the host shift to Larix under high-frequency fire ecosystems.  相似文献   

9.
The Internal Transcribed Spacer (ITS) regions of ribosomal DNA are widely used as markers for phylogenetic analyses and environmental sampling from a variety of organisms including fungi, plants, and animals. In theory, concerted evolution homogenizes multicopy genes so that little or no variation exists within populations or individuals. However, contrary to theory, ITS variation has been confirmed in populations and individuals from a diverse range of eukaryotes. The presence of intraspecific and intra-individual variation in multicopy genes has important implications for ecological and phylogenetic studies, yet relatively little is known about natural variation of these genes, particularly at the community level. In this study, we examined intraspecific and intra-sporocarp ITS variation by DNA sequencing from sporocarps and pooled roots from 68 species of ectomycorrhizal fungi collected at a single site in a Quercus woodland. We detected ITS variation in 27 species, roughly 40% of the taxa examined. Although intraspecific ITS variation was generally low (0.16–2.85%, mean = 0.74%), it was widespread within this fungal community. We detected ITS variation in both sporocarps and ectomycorrhizal roots, and variation was present within species of Ascomycota and Basidiomycota, two distantly related lineages within the Fungi. We discuss the implications of such widespread ITS variability with special reference to DNA-based environmental sampling from diverse fungal communities. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
A new species of cyst nematode, Globodera ellingtonae, is described from soil collected from a field in Oregon. Second-stage juveniles (J2) of the species are characterized by body length of 365-515 μm, stylet length of 19-22.5 μm, basal knobs rounded posteriorly and pointed anteriorly, tail 39-55 μm, hyaline tail terminus 20-32.5 μm, and tail tapering uniformly but abruptly narrowing and constricted near the posterior third of the hyaline portion, ending with a peg-like, finely rounded to pointed terminus. Cysts are spherical to sub-spherical, dark to light brown and circumfenestrate and cyst wall pattern is ridge-like with heavy punctations. Males have a stylet length of 21-25 μm and spicule length of 30-37 μm with a pointed thorn-like tip. Females have a stylet length of 20-22.5 μm, one head annule and labial disc, heavy punctations on the cuticle, and short vulval slit 7.5-8 μm long. Morphologically this new, round-cyst species differs from the related species G. pallida, G. rostochiensis, G. tabacum complex and G. mexicana by its distinctive J2 tail, and by one or another of the following: shorter mean stylet length in J2, females and males; number of refractive bodies in the hyaline tail terminus of J2; cyst morphology including Granek’s ratio; number of cuticular ridges between the anus and vulva; and in the shape and length of spicules in males. Its relationship to these closely related species are discussed. Based upon analysis of ribosomal internal transcribed spacer (ITS) sequences, G. ellingtonae n. sp. is distinct from G. pallida, G. rostochiensis, G. tabacum and G. mexicana. Bayesian and Maximum Parsimony analysis of cloned ITS rRNA gene sequences indicated three clades, with intraspecific variability as high as 2.8%. In silico analysis revealed ITS restriction fragment length polymorphisms for enzymes Bsh 1236I, Hinf I, and Rsa I that overlap patterns for other Globodera species.  相似文献   

11.
A new ectomycorrhizal species, Alpova komoviana, is described from several collections from Montenegro (south-eastern Europe), in association with Alnus incana ssp. incana (Betulaceae). Its interesting basal position in the strictly Alnus-associated Alpova lineage is discussed through morphology and phylogenetic analyses based on ITS, gpd and rpb2 nuclear DNA. ITS sequences of two other taxa are included in the analysis: Alpova rubescens and A. rubescens var. obscuratus; their identity and systematic positions are discussed.  相似文献   

12.
Ectomycorrhizal fungi constitute an important component of soil biota in Nothofagus forests in Patagonia. However, ectomycorrhizal fungal community is poorly known in this region. Here, we assess biodiversity and community compositions of ectomycorrhizal fungal species associated with Nothofagus dombeyi, N. obliqua and N. alpina. We selected three monospecific Nothofagus forest sites for each species within the boundaries of the Lanin National Park in Northern Patagonia. Ectomycorrhizal fungal species were identified based on morphotyping and rDNA (ITS and 28S rDNA) sequence analysis using both universal and taxon-specific primers. Contrary to previous studies on congeneric host trees, our results showed no significant differences among Nothofagus forest types in terms of fungal biodiversity and community composition. However, altitude had a strong effect on the structure of the ectomycorrhizal fungal community associated with Nothofagus spp.  相似文献   

13.
Phylogenetic analysis of ITS sequences of members of the Craterellus cornucopioides complex (Black Trumpet mushrooms) supports the taxonomic separation of Craterellus fallax apart from C. cornucopioides, with which it has been synonymized in the past. Examination of Pinus virginiana ectomycorrhizal (ECM) root tips and sequence comparison with other insufficiently identified environmental sequences from roots of Tsuga, Quercus, and possibly Castanea supports a broad host range in North America for the ECM symbiont C. fallax. This is the first molecular confirmation of an ECM symbiont with P. virginiana, which associates with a wide diversity of ECM fungi, and the first report of a Cantharellaceae symbiont with this tree, an eastern North American two-needled pine. Three unique species in the C. cornucopioides complex are recovered based on phylogenetic analysis: C. fallax, C. cornucopioides, and an unidentified Craterellus species similar to C. fallax but smaller in stature with smaller spores.  相似文献   

14.
Amanita caesareoides is a sister species of Amanita caesarea, also known as Caesar’s mushroom and one of the most desirable edible mycorrhizal mushrooms. However, cultivation of Caesar’s mushrooms has not yet been successful due to the difficulties involved in establishing pure cultures. In this study, we established pure cultures of four Asian Caesar’s mushroom species, i.e., A. caesareoides, Amanita javanica, Amanita esculenta, and Amanita similis, which were identified by sequence analysis of their rDNA internal transcribed spacer (ITS) region. Five selected isolates in A. caesareoides, A. javanica, and A. esculenta were tested for ectomycorrhizal syntheses with axenic Pinus densiflora seedlings in vitro. Ectomycorrhizal tips of each fungal isolate tested were observed on pine lateral roots within 5 months of inoculation. Seventeen pine seedlings that formed ectomycorrhizas in vitro with these three Amanita species were acclimatized under non-sterile conditions. Seven months following acclimatization, ectomycorrhizal colonization by A. caesareoides was observed on newly grown root tips, which was confirmed by polymerase chain reaction restriction fragment length polymorphism analysis of the fungal rDNA ITS region. Two other Amanita species also survived during ectomycorrhizal acclimatization. These results suggest that the cultivation of A. caesareoides and its relatives can be attempted through mycorrhizal synthesis using P. densiflora as a host. This is the first report of in vitro mycorrhization of Asian Caesar’s mushrooms and their acclimatization under non-sterile conditions.  相似文献   

15.
16.
DNA sequences of Capitotricha bicolor from Quercus, Fagus sylvatica, Alnus alnobetula, and Nothofagus, and C. rubi from Rubus idaeus were obtained from apothecia to establish whether specimens from different hosts belong to separate species. The obtained ITS1–5.8S–ITS2 rDNA sequences were examined with Bayesian and parsimony phylogenetic analyses. Intra- and interspecific variation was also investigated based on molecular distances in the ITS region. The phylogenetic analyses supported the specific distinctness of Capitotricha rubi and the Capitotricha from Nothofagus, but also suggest specific distinctness between samples from Quercus, Fagus, and Alnus. The interspecific distances were larger than intraspecific distances for all examined units. The smallest distance was found between the “Alnus alnobetula” and “Fagus sylvatica” units. Two new sequences of Brunnipila are published. Capitotricha, Lachnum, and Erioscyphella are compared to each other based on hair and excipulum characteristics.  相似文献   

17.
Descolea majestatica is an agaric with features described as intermediate between the genera Descolea Singer and Rozites P. Karst. (≡ Cortinarius). Molecular phylogenetic analysis of nuclear ribosomal internal transcribed spacer (ITS), large ribosomal subunit (LSU) and RNA polymerase second largest subunit (RPB2) sequences indicates that D. majestatica is nested within the genus Cortinarius, with its closest relative a sequestrate Cortinarius species from Argentina. Taxonomic recombination is made to restore the monophyly of Cortinarius and Descolea.  相似文献   

18.
Four Gymnodinium species have previously been reported to produce microreticulate cysts. Worldwide, Gymnodinium catenatum strains are conservative in terms of larger subunit (LSU) rDNA and internal transcribed spacer region (ITS) sequences, but only limited information on the molecular sequences of other species is available. In the present study, we explored the diversity of Gymnodinium by incubating microreticulate cysts collected from the Yellow Sea off China. A total of 18 strains of Gymnodinium, from three species, were established. Two of these were identified as Gymnodinium catenatum and Gymnodinium microreticulatum, and the third was described as a new species, Gymnodinium inusitatum. Motile cells of G. inusitatum are similar to those of Gymnodinium trapeziforme, but they only share 82.52% similarity in LSU sequences. Cysts of G. inusitatum are polygonal in shape, with its microreticulate wall composed of approximately 14 concave sections. G. microreticulatum strains differ from each other at 69 positions (88.00% similarity) in terms of ITS sequences, whereas all G. catenatum strains share identical ITS sequences and belonged to the global populations. Phylogenetic analyses, based on LSU sequences, revealed that Gymnodinium species that produce microreticulate cysts are monophyletic. Nevertheless, the genus as a whole appears to be polyphyletic. Paralytic shellfish toxins (PSTs) were found in all G. catenatum strains tested (dominated by 11-hydroxysulfate benzoate analogs and N-sulfocarmaboyl analogs) but not in any of the G. microreticulatum and G. inusitatum strains. Our results support the premise that cyst morphology is taxonomically informative and is a potential feature for subdividing the genus Gymnodinium.  相似文献   

19.
20.
Species-specific internal ITS primers that amplify polymerase chain reaction (PCR) products of different lengths were selected to distinguish the morphologically similar ectomycorrhizal fungi T. melanosporum, T. brumale and T. indicum by aligning their internal transcribed spacer sequences and taking into account any incidence of intraspecific variability. In multiplex PCR experiments, the species-specific primers yielded the expected amplicons on template DNA isolated from the above mentioned species, while there was no amplification in PCR reactions carried out on fungal DNA from competing truffle species and host plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号