首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
IRF family proteins and type I interferon induction in dendritic cells   总被引:14,自引:0,他引:14  
Tailor P  Tamura T  Ozato K 《Cell research》2006,16(2):134-140
Dendritic cells (DC), although a minor population in hematopoietic cells, produce type I interferons (IFN) and other cytokines and are essential for innate immunity. They are also potent antigen presenters and regulate adaptive immunity. Among DC subtypes plasmacytoid DC (pDC) produce the highest amounts of type I IFN. In addition, pro- and anti-inflammatory cytokines such as IL-12 and IL-10 are induced in DC in response to Toll like receptor (TLR) signaling and upon viral infection. Proteins in the IRF family control many aspects of DC activity. IRF-8 and IRF-4 are essential for DC development. They differentially control the development of four DC subsets. IRF-8^-/- mice are largely devoid of pDC and CD8α^+ DC, while IRF-4^-/- mice lack CD4^+ DC. IRF-8^-/-, IRF4^-/-, double knock-out mice have only few CD8α CD4^-DC that lack MHC Ⅱ. IRF proteins also control type Ⅰ IFN induction in DC. IRF-7, activated upon TLR signaling is required for IFN induction not only in pDC, but also in conventional DC (cDC) and non-DC cell types. IRF-3, although contributes to IFN induction in fibroblasts, is dispensable in IFN induction in DC. Our recent evidence reveals that type Ⅰ IFN induction in DC is critically dependent on IRF-8, which acts in the feedback phase of IFN gene induction in DC. Type Ⅰ IFN induction in pDC is mediated by MyD88 dependent signaling pathway, and differs from pathways employed in other cells, which mostly rely on TLR3 and RIG-Ⅰ family proteins. Other pro-inflammatory cytokines are produced in an IRF-5 dependent manner. However, IRF-5 is not required for IFN induction, suggesting the presence of separate mechanisms for induction of type Ⅰ IFN and other pro-inflammatory cytokines. IFN and other cytokines produced by activated DC in turn advance DC maturation and change the phenotype and function of DC. These processes are also likely to be governed by IRF family proteins.  相似文献   

4.
5.
6.
7.
Interferon regulatory factors (IRFs) are critical components of virus-induced immune activation and type I interferon regulation. IRF3 and IRF7 are activated in response to a variety of viruses or after engagement of Toll-like receptor (TLR) 3 and TLR4 by double-stranded RNA and lipopolysaccharide, respectively. The activation of IRF5, is much more restricted. Here we show that in contrast to IRF3 and IRF7, IRF5 is not a target of the TLR3 signaling pathway but is activated by TLR7 or TLR8 signaling. We also demonstrate that MyD88, interleukin 1 receptor-associated kinase 1, and tumor necrosis factor receptor-associated factor 6 are required for the activation of IRF5 and IRF7 in the TLR7 signaling pathway. Moreover, ectopic expression of IRF5 enabled type I interferon production in response to TLR7 signaling, whereas knockdown of IRF5 by small interfering RNA reduced type I interferon induction in response to the TLR7 ligand, R-848. IRF5 and IRF7, therefore, emerge from these studies as critical mediators of TLR7 signaling.  相似文献   

8.
9.
Yan X  Xiu F  An H  Wang X  Wang J  Cao X 《Life sciences》2007,80(4):307-313
Fever improves survival and shortens disease duration in microbial infections. However, the mechanisms of these beneficial responses still remain elusive. Toll-like receptors (TLRs) play important roles in sensing microbes invading and therefore we hypothesized that fever range temperature may enhance responsiveness of dendritic cells (DCs) to lipopolysaccharide (LPS) by promoting TLR4 expression and signaling. In this study, we found that pretreatment of DCs with 39.5 degrees C temperature can up-regulate TLR4 expression in DCs and enhances LPS-induced DC production of interleukins (IL) IL-6, IL-10 and IL-12 but not tumor necrosis factor alpha (TNF-alpha). Blockade of the autocrine action of IL-10 could increase LPS-induced TNF-alpha and IL-12 production in DCs. Further experiments confirmed that TLR4 ligation activates extracellular signal-regulated kinase (ERK), p38, and nuclear factor-kappaB pathways more potently in DCs pretreated with 39.5 degrees C. We conclude that fever range temperature can promote TLR4 expression and signaling in DCs, leading to enhancement of immune responses to inflammatory stimuli. These results might reveal a possible mechanistic explanation for the significance of fever in activating innate immune responses.  相似文献   

10.
Dendritic cell (DC) activation by nucleic acid-containing IgG complexes is implicated in systemic lupus erythematosus (SLE) pathogenesis. However, it has been difficult to definitively examine the receptors and signaling pathways by which this activation is mediated. Because mouse FcgammaRs recognize human IgG, we hypothesized that IgG from lupus patients might stimulate mouse DCs, thereby facilitating this analysis. In this study, we show that sera and purified IgG from lupus patients activate mouse DCs to produce IFN-alpha, IFN-beta, and IL-6 and up-regulate costimulatory molecules in a FcgammaR-dependent manner. This activation is only seen in sera with reactivity against ribonucleoproteins and is completely dependent on TLR7 and the presence of RNA. As anticipated, IFN regulatory factor (IRF)7 is required for IFN-alpha and IFN-beta production. Unexpectedly, however, IRF5 plays a critical role in IFN-alpha and IFN-beta production induced not only by RNA-containing immune complexes but also by conventional TLR7 and TLR9 ligands. Moreover, DC production of IL-6 induced by these stimuli is dependent on a functional type I IFNR, indicating the need for a type I IFN-dependent feedback loop in the production of inflammatory cytokines. This system may also prove useful for the study of receptors and signaling pathways used by immune complexes in other human diseases.  相似文献   

11.
LPS tolerance has been investigated extensively in monocytes/macrophages. However, the LPS restimulation studies are not well documented in dendritic cells (DCs). In the present study, we investigated influences of TLR restimulation using murine bone marrow-derived DCs. Purified bone marrow-derived DCs (>98% CD11c+ B220-) were stimulated with TLR4 and TLR2 ligands for 24 h and then cultured with medium alone for 48 h as a resting interval (TLR4,2-primed DCs). The TLR4-MD2 expression was markedly reduced immediately after the TLR stimulation, but was restored following the resting interval. The TLR4,2-primed DCs exhibited significantly enhanced IL-10 production, but markedly diminished IL-12p40 production upon TLR4 restimulation compared with naive (unprimed) DCs. TLR4-mediated activation of p38 MAPK was markedly suppressed, whereas that of ERK1/2 was enhanced in the TLR4,2-primed DCs compared with naive DCs. Blocking the activation of ERK1/2 with U0126 reduced the enhanced IL-10 production by the TLR4,2-primed DCs upon the TLR4 restimulation. The U0126 showed no significant effects on the IL-12p40 production. Thus, the enhanced ERK1/2 activation appears to be, at least in part, responsible for the enhanced IL-10 production in the TLR4,2-primed DCs. In addition, TNFR-associated factor 3 expression was significantly up-regulated in the TLR4,2-primed DCs compared with that in naive DCs. We demonstrated in this study that DCs primed with TLR4 and TLR2 ligands and rested for 48 h showed enhanced IL-10 production upon TLR4 restimulation. The enhanced IL-10 production by the TLR4,2-primed DCs may be attributed to the altered balance of intracellular signaling pathways via p38 MAPK, ERK1/2, and TNFR-associated factor 3 upon TLR restimulation.  相似文献   

12.
Mature dendritic cells (DCs) play a pathogenic role in atherosclerosis. Our previous study demonstrated that exogenous interleukin (IL)-37 suppresses the maturation of DCs, induces the T-regulatory (Treg) cell response, and attenuates atherosclerosis in ApoE−/− mice. The aim of the present study was to explore the molecular mechanism of IL-37 on the maturation of DCs throughout the development of atherosclerosis. The expression of interleukin-1 receptor 8 (IL-1R8), which is a single Ig-domain receptor that was recently found to be pivotal for the extracellular function of IL-37, Toll-like receptor (TLR) 4 and p65, was measured in ApoE−/− mice and IL-37 transgenic (IL-37tg) ApoE−/− mice. IL-1R8 was mainly expressed in aortic plaque-infiltrated DCs and at significantly higher levels in IL-37tg atherosclerotic mice, accompanied by lower levels of TLR4 and p65. Furthermore, IL-37 eliminated the maturation of DCs induced by oxidized low-density lipoprotein (oxLDL) and caused marked upregulation of IL-1R8 in vitro and downregulation of TLR4 and p65, which was consistent with the experiments in mice. However, the inhibitory effect of IL-37 on the maturation of DCs in vitro was abolished when IL-37 was used to treat DCs isolated from IL-1R8-deficient and TLR4-deficient mice. Therefore, this study indicated that IL-37 inhibited the maturation of DCs via the IL-1R8-TLR4-NF-κB pathway and attenuated atherosclerosis in ApoE−/− mice.  相似文献   

13.
14.
15.
Clostridium difficile is the etiological agent of antibiotic-associated diarrhoea (AAD) and pseudomembranous colitis in humans. The role of the surface layer proteins (SLPs) in this disease has not yet been fully explored. The aim of this study was to investigate a role for SLPs in the recognition of C. difficile and the subsequent activation of the immune system. Bone marrow derived dendritic cells (DCs) exposed to SLPs were assessed for production of inflammatory cytokines, expression of cell surface markers and their ability to generate T helper (Th) cell responses. DCs isolated from C3H/HeN and C3H/HeJ mice were used in order to examine whether SLPs are recognised by TLR4. The role of TLR4 in infection was examined in TLR4-deficient mice. SLPs induced maturation of DCs characterised by production of IL-12, TNFα and IL-10 and expression of MHC class II, CD40, CD80 and CD86. Furthermore, SLP-activated DCs generated Th cells producing IFNγ and IL-17. SLPs were unable to activate DCs isolated from TLR4-mutant C3H/HeJ mice and failed to induce a subsequent Th cell response. TLR4−/− and Myd88−/−, but not TRIF−/− mice were more susceptible than wild-type mice to C. difficile infection. Furthermore, SLPs activated NFκB, but not IRF3, downstream of TLR4. Our results indicate that SLPs isolated from C. difficile can activate innate and adaptive immunity and that these effects are mediated by TLR4, with TLR4 having a functional role in experimental C. difficile infection. This suggests an important role for SLPs in the recognition of C. difficile by the immune system.  相似文献   

16.
Signaling through Toll-like receptors (TLR) activates dendritic cell (DC) maturation and IL-12 production, which directs the induction of Th1 cells. We found that the production of IL-10, in addition to inflammatory cytokines and chemokines, was significantly reduced in DCs from TLR4-defective C3H/HeJ mice in response to Bordetella pertussis. TLR4 was also required for B. pertussis LPS-induced maturation of DCs, but other B. pertussis components stimulated DC maturation independently of TLR4. The course of B. pertussis infection was more severe in C3H/HeJ than in C3H/HeN mice. Surprisingly, Ab- and Ag-specific IFN-gamma responses were enhanced at the peak of infection, whereas Ag-specific IL-10-producing T cells were significantly reduced in C3H/HeJ mice. This was associated with enhanced inflammatory cytokine production, cellular infiltration, and severe pathological changes in the lungs of TLR4-defective mice. Our findings suggest that TLR-4 signaling activates innate IL-10 production in response to B. pertussis, which both directly, and by promoting the induction of IL-10-secreting type 1 regulatory T cells, may inhibit Th1 responses and limit inflammatory pathology in the lungs during infection with B. pertussis.  相似文献   

17.
为探讨Arl8a(ADP—ribosylation factor-like 8A)与树突状细胞(dendritic cells.DCs)TLR4两条下游信号途径的关系,用Arl8a和GEFH1(guanine nucleotide-exchange factors H1)的siRNA转染来自野生型小鼠的DC,进行LPS刺激或未刺激处理后,检测TLR4-TRIF途径中RhoB靶蛋白MYH9的mRNA表达。然后从野生型和IFNα/β受体基因敲除小鼠中分离和培养DC,LPS刺激后收集细胞扩增总cDNA,通过实时定量PCR检测Arl8a的mRNA表达。再用Arl8a的siRNA转染DC,LPS刺激后检测IL-6和IL-12a的mRNA表达。结果表明,Arl8a和GEFH1的siRNA均能显著抑制LPS介导的MYH9的mRNA表达(P〈0.01),而且在LPs刺激后,Arl8a的mRNA表达在野生型小鼠的DC中增加,在IFNα/β受体基因敲除小鼠的DC中则未被上调。此外,Arl8a的siRNA对IL-6和IL-12a的mRNA表达没有显著效应。以上结果提示,在转录水平,Arl8a和GEFH1均对MYH9的表达有影响,并且Arl8a基因的表达与TRIF—IFNβ途径有关,Arl8a可能与MyD88途径中细胞因子IL-6和IL-12a的表达无关。  相似文献   

18.
Ro52 is a member of the TRIM family of single-protein E3 ligases and is also a target for autoantibody production in systemic lupus erythematosus and Sjögren''s syndrome. We previously demonstrated a novel function of Ro52 in the ubiquitination and proteasomal degradation of IRF3 following TLR3/4 stimulation. We now present evidence that Ro52 has a similar role in regulating the stability and activity of IRF7. Endogenous immunoprecipitation of Ro52-bound proteins revealed that IRF7 associates with Ro52, an effect which increases following TLR7 and TLR9 stimulation, suggesting that Ro52 interacts with IRF7 post-pathogen recognition. Furthermore, we show that Ro52 ubiquitinates IRF7 in a dose-dependent manner, resulting in a decrease in total IRF7 expression and a subsequent decrease in IFN-α production. IRF7 stability was increased in bone marrow-derived macrophages from Ro52-deficient mice stimulated with imiquimod or CpG-B, consistent with a role for Ro52 in the negative regulation of IRF7 signalling. Taken together, these results suggest that Ro52-mediated ubiquitination promotes the degradation of IRF7 following TLR7 and TLR9 stimulation. As Ro52 is known to be IFN-inducible, this system constitutes a negative-feedback loop that acts to protect the host from the prolonged activation of the immune response.  相似文献   

19.
Genetic polymorphisms of IFN regulatory factor 5 (IRF5) are associated with an increased risk of lupus in humans. In this study, we examined the role of IRF5 in the pathogenesis of pristane-induced lupus in mice. The pathological response to pristane in IRF5(-/-) mice shared many features with type I IFN receptor (IFNAR)(-/-) and TLR7(-/-) mice: production of anti-Sm/RNP autoantibodies, glomerulonephritis, generation of Ly6C(hi) monocytes, and IFN-I production all were greatly attenuated. Lymphocyte activation following pristane injection was greatly diminished in IRF5(-/-) mice, and Th cell differentiation was deviated from Th1 in wild-type mice toward Th2 in IRF5(-/-) mice. Th cell development was skewed similarly in TLR7(-/-) or IFNAR(-/-) mice, suggesting that IRF5 alters T cell activation and differentiation by affecting cytokine production. Indeed, production of IFN-I, IL-12, and IL-23 in response to pristane was markedly decreased, whereas IL-4 increased. Unexpectedly, plasmacytoid dendritic cells (pDC) were not recruited to the site of inflammation in IRF5(-/-) or MyD88(-/-) mice, but were recruited normally in IFNAR(-/-) and TLR7(-/-) mice. In striking contrast to wild-type mice, pristane did not stimulate local expression of CCL19 and CCL21 in IRF5(-/-) mice, suggesting that IRF5 regulates chemokine-mediated pDC migration independently of its effects on IFN-I. Collectively, these data indicate that altered production of IFN-I and other cytokines in IRF5(-/-) mice prevents pristane from inducing lupus pathology by broadly affecting T and B lymphocyte activation/differentiation. Additionally, we uncovered a new, IFN-I-independent role of IRF5 in regulating chemokines involved in the homing of pDCs and certain lymphocyte subsets.  相似文献   

20.
目的:干扰素调节因子是一类能够调控干扰素及其相关免疫基因表达的转录因子,研究黄鳝干扰素调节因子的结构及表达有助于阐明黄鳝抗病毒的机理。方法:利用PCR扩增技术获得了黄鳝干扰素调节因子10(IRF-10)和IRF-4的部分cDNA序列,再利用半定量PCR技术检测了黄鳝不同发育阶段、不同组织IRF-10和IRF-4的表达。结果:IRF-10和IRF-4在黄鳝三个不同的发育阶段表达量基本一致,但两者在黄鳝不同组织表达呈现明显的差异,IRF-10组成型表达于黄鳝各个组织中,而IRF-4仅在肠、中肾和脑中呈现很高的表达,其他组织表达很弱。结论:IRF-10组成型地表达于黄鳝各个组织,且表达量很高;而IRF-4中仅在主要免疫器官表达,且表达量较弱。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号