首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glucosamine and glucosamine sulphate have been promoted as a disease-modifying agent to improve the clinical symptoms of osteoarthritis. The precise mechanism of the action of the suggested positive effect of glucosamine or glucosamine sulphate on cartilage proteoglycans is not known, since the level of glucosamine in plasma remains very low after oral administration of glucosamine sulphate. We examined whether exogenous hexosamines or their sulphated forms would increase steady-state levels of aggrecan and hyaluronan synthase (HAS) or glycosaminoglycan synthesis using Northern blot and (35)S-sulphate incorporation analyses. Total RNA was extracted from bovine primary chondrocytes which were cultured either in 1 mM concentration of glucosamine, galactosamine, mannosamine, glucosamine 3-sulphate, glucosamine 6-sulphate or galactosamine 6-sulphate for 0, 4, 8 and 24 h, or in three different concentrations (control, 100 microM and 1 mM) of glucosamine sulphate salt or glucose for 24 or 72 h. Northern blot assay showed that neither hexosamines nor glucosamine sulphate salt stimulated aggrecan and HAS-2 mRNA expression. Glycosaminoglycan synthesis remained at a control level in the treated cultures, with the exception of mannosamine which inhibited (35)S-sulphate incorporation in low-glucose DMEM treatment. In our culture conditions, hexosamines or their sulphated forms did not increase aggrecan expression or (35)S-sulphate incorporation.  相似文献   

2.
A 96-well plate method was developed for analysis of total hexosamine content in biological samples. Four hexosamine monomer derivatives—glucosamine hydrochloride, glucosamine sulfate, galactosamine hydrochloride, and mannosamine hydrochloride—were examined for the linearity of their spectra in the concentration range specified in the assay. The hexosamine concentration analysis range was linear from 0.1 to 1 mM. The quantification of hexosamines from chitin and chitosan upon acid hydrolysis was also tested. Accurate quantification of glucosamine content in chitin and chitosan with different molecular sizes and degrees of acetylation was demonstrated using the new method.  相似文献   

3.
Gas chromatographic analysis of hexosamines in glycoproteins   总被引:3,自引:0,他引:3  
A gas chromatographic method for the analysis of hexosamines in glycoproteins was described which uses the alditol acetate derivatives of the sugars. A polyamide (Poly A 103) liquid phase was used which effectively separates glucosamine, galactosamine, and mannosamine from each other. Mannosamine served as internal standard to facilitate accurate quantitation of glucosamine and galactosamine.  相似文献   

4.
THe beta-galactoside-binding lectin binds to glucosamine, mannosamine and galactosamine in addition to beta-galactoside, as determined by the inhibition of haemagglutination. Haemagglutination is further extended to examine the interaction of the binding sites for hexosamines and beta-galactosides, indicating that the binding of hexosamine and beta-galactoside is competitive. The lectin also shows strong mitogenic activity toward lymphocytes from mouse lymph node, as determined by the stimulation of thymidine incorporation.  相似文献   

5.
Biosynthesis of glycosaminoglycans by cultured mastocytoma cells   总被引:3,自引:1,他引:2       下载免费PDF全文
Biosynthesis of glycosaminoglycans by several lines of cultured neoplastic mouse mast cells was studied by incorporation of [35S]sulphate (and in some cases [6-3H]glucosamine) into macromolecular materials found in both the cells and their growth media. Such intracellular and extracellular radioactively labelled materials (shown to be glycosaminoglycans by susceptibility to digestion with heparinase) were further characterized by ion-exchange chromatography and by digestion with testicular hyaluronidase and chondroitinase. All but one cell line produced chondroitin sulphate as the major sulphated glycosaminoglycan; the remainder of the glycosaminoglycan was heparin-like material. No [3H]hyaluronic acid was synthesized. Cells of a newly derived line, termed P815S, synthesized more glycosaminoglycan than the other lines. This glycosaminoglycan, found in both cells and growth medium, was almost entirely chondroitin 4-sulphate. No chondroitin 6-sulphate was found. The chondroitin 4-sulphate from the cells was shown by gel filtration to be smaller than the chondroitin 4-sulphate in the media of these cultures. This discovery of relatively high proportions of chondroitin 4-sulphate in these mastocytoma-derived cells is noteworthy, since mast cells have generally been considered to produce heparin as their major glycosaminoglycan.  相似文献   

6.
Administration of (D+) catechin (100 mg/kg body wt) to rats resulted in an increase in the amount of total sulphated glycosaminoglycans (GAG) in liver. The increase was more pronounced in the case of heparan sulphate than chondroitin sulphate and dermatan sulphate. The liver slices prepared from catechin-treated rats showed a significant increase in the rate of incorporation of 35S-sulphate into GAG. Similarly there was a concentration-dependent increase in the rate of 35S-sulphate incorporation into GAG by normal liver slices in presence of catechin in vitro. Susceptibility to nitrous acid degradation and chondroitinase ABC digestion showed that more than 80% of the GAG labelled in vivo with 35S-sulphate, was heparan sulphate and about 10% chondroitin sulphate and dermatan sulphate. Gel filtration of the 35S-labelled material isolated from livers of normal and catechin-treated animals over sephacryl S-300 did not show any difference probably excluding the possibility of free GAG chains initiated on catechin or any of its metabolites in vivo. These results indicate that catechin stimulates the synthesis of sulphated GAG, particularly heparan sulphate in liver.  相似文献   

7.
8.
From cultures of human umbilical vein endothelial cells incubated with3H-glucosamine or35S-sulphate, we have purified three heparan sulphate proteoglycans: 1) a low density (1.31 g/ml) proteoglycan from the cell extract, 2) a low density proteoglycan from the medium, and 3) a high density (>1.4 g/ml) proteoglycan from the medium. The disaccharide composition of heparan sulphate chains from the low density proteoglycan of the medium was examined, using specific chemical and enzymic degradations followed by gel chromatography and strong anion exchange HPLC. Chains released from each of the different proteoglycan populations were then compared by gel chromatography and gradient polyacrylamide gel electrophoresis before and after various specific degradations. The results indicate that heparan sulphate from human endothelial cells are large polymers (MW>50,000) of low overall sulphation (32–35%N-sulphated glucosamine and an N/O-linked sulphate ratio of 2.0) with rare and solitary heparin-like disaccharides. Heparan sulphate from the different proteoglycan populations appeared to have similar structure except that chains from the high density fraction were larger polymers.Abbreviations HSPG heparan sulphate proteoglycan - DSPG dermatan sulphate proteoglycan - GlcNAc(6S) N-acetylglucosamine 6-sulphate - GlcNAc6R glucosamine with either-OH or-OSO3 at C-6 - GlcNR glucosamine with either-SO3 or-COCH3 as N-substituent - GlcNSO3 N-sulphated glucosamine - GlcNSO3(3S) N-sulphated glucosamine 3-sulphate - GlcA d-glucuronic acid - IdoA l-iduronic acid - IdoA(2S) iduronic acid 2-sulphate - HexA hexuronic acid - DHexA hexuronic acid with a 4,5-double bond - Xyl xylose - SAX strong anion exchange - d.p. degree of polymerization (a disaccharide has d.p.=1 etc) - AUFS absorbance units full scale The codes used for proteoglycans denote in turn: C 2, low-density (1.35–1.28 g/ml) HSPG from the cell extract; M 1a, high density (>1.4 g/ml) HSPG fraction from the spent medium; M 2a, low-density (1.31 g/ml) HSPG from the spent medium [6].  相似文献   

9.
1. The incorporation of [(35)S]sulphate in vivo into the acid-soluble intermediates extracted from young rat skin showed three sulphated hexosamine-containing components. 2. The rates of synthesis of these components were determined in vivo by measuring the incorporation of radioactivity from [U-(14)C]glucose into their isolated hexosamine moieties. 3. The incorporation of radioactivity from [U-(14)C]glucose into the isolated hexosamine and uronic acid moieties of the acid glycosaminoglycans was also measured. These results, combined with those obtained on the intermediary pathways of hexosamine and uronic acid biosynthesis previously determined in this tissue, indicated that the acid-soluble sulphated hexosamine-containing components were not precursors of the sulphated hexosamine found in the acid glycosaminoglycans. 4. The rates of synthesis of the acid glycosaminoglycan fractions were calculated from the incorporation of radioactivity from [U-(14)C]glucose into the hexosamine moiety. The sulphated components containing principally dermatan sulphate, chondroitin 6-sulphate and in smaller amounts, chondroitin 4-sulphate, heparan sulphate and heparin appeared to be turning over about twice as rapidly as hyaluronic acid and about four times as rapidly as the small keratan sulphate fraction. The relative rates of synthesis of the sulphated glycosaminoglycans were calculated from the incorporation of [(35)S]sulphate and were in agreement with those from (14)C-labelling studies.  相似文献   

10.
Proteoglycans of 300 000 mol.wt. were isolated from dispersed rat basophil tumour cells after labelling of the sulphated mucopolysaccharides with 35S in vitro:90% of the 35S-labelled mucopolysaccharides were extracted at high salt concentration. Alkali degradation of the 35S-labelled proteoglycans yielded glycosaminoglycan chains of 40 000 mol.wt. The composition of the salt-extracted 35S-labelled mucopolysaccharides, as defined by parallel or sequential degradation with chondroitinase AC, chondroitinase ABC and heparinase and resolution of the disaccharide-digestion products obtained with chondroitinase AC, was 48--61% chondroitin 4-sulphate, 20--30% dermatan sulphate, 10--15% heparin and 7--9% chondroitin 6-sulphate. Most of the salt-extracted 35S-labelled mucopolysaccharides were highly charged, with heparin and chondroitin 6-sulphate being relatively uniform in this regard, whereas chondroitin 4-sulphate and dematan sulphate exhibited a range of charge characteristics. The diversity of sulphated mucopolysaccharides present in the rat leukaemic basophil is in contrast with the predominance of heparin in the rat mast cell.  相似文献   

11.
Confluent monolayer cultures of rabbit corneal endothelial and stromal cells were incubated independently with [35S]sulphate and [3H]glucosamine for 3 days. AFter incubation, labelled glycosaminoglycans were isolated from the growth medium and from a cellular fraction. These glycosaminoglycans were further characterized by DEAE-cellulose column chromatography and by sequential treatment with various glycosamino-glycan-degrading enzymes. Both endothelial and stromal cultures synthesized hyaluronic acid as the principal product. The cell fraction from the stromal cultures, however, had significantly less hyaluronic acid than that from the endothelial cultures. In addition, both types of cells synthesized a variety of sulphated glycosaminoglycans. The relative amounts of each sulphated glycosaminoglycan in the two cell lines were similar, with chondroitin 4-sulphate, chondroitin 6-sulphate and dermatan sulphate as the major components. Heparan sulphate was present in smaller amounts. Keratan sulphate was also identified, but only in very small amounts (1-3%). The presence of dermatan sulphate and the high content of hyaluronic acid are similar to the pattern of glycosaminoglycans seen in regenerating or developing tissues, including cornea.  相似文献   

12.
1. Granulation tissue from healing tendonectomy wounds in guinea pigs was analysed and the effects of inanition and ascorbic acid deficiency on this tissue were investigated. 2. Inanition produced no significant effect on either the glucosamine or the galactosamine content of the tissue. Ascorbic acid deficiency decreased the galactosamine content without affecting the glucosamine content. 3. Fractionation of papain-digested granulation tissue gave three major fractions, which behaved respectively as glycopeptide, hyaluronic acid and a sulphated glycosaminoglycan mixture. At least half of the sulphated glycosaminoglycan mixture behaved as dermatan sulphate. 4. Inanition produced no consistent effect on the fractions examined. In ascorbic acid deficiency, a decrease in the sulphated glycosaminoglycan fraction was observed, which accounted for the decreased galactosamine content of the tissue. This was accompanied by a decrease in hyaluronic acid and a slight increase in the glycopeptide fraction.  相似文献   

13.
The enzymatic processes underlying the degradation of aggrecan in cartilage and the corresponding changes in the biomechanical properties of the tissue are an important part of the pathophysiology of osteoarthritis. Recent studies have demonstrated that the hexosamines glucosamine (GlcN) and mannosamine (ManN) can inhibit aggrecanase-mediated cleavage of aggrecan in IL-1-treated cartilage cultures. The term aggrecanase describes two or more members of the ADAMTS family of metalloproteinases whose glutamyl endopeptidase activity is known to be responsible for much of the aggrecan degradation seen in human arthritides. In this study we examined the effect of ManN and GlcN on aggrecanase-mediated degradation of aggrecan induced by IL-1alpha and the corresponding tissue mechanical properties in newborn bovine articular cartilage. After 6 days of culture in 10 ng/ml IL-1 plus ManN, mechanical testing of explants in confined compression demonstrated that ManN inhibited the IL-1alpha-induced degradation in tissue equilibrium modulus, dynamic stiffness, streaming potential, and hydraulic permeability, in a dose-dependent fashion, with peak inhibition ( approximately 75-100% inhibition) reached by a concentration of 1.35 mM. Aggrecan from explants cultured in IL-1 was found by Western analysis to be almost entirely processed down to the G1-NITEGE(373) end product. Addition of ManN or GlcN was found to produce 75-90% inhibition of this cleavage, but the proportion of aggrecan remaining in the tissue which was cleaved at aggrecanase sites in the chondroitin sulfate (CS)-rich region (Glu(1501) and Glu(1687)) was higher than with IL-1 alone. This result suggests that the preservation of mechanical properties by hexosamines in explants is primarily due to inhibition of cleavage at the Glu(373) site in the interglobular domain. While the precise mechanism by which hexosamines function in this system is unclear, the present analysis suggests that the mechanical properties examined may be predominantly a function of electrostatic repulsion due to the charged CS chains in the tightly packed repetitive sequences of the CS-1 region.  相似文献   

14.
The control of chondrocyte-mediated degradation of aggrecan has been studied in rat chondrosarcoma cells and bovine cartilage explants treated with either IL-1 or retinoic acid. The capacity of glucosamine to inhibit the aggrecanase-mediated response (J. D. Sandy, D. Gamett, V. Thompson, and C. Verscharen (1998) Biochem. J. 335, 59-66) has been extended to an investigation of the effect of other hexosamines. Mannosamine inhibits the aggrecanase response to both IL-1 and RA at about one-tenth the concentration of glucosamine in both rat cell and bovine explant systems. This effect of mannosamine appears to be due to its capacity to inhibit the synthesis of glycosylphosphatidylinositol (GPI)-linked proteins by chondrocytes since the GPI synthesis inhibitor 2-deoxyfluoroglucose (2-DFG) also inhibited the aggrecanase response to IL-1b and RA in rat cells. Moreover, phosphatidylinositol-specific phospholipase C (PIPLC) treatment of rat cells markedly inhibited the aggrecanase response to IL-1b and RA. These inhibitory effects of mannosamine, 2-DFG, and PIPLC in rat cells did not appear to be due to an interference with general biosynthetic activity of the cells as measured by [3H]proline incorporation into secreted proteins. We suggest that the aggrecanase response by chondrocytes to IL-1 and RA is dependent on the activity of a GPI-anchored protein on the chondrocyte cell surface.  相似文献   

15.
Confluent cultures of a human neuroblastoma cell line (CHP100) were incubated for 48 h with d-[1-3H]glucosamine and sodium [35S]sulphate. Radioactive glycosaminoglycans were analysed in the growth medium, rapid trypsin digest of the cell monolayer and a 1% (w/v) Triton/0.5 M NaOH extract of the final cell pellet. Sulphated glycosaminoglycans co-chromatographed when eluted by NaCL gradient from DEAE-cellulose. The medium contained mainly chondroitin sulphates, whereas the cell surface was enriched in heparan sulphate. Heparan sulphate was isolated as chondroitinase ABC-resistant material and treated with nitrous acid. Analysis of the scission products on Bio-Gel P-10 yielded fragments varying in size from single disaccharides to glycans consisting of nine disaccharide units. Cell-surface and medium heparan sulphate had respectively 52% and 54% N-sulphated glucosamine residues distributed in similar patterns along the polymer chain. The N:O-sulphate ratio of neuroblastoma heparan sulphate was 1.1:1. Analysis by high-voltage electrophoresis of di- and tetrasaccharide products produced by nitrous acid treatment showed that the distribution of ‘O’-sulphate groups differed strikingly between heparan sulphates from the medium and cell-surface compartments. A di-O-sulphated tetrasaccharide was identified in both heparan sulphate species. The absence of detectable amounts of 35[S]sulphate associated with fragments larger than tetrasaccharide supports the close topographical association of N-sulphate and O-sulphate groups.  相似文献   

16.
Summary Mutual correction of co-cultivated fibroblasts from patients with Hunter's and Hurler's syndrome could be inhibited by either fructose 1-phosphate or mannose 6-phosphate. In the presence of fructose 1-phosphate a 50% mixture of fibroblasts from a patient with Hunter's syndrome and a normal homozygous individual showed an increased35S-sulphate incorporation into acid mucopolysaccharides. When fibroblast cultures from one obligate and two possible carriers of Hunter's syndrome were tested for35S-sulphate incorporation, the cultures showed either twice the normal35S-sulphate incorporation into acid mucopolysaccharides in the presence of fructose 1-phosphate or an abnormally high incorporation in the presence as well as in the absence of the sugar phosphate.  相似文献   

17.
A comparison has been made of the synthesis of glycosaminoglycans by human skin fibroblasts cultured on plastic or collagen gel substrata. Confluent cultures were incubated with [3H]glucosamine and Na235SO4 for 48h. Radiolabelled glycosaminoglycans were then analysed in the spent media and trypsin extracts from cells on plastic and in the medium, trypsin and collagenase extracts from cells on collagen gels. All enzyme extracts and spent media contained hyaluronic acid, heparan sulphate and dermatan sulphate. Hyaluronic acid was the main 3H-labelled component in media and enzyme extracts from cells on both substrata, although it was distributed mainly to the media fractions. Heparan sulphate was the major [35S]sulphated glycosaminoglycan in trypsin extracts of cells on plastic, and dermatan sulphate was the minor component. In contrast, dermatan sulphate was the principal [35S]sulphated glycosaminoglycan in trypsin and collagenase extracts of cells on collagen gels. The culture substratum also influenced the amounts of [35S]sulphated glycosaminoglycans in media and enzyme extracts. With cells on plastic, the medium contained most of the heparan sulphate (75%) and dermatan sulphate (> 90%), whereas the collagenase extract was the main source of heparan sulphate (60%) and dermatan sulphate (80%) from cells on collagen gels; when cells were grown on collagen, the medium contained only 5-20% of the total [35S]sulphated glycosaminoglycans. Depletion of the medium pool was probably caused by binding of [35S]sulphated glycosaminoglycans to the network of native collagen fibres that formed the insoluble fraction of the collagen gel. Furthermore, cells on collagen showed a 3-fold increase in dermatan sulphate synthesis, which could be due to a positive-feedback mechanism activated by the accumulation of dermatan sulphate in the microenvironment of the cultured cells. For comparative structural analyses of glycosaminoglycans synthesized on different substrata labelling experiments were carried out by incubating cells on plastic with [3H]glucosamine, and cells on collagen gels with [14C]glucosamine. Co-chromatography on DEAE-cellulose of mixed media and enzyme extracts showed that heparan sulphate from cells on collagen gels eluted at a lower salt concentration than did heparan sulphate from cells on plastic, whereas with dermatan sulphate the opposite result was obtained, with dermatan sulphate from cells on collagen eluting at a higher salt concentration than dermatan sulphate from cells on plastic. These differences did not correspond to changes in the molecular size of the glycosaminoglycan chains, but they may be caused by alterations in polymer sulphation.  相似文献   

18.
Oversulphated chondroitin sulphate proteoglycan from squid skin was isolated from 4 M guanidine hydrochloride extract by ion-exchange chromatography, gel chromatography and density gradient centrifugation. The proteoglycan had Mr 3.5 x 10(5), contained on average six oversulphated chondroitin sulphate chains (Mr 4 x 10(4)) bound on a polypeptide of Mr 2.8 x 10(4), and oligosaccharides consisting of both hexosamines, glucuronic acid, sulphates and fucose as the only neutral monosaccharide. The major amino acids of the proteoglycan protein core are glycine (corresponding to about one third of the total amino acids), aspartic acid/asparagine and serine, together amounting to 50% of the total. The proteoglycan was resistant to the proteolytic enzymes V8 protease, trypsin (treated with diphenylcarbamoyl chloride), alpha-chymotrypsin and pronase, while it was completely degraded by papain and to a large extent by collagenase. Pretreated proteoglycan with chondroitinase AC was degraded by pronase to a large extent and slightly by V8 protease and trypsin. The proteoglycan did not interact with hyaluronic acid and did not form self-aggregates. Oversulphated chondroitin sulphate chains were composed of unusual sulphated disaccharide units which were isolated and characterized by HPLC. In particular, it contained 2-acetamido-2-deoxy-3-O-(alpha-L-threo-4-enopyranosyluronic acid)-D-galactose 4-sulphate (delta di-4S) and disulphated disaccharides (delta di-diS) [90% 2-acetamido-2-deoxy-3-O-(alpha-L-threo-4-enopyranosyluronic acid 2/3-sulphate)-D-galactose 6-sulphate (delta di-diSD) and 10% 2-acetamido-2-deoxy-3-O-(alpha-L-threo-4-enopyranosyluronic acid 2/3-sulphate)-D-galactose 4-sulphate (delta di-diSK)] as the major disaccharides, significant amounts of trisulphated disaccharides (delta di-triS) and small amounts of 2-acetamido-2-deoxy-3-O-(alpha-L-threo-4-enopyranosyluronic acid)-D-galactose 6-sulphate (delta di-6S) and 2-acetamido-2-deoxy-3-O-(alpha-L-threo-4-enopyranosyluronic acid)-D-galactose (delta di-OS). Trisulphated disaccharides contained sulphate groups at C-4 and C-6 of the galactosamine and at C-2 or C-3 of the glucuronic acid. By HPLC analysis of a pure preparation of oversulphated chondroitin sulphate, it was found that it contains glucose, galactose, mannose and fucose most likely as branches.  相似文献   

19.
Arylsulphatases A and B (EC 3.1.6.1) of rabbit kidney cortex were purified 5250- and 7720-fold respectively by a multiple-column-chromatography method. The specific activity toward 4-nitrocatechol sulphate was 42mumol/min per mg for arylsulphatase A and 62 mumol/min per mg for arylsulphatase B. Each enzyme migrated as a single band on polyacrylamide-gel electrophoresis, and the enzyme activity corresponded to the band of protein on the gel. The rate of hydrolysis of ascorbic acid 2-sulphate by arylsulphatase A was three times that for cerebroside 3-sulphate. Arylsulphatase B hydrolysed UDP-N--acetylgalactosamine 4-sulphate and glucosamine 4,6-disulphate, but not galactosamine 6-sulphate.  相似文献   

20.
This study sought to elucidate the optimal cell culture conditions for studies concerned with the incorporation of [3H]glucosamine into glycosaminoglycans by rabbit aortic smooth muscle cells. The incorporation of radioactivity into extracellular sulphated glycosaminoglycans was linear for at least 72 h and that into pericellular sulphated glycosaminoglycans for up to 24 h. The incorporation of radiolabel into hyaluronic acid was linear only up to 12 h. In the exponential growth phase the incorporation of [3H]glucosamine into sulphated glycosaminoglycans and hyaluronic acid proved to be less marked than in the stationary growth phase, but the highest values were nevertheless obtained immediately after trypsinisation. When studied in the stationary growth phase, cell density and incorporation of [3H]glucosamine were positively correlated in the case of hyaluronic acid, but in the case of sulphated glycosaminoglycans there was a negative correlation. The serum concentration of the incubation medium and the incorporation of radioactivity into hyaluronic acid were positively related. With sulphated glycosaminoglycans this was the case only after a 7-day preincubation in the different serum concentrations. when incorporation was studied without preincubation, the incorporation of radioactivity into sulphated glycosaminoglycans proved to be negatively associated with the serum concentration of the medium. The environmental pH of the cells was associated with the incorporation of radioactivity into hyaluronic acid and sulphated glycosaminoglycans in that between pH values 6.8 and 7.9 the incorporation of radioactivity increased when the pH of the medium was raised.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号